Temporal Evaluation of a Minimally Invasive Method of Preimplantation Genetic Testing for Aneuploidy (mi-PGT-A) in Human Embryos
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Enrollment and Ethics
2.2. Embryo Selection, Thaw, and Culture
2.3. DNA Collection from WE and SCM+BF
2.4. DNA Analysis
2.5. Statistical Analysis:
3. Results
3.1. DNA Recovery and Amplification
3.2. Sex Concordance
3.3. Ploidy Concordance
3.4. mi-PGT-A Diagnostic Performance
4. Discussion
4.1. Influence of Culture Time on DNA Detection Rates
4.2. Influence of Culture Time on mi-PGT-A Concordance with WEs
4.3. mi-PGT-A Performance
4.4. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Handyside, A.H.; Kontogianni, E.H.; Hardy, K.; Winston, R.M.L. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 1990, 344, 768–770. [Google Scholar] [CrossRef]
- Hassold, T.; Hunt, P. To err (meiotically) is human: The genesis of human aneuploidy. Nat. Rev. Genet. 2001, 2, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Vera-Rodriguez, M.; Chavez, S.L.; Rubio, C.; Pera, R.A.R.; Simon, C. Prediction model for aneuploidy in early human embryo development revealed by single-cell analysis. Nat. Commun. 2015, 6, 7601. [Google Scholar] [CrossRef]
- Andersen, A.-M.N.; Wohlfahrt, J.; Christens, P.; Olsen, J.; Melbye, M. Maternal age and fetal loss: Population based register linkage study. BMJ 2000, 320, 1708–1712. [Google Scholar] [CrossRef] [PubMed]
- Hassold, T.; Hall, H.; Hunt, P. The origin of human aneuploidy: Where we have been, where we are going. Hum. Mol. Genet. 2007, 16, R203–R208. [Google Scholar] [CrossRef] [PubMed]
- Spandorfer, S.D.; Davis, O.K.; Barmat, L.I.; Chung, P.H.; Rosenwaks, Z. Relationship between maternal age and aneuploidy in in vitro fertilization pregnancy loss. Fertil. Steril. 2004, 81, 1265–1269. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Infertility Prevalence Estimates. Available online: https://www.who.int/publications/i/item/978920068315 (accessed on 15 February 2024).
- Rubio, C.; Rodrigo, L.; Garcia-Pascual, C.; Peinado, V.; Campos-Galindo, I.; Garcia-Herrero, S.; Simón, C. Clinical application of embryo aneuploidy testing by next-generation sequencing. Biol. Reprod. 2019, 101, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Franasiak, J.M.; Forman, E.J.; Hong, K.H.; Werner, M.D.; Upham, K.M.; Treff, N.R.; Scott, R.T., Jr. The nature of aneuploidy with increasing age of the female partner: A review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil. Steril. 2014, 101, 656–663.e1. [Google Scholar] [CrossRef] [PubMed]
- Alteri, A.; Corti, L.; Sanchez, A.M.; Rabellotti, E.; Papaleo, E.; Viganò, P. Assessment of pre-implantation genetic testing for embryo aneuploidies: A SWOT analysis. Clin. Genet. 2019, 95, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.; Kroener, L.; Miller, J.; Nguyen, A.; Kwan, L.; Quinn, M. The nature of embryonic mosaicism across female age spectrum: An analysis of 21,345 preimplantation genetic testing for aneuploidy cycles. F&S Rep. 2023, 4, 256–261. [Google Scholar] [CrossRef]
- van Echten-Arends, J.; Mastenbroek, S.; Sikkema-Raddatz, B.; Korevaar, J.C.; Heineman, M.J.; van der Veen, F.; Repping, S. Chromosomal mosaicism in human preimplantation embryos: A systematic review. Hum. Reprod. Updat. 2011, 17, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Cinnioglu, C.; Glessner, H.; Jordan, A.; Bunshaft, S. A systematic review of noninvasive preimplantation genetic testing for aneuploidy. Fertil. Steril. 2023, 120, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Shi, G.; Ma, Y.; Liu, Y.; Lu, M.; Fan, X.; Sun, Y. Impact of preimplantation genetic testing on obstetric and neonatal outcomes: A systematic review and meta-analysis. Fertil. Steril. 2021, 116, 990–1000. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Yang, C.; Yang, S.; Sun, S.; Mu, M.; Rao, M.; Zu, R.; Yan, J.; Ren, B.; Yang, R.; et al. Obstetric and neonatal outcomes of pregnancies resulting from preimplantation genetic testing: A systematic review and meta-analysis. Hum. Reprod. Updat. 2021, 27, 989–1012. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.; Xu, J.; Sun, L. Impact of trophectoderm biopsy for preimplantation genetic testing on obstetric and neonatal outcomes: A meta-analysis. Am. J. Obstet. Gynecol. 2023, 230, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Alteri, A.; Cermisoni, G.C.; Pozzoni, M.; Gaeta, G.; Cavoretto, P.I.; Viganò, P. Obstetric, neonatal, and child health outcomes following embryo biopsy for preimplantation genetic testing. Hum. Reprod. Updat. 2023, 29, 291–306. [Google Scholar] [CrossRef] [PubMed]
- Munné, S.; Kaplan, B.; Frattarelli, J.L.; Child, T.; Nakhuda, G.; Shamma, F.N.; Silverberg, K.; Kalista, T.; Handyside, A.H.; Katz-Jaffe, M.; et al. Preimplantation genetic testing for aneuploidy versus morphology as selection criteria for single frozen-thawed embryo transfer in good-prognosis patients: A multicenter randomized clinical trial. Fertil. Steril. 2019, 112, 1071–1079.e7. [Google Scholar] [CrossRef] [PubMed]
- Paulson, R.J. Preimplantation genetic screening: What is the clinical efficiency? Fertil. Steril. 2017, 108, 228–230. [Google Scholar] [CrossRef]
- Yan, J.; Qin, Y.; Zhao, H.; Sun, Y.; Gong, F.; Li, R.; Sun, X.; Ling, X.; Li, H.; Hao, C.; et al. Live Birth with or without Preimplantation Genetic Testing for Aneuploidy. N. Engl. J. Med. 2021, 385, 2047–2058. [Google Scholar] [CrossRef]
- Lee, E.; Illingworth, P.; Wilton, L.; Chambers, G.M. The clinical effectiveness of preimplantation genetic diagnosis for aneuploidy in all 24 chromosomes (PGD-A): Systematic review. Hum. Reprod. 2015, 30, 473–483. [Google Scholar] [CrossRef]
- Rubio, C.; Bellver, J.; Rodrigo, L.; Castillón, G.; Guillén, A.; Vidal, C.; Giles, J.; Ferrando, M.; Cabanillas, S.; Remohí, J.; et al. In vitro fertilization with preimplantation genetic diagnosis for aneuploidies in advanced maternal age: A randomized, controlled study. Fertil. Steril. 2017, 107, 1122–1129. [Google Scholar] [CrossRef] [PubMed]
- Hynes, J.S.; Forman, E.J. Transfer of the fittest: Using preimplantation genetic testing for aneuploidy to select embryo(s) most likely to lead to live birth. F&S Sci. 2023, 4, 2–6. [Google Scholar] [CrossRef]
- Liang, Z.; Wen, Q.; Li, J.; Zeng, D.; Huang, P. A systematic review and meta-analysis: Clinical outcomes of recurrent pregnancy failure resulting from preimplantation genetic testing for aneuploidy. Front. Endocrinol. 2023, 14, 1178294. [Google Scholar] [CrossRef] [PubMed]
- Ozgur, K.; Berkkanoglu, M.; Bulut, H.; Yoruk, G.D.A.; Candurmaz, N.N.; Coetzee, K. Single best euploid versus single best unknown-ploidy blastocyst frozen embryo transfers: A randomized controlled trial. J. Assist. Reprod. Genet. 2019, 36, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Assou, S.; Aït-Ahmed, O.; El Messaoudi, S.; Thierry, A.R.; Hamamah, S. Non-invasive pre-implantation genetic diagnosis of X-linked disorders. Med. Hypotheses 2014, 83, 506–508. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Fang, R.; Chen, L.; Chen, D.; Xiao, J.-P.; Yang, W.; Wang, H.; Song, X.; Ma, T.; Bo, S.; et al. Noninvasive chromosome screening of human embryos by genome sequencing of embryo culture medium for in vitro fertilization. Proc. Natl. Acad. Sci. USA 2016, 113, 11907–11912. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.Y.H.; Chow, J.F.C.; Lam, K.K.W.; Lai, S.F.; Yeung, W.S.B.; Ng, E.H.Y. Randomised double-blind controlled trial of non-invasive preimplantation genetic testing for aneuploidy in in vitro fertilisation: A protocol paper. BMJ Open 2023, 13, 72557. [Google Scholar] [CrossRef] [PubMed]
- Fang, R.; Yang, W.; Zhao, X.; Xiong, F.; Guo, C.; Xiao, J.; Chen, L.; Song, X.; Wang, H.; Chen, J.; et al. Chromosome screening using culture medium of embryos fertilised in vitro: A pilot clinical study. J. Transl. Med. 2019, 17, 73. [Google Scholar] [CrossRef]
- Franco, J.; Riaza, E.C.D.A.; Milla, A.V.; Vegue, R.G.F.; Borras, F.S.; Albornoz, A.V.C.D.; Acera, A.M.; Olalla, B.B.; Perez, S.I.; Fullana, E.M.; et al. P–560 Comparative analysis of non-invasive preimplantation genetic testing of aneuploidies (niPGT-A), PGT-A and IVF cycles without aneuploidy testing: Preliminary results. Hum. Reprod. 2021, 36, deab130.559. [Google Scholar] [CrossRef]
- Franco, J.G.; Dieamant, F.; Oliveira, J.B.A. Noninvasive preimplantation genetic testing for aneuploidies (niPGT-A) and the principle of primum non nocere. JBRA Assist. Reprod. 2020, 24, 391–393. [Google Scholar] [CrossRef]
- Huang, J.; Li, R.; Zeng, L.; Hu, L.; Shi, J.; Cai, L.; Yao, B.; Wang, X.-X.; Xu, Y.; Yao, Y.; et al. Embryo selection through non-invasive preimplantation genetic testing with cell-free DNA in spent culture media: A protocol for a multicentre, double-blind, randomised controlled trial. BMJ Open 2022, 12, 57254. [Google Scholar] [CrossRef]
- García-Pascual, C.M.; Navarro-Sánchez, L.; Ichikawa-Ceschin, I.; Bakalova, D.; Martínez-Merino, L.; Simón, C.; Rubio, C. Cell-free deoxyribonucleic acid analysis in preimplantation genetic testing. F&S Sci. 2023, 4, 7–16. [Google Scholar] [CrossRef]
- Kuznyetsov, V.; Madjunkova, S.; Antes, R.; Abramov, R.; Motamedi, G.; Ibarrientos, Z.; Librach, C. Evaluation of a novel non-invasive preimplantation genetic screening approach. PLoS ONE 2018, 13, e0197262. [Google Scholar] [CrossRef] [PubMed]
- Kuznyetsov, V.; Madjunkova, S.; Abramov, R.; Antes, R.; Ibarrientos, Z.; Motamedi, G.; Zaman, A.; Kuznyetsova, I.; Librach, C.L. Minimally Invasive Cell-Free Human Embryo Aneuploidy Testing (miPGT-A) Utilizing Combined Spent Embryo Culture Medium and Blastocoel Fluid—Towards Development of a Clinical Assay. Sci. Rep. 2020, 10, 7244. [Google Scholar] [CrossRef]
- Li, P.; Song, Z.; Yao, Y.; Huang, T.; Mao, R.; Huang, J.; Ma, Y.; Dong, X.; Huang, W.; Huang, J.; et al. Preimplantation Genetic Screening with Spent Culture Medium/Blastocoel Fluid for in Vitro Fertilization. Sci. Rep. 2018, 8, 9275. [Google Scholar] [CrossRef]
- Huang, L.; Bogale, B.; Tang, Y.; Lu, S.; Xie, X.S.; Racowsky, C. Noninvasive preimplantation genetic testing for aneuploidy in spent medium may be more reliable than trophectoderm biopsy. Proc. Natl. Acad. Sci. USA 2019, 116, 14105–14112. [Google Scholar] [CrossRef] [PubMed]
- Jiao, J.; Shi, B.; Sagnelli, M.; Yang, D.; Yao, Y.; Li, W.; Shao, L.; Lu, S.; Li, D.; Wang, X. Minimally invasive preimplantation genetic testing using blastocyst culture medium. Hum. Reprod. 2019, 34, 1369–1379. [Google Scholar] [CrossRef]
- Zhang, J.; Xia, H.; Chen, H.; Yao, C.; Feng, L.; Song, X.; Bai, X. Less-invasive chromosome screening of embryos and embryo assessment by genetic studies of DNA in embryo culture medium. J. Assist. Reprod. Genet. 2019, 36, 2505–2513. [Google Scholar] [CrossRef]
- Zong, C.; Lu, S.; Chapman, A.R.; Xie, X.S. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 2012, 338, 1622–1626. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, J.; Du, H.; Ling, J.; Sun, X.; Chen, D. Non-invasive pre-implantation aneuploidy screening and diagnosis of beta thalassemia IVSII654 mutation using spent embryo culture medium. Ann. Med. 2017, 49, 319–328. [Google Scholar] [CrossRef]
- Hammond, E.R.; Shelling, A.N.; Cree, L.M. Nuclear and mitochondrial DNA in blastocoele fluid and embryo culture medium: Evidence and potential clinical use. Hum. Reprod. 2016, 31, 1653–1661. [Google Scholar] [CrossRef] [PubMed]
- Vera-Rodriguez, M.; Diez-Juan, A.; Jimenez-Almazan, J.; Martinez, S.; Navarro, R.; Peinado, V.; Mercader, A.; Meseguer, M.; Blesa, D.; Moreno, I.; et al. Origin and composition of cell-free DNA in spent medium from human embryo culture during preimplantation development. Hum. Reprod. 2018, 33, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Lledo, B.; Morales, R.; Ortiz, J.A.; Bernabeu, A.; Bernabeu, R. Noninvasive preimplantation genetic testing using the embryo spent culture medium: An update. Curr. Opin. Obstet. Gynecol. 2023, 35, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Li, Y.; Chen, K.; Li, M.; Tian, M.; Xiang, L.; Wu, X.; Zeng, P.; Li, M.; Shao, J.; et al. The Comparison of Two Whole-Genome Amplification Approaches for Noninvasive Preimplantation Genetic Testing (ni-PGT) and the Application Scenario of ni-PGT during the Fresh Cycle. J. Mol. Diagn. 2023, 25, 945–956. [Google Scholar] [CrossRef]
- Magli, M.C.; Pomante, A.; Cafueri, G.; Valerio, M.; Crippa, A.; Ferraretti, A.P.; Gianaroli, L. Preimplantation genetic testing: Polar bodies, blastomeres, trophectoderm cells, or blastocoelic fluid? Fertil. Steril. 2016, 105, 676–683.e5. [Google Scholar] [CrossRef]
- Rule, K.; Chosed, R.J.; Chang, T.A.; Wininger, J.D.; Roudebush, W.E. Relationship between blastocoel cell-free DNA and day-5 blastocyst morphology. J. Assist. Reprod. Genet. 2018, 35, 1497–1501. [Google Scholar] [CrossRef] [PubMed]
- Kakourou, G.; Mamasa, T.; Vrettou, C.; Traeger-Synodinos, J. An Update on Non-invasive Approaches for Genetic Testing of the Preimplantation Embryo. Curr. Genom. 2022, 23, 337–352. [Google Scholar] [CrossRef] [PubMed]
- del Collado, M.; Andrade, G.M.; Gonçalves, N.J.N.; Fortini, S.; Perecin, F.; Carriero, M.M. The embryo non-invasive pre-implantation diagnosis era: How far are we? Anim. Reprod. 2023, 20, e20230069. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.-X.; Sun, X.-X. Character of cell-free genomic DNA in embryo culture medium and the prospect of its clinical application in preimplantation genetic testing. Reprod. Dev. Med. 2022, 6, 51–56. [Google Scholar] [CrossRef]
- Hammond, E.R.; McGillivray, B.C.; Wicker, S.M.; Peek, J.C.; Shelling, A.N.; Stone, P.; Chamley, L.W.; Cree, L.M. Characterizing nuclear and mitochondrial DNA in spent embryo culture media: Genetic contamination identified. Fertil. Steril. 2017, 107, 220–228.e5. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, Y.; Jia, J.; Chang, L.; Liu, P.; Qiao, J.; Tang, F.; Wen, L.; Huang, J. DNA methylome reveals cellular origin of cell-free DNA in spent medium of human preimplantation embryos. J. Clin. Investig. 2021, 131, e146051. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Liu, C.; Zhou, X.C.; Ma, J.; Du, L.; Lu, J.; Zhou, W.N.; Hu, T.T.; Lyu, L.J.; Yin, A.H. Application study of droplet digital PCR to detect maternal cell contamination in prenatal diagnosis. Zhonghua Fu Chan Ke Za Zhi 2017, 52, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Liu, D.; Zou, Y.; Wan, C.; Chen, C.; Dong, M.; Huang, Y.; Huang, C.; Weng, H.; Zhu, X.; et al. PGT for human blastocysts with potential parental contamination using quantitative parental contamination testing (qPCT): An evidence-based study. Reprod. Biomed. 2023, 46, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Li, H.; Liu, L.; Kong, L.; Mao, Y.; Li, W.; Xia, Y.; Liang, B.; Zhang, Y. Next generation sequencing as a new detection strategy for maternal cell contamination in clinical prenatal samples. Ginekol. Polska 2018, 89, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.F.C.; Lam, K.K.W.; Cheng, H.H.Y.; Lai, S.F.; Yeung, W.S.B.; Ng, E.H.Y. Optimizing non-invasive preimplantation genetic testing: Investigating culture conditions, sample collection, and IVF treatment for improved non-invasive PGT-A results. J. Assist. Reprod. Genet. 2024, 41, 465–472. [Google Scholar] [CrossRef]
- Ardestani, G.; Banti, M.; García-Pascual, C.M.; Navarro-Sánchez, L.; Van Zyl, E.; Castellón, J.A.; Simón, C.; Sakkas, D.; Rubio, C. Culture time to optimize embryo cell-free DNA (cfDNA) analysis for frozen-thawed blastocysts undergoing non-invasive preimplantation genetic testing for aneuploidy (niPGT-A). Fertil. Steril. 2024, Epub ahead of print. [Google Scholar] [CrossRef]
- Rubio, C.; Navarro-Sánchez, L.; García-Pascual, C.M.; Ocali, O.; Cimadomo, D.; Venier, W.; Barroso, G.; Kopcow, L.; Bahçeci, M.; Kulmann, M.I.R.; et al. Multicenter prospective study of concordance between embryonic cell-free DNA and trophectoderm biopsies from 1301 human blastocysts. Am. J. Obstet. Gynecol. 2020, 223, 751.e1–751.e13. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Yao, Y.; Zhou, Y.; Zhao, D.M.; Wan, A.Q.; Ren, J.; Lei, X. Non-Invasive Chromosome Screening for Embryo Preimplantation Using Cell-Free DNA. In Infertility and Assisted Reproduction; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Rubio, C.; Rienzi, L.; Navarro-Sánchez, L.; Cimadomo, D.; García-Pascual, C.M.; Albricci, L.; Soscia, D.; Valbuena, D.; Capalbo, A.; Ubaldi, F.; et al. Embryonic cell-free DNA versus trophectoderm biopsy for aneuploidy testing: Concordance rate and clinical implications. Fertil. Steril. 2019, 112, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Heitmann, R.J.; Hill, M.J.; Richter, K.S.; DeCherney, A.H.; Widra, E.A. The simplified SART embryo scoring system is highly correlated to implantation and live birth in single blastocyst transfers. J. Assist. Reprod. Genet. 2013, 30, 563–567. [Google Scholar] [CrossRef]
- Strychalska, A.; Sierka, W.; Kokot, A.; Jodlowec-Lubanska, N.; Wroblewska, U.; Mermer, P.; Simka-Lampa, K.; Morawiec, E.; Pudelko, A.; Bednarska-Czerwinska, A. O-211 A comparative analysis of non-invasive preimplantation genetic testing for aneuploidies using next-generation sequencing on day 5 and day 6 spent culture media versus trophectoderm. Hum. Reprod. 2023, 38, dead093.257. [Google Scholar] [CrossRef]
- Jasper, M.; Robinson, C. 48. OBSERVING THE IMPACT OF EMBRYO CULTURING CONDITIONS ON NON-INVASIVE PREIMPLANTATION GENETIC TESTING FOR ANEUPLOIDY DETECTION (NI-PGT-A). Reprod. Biomed. Online 2019, 39, e56. [Google Scholar] [CrossRef]
- Bourdon, M.; Pocate-Cheriet, K.; de Bantel, A.F.; Grzegorczyk-Martin, V.; Hoffet, A.A.; Arbo, E.; Poulain, M.; Santulli, P. Day 5 versus Day 6 blastocyst transfers: A systematic review and meta-analysis of clinical outcomes. Hum. Reprod. 2019, 34, 1948–1964. [Google Scholar] [CrossRef] [PubMed]
- Kaye, L.; Will, E.A.; Bartolucci, A.; Nulsen, J.; Benadiva, C.; Engmann, L. Pregnancy rates for single embryo transfer (SET) of day 5 and day 6 blastocysts after cryopreservation by vitrification and slow freeze. J. Assist. Reprod. Genet. 2017, 34, 913–919. [Google Scholar] [CrossRef]
- Jiang, Y.; Jiang, R.; He, H.; Ren, X.; Yu, Q.; Jin, L. Comparison of clinical outcomes for different morphological scores of D5 and D6 blastocysts in the frozen-thawed cycle. BMC Pregnancy Childbirth 2023, 23, 97. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Ma, F.; Chapman, A.; Lu, S.; Xie, X.S. Single-Cell Whole-Genome Amplification and Sequencing: Methodology and Applications. Annu. Rev. Genom. Hum. Genet. 2015, 16, 79–102. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Zhao, Z.; Xue, X.; Li, Q.; Yao, Y.; Wang, D.; Wang, J.; Lu, S.; Shi, J. Ploidy Testing of Blastocoel Fluid for Screening May Be Technically Challenging and More Invasive Than That of Spent Cell Culture Media. Front. Physiol. 2022, 13, 794210. [Google Scholar] [CrossRef] [PubMed]
- Taylor, T.H.; Gitlin, S.A.; Patrick, J.L.; Crain, J.L.; Wilson, J.M.; Griffin, D.K. The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans. Hum. Reprod. Updat. 2014, 20, 571–581. [Google Scholar] [CrossRef]
- Rienzi, L.; Gracia, C.; Maggiulli, R.; LaBarbera, A.R.; Kaser, D.J.; Ubaldi, F.M.; Vanderpoel, S.; Racowsky, C. Oocyte, embryo and blastocyst cryopreservation in ART: Systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum. Reprod. Updat. 2017, 23, 139–155. [Google Scholar] [CrossRef]
- Deleye, L.; De Coninck, D.; Christodoulou, C.; Sante, T.; Dheedene, A.; Heindryckx, B.; Abbeel, E.V.D.; De Sutter, P.; Menten, B.; Deforce, D.; et al. Whole genome amplification with SurePlex results in better copy number alteration detection using sequencing data compared to the MALBAC method. Sci. Rep. 2015, 5, 11711. [Google Scholar] [CrossRef]
DNA Detection Rate (All SCM+BF Samples) | DNA Detection (SCM+BF Samples from High-Quality Embryos) | DNA Detection Rate (SCM+BF Samples from Low-Quality Embryos) | DNA Detection Rate (WEs) | |
---|---|---|---|---|
48-h post thaw | 68.7% (11/16) | 84.6% (11/13) | 0% (0/3) | 100% (16/16) |
72-h post thaw | 97.2% (35/36) | 100% (16/16) | 95% (19/20) | 100% (36/36) |
Total | 88.5% (46/52) | 93.1% (27/29) | 82.6% (19/23) | 100% (52/52) |
Metric | Sex Concordance | General Concordance | False Positive | False Negative | Low Level Mosaic | Suspected Maternal Cell Contamination | Full Concordance | No Result | Total Samples |
---|---|---|---|---|---|---|---|---|---|
48-h post thaw | 72.7% (8/11) | 5/11 (45.4%) | 4/11 (36.3%) | 1/11 (9%) | 1/11 (9%) | - | 5/11 (45.4%) | 5/16 (31.2%) | 16 |
72-h post thaw | 100% (35/35) | 23/35 (65.7%) | 6/35 (17.1%) | 2/35 (5.7%) | 2/35 (5.7%) | 2/35 (5.7%) | 16/35 (45.7%) | 1/36 (2.7%) | 36 |
Total | 93.4% (43/46) | 28/46 (60.8%) | 10/46 (21.7%) | 3/46 (6.5%) | 2/46 (4.3%) | 2/46 (4.3%) | 21/46 (45.7%) | 6/52 (11.5%) | 52 |
Metric | 48-h Post Thaw | 72-h Post Thaw | Total |
---|---|---|---|
False-positive rate | 36.3% (4/11) | 28.5% (10/35) * | 30.4% (14/46) |
False-negative rate | 9% (1/11) | 5.7% (2/35) | 6.5% (3/46) |
PPV | 71.4% (10/14) | 76.7% (33/43) | 75.4% (43/57) |
NPV | 87.5% (7/8) | 92.6% (25/27) | 91.4% (32/35) |
Sensitivity | 90.9% (10/11) | 94.3% (33/35) | 93.4% (43/46) |
Specificity | 63.6% (7/11) | 71.4% (25/35) | 69.5% (32/46) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phillips, K.R.B.; Kuzma-Hunt, A.G.; Neal, M.S.; Lisle, C.; Sribalachandran, H.; Carter, R.F.; Amin, S.; Karnis, M.F.; Faghih, M. Temporal Evaluation of a Minimally Invasive Method of Preimplantation Genetic Testing for Aneuploidy (mi-PGT-A) in Human Embryos. Reprod. Med. 2024, 5, 97-112. https://doi.org/10.3390/reprodmed5030011
Phillips KRB, Kuzma-Hunt AG, Neal MS, Lisle C, Sribalachandran H, Carter RF, Amin S, Karnis MF, Faghih M. Temporal Evaluation of a Minimally Invasive Method of Preimplantation Genetic Testing for Aneuploidy (mi-PGT-A) in Human Embryos. Reproductive Medicine. 2024; 5(3):97-112. https://doi.org/10.3390/reprodmed5030011
Chicago/Turabian StylePhillips, Katharine R. B., Alexander G. Kuzma-Hunt, Michael S. Neal, Connie Lisle, Hariharan Sribalachandran, Ronald F. Carter, Shilpa Amin, Megan F. Karnis, and Mehrnoosh Faghih. 2024. "Temporal Evaluation of a Minimally Invasive Method of Preimplantation Genetic Testing for Aneuploidy (mi-PGT-A) in Human Embryos" Reproductive Medicine 5, no. 3: 97-112. https://doi.org/10.3390/reprodmed5030011
APA StylePhillips, K. R. B., Kuzma-Hunt, A. G., Neal, M. S., Lisle, C., Sribalachandran, H., Carter, R. F., Amin, S., Karnis, M. F., & Faghih, M. (2024). Temporal Evaluation of a Minimally Invasive Method of Preimplantation Genetic Testing for Aneuploidy (mi-PGT-A) in Human Embryos. Reproductive Medicine, 5(3), 97-112. https://doi.org/10.3390/reprodmed5030011