Exploring Regulatory Properties of Genes Associated with Nonsyndromic Male Infertility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of Promoter Regions for Genes Associated with Nonsyndromic Male Infertility
2.2. Determination of Common Motifs and Transcription Factors for Promoter Regions of Genes Associated with Nonsyndromic Male Infertility
2.3. Gene Ontology Analysis
2.4. Search for CpG Islands
3. Results
3.1. Identification of Promoters
3.2. Common Candidate Motifs and Transcription Factors of Genes Associated with Nonsyndromic Male Infertility
3.3. Gene Ontology for MOTIF1
3.4. CpG Islands in Promoters and Gene Body Regions of Genes Associated with Nonsyndromic Male Infertility
3.5. Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Venkatesh, T.; Suresh, P.S.; Tsutsumi, R. New insights into the genetic basis of infertility. Appl. Clin. Genet. 2014, 7, 235–243. [Google Scholar]
- Agarwal, A.; Mulgund, A.; Hamada, A.; Chyatte, M.R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 2015, 13, 37. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.; Sivapalan, G.; Gibbons, N.; Tempest, H.; Griffin, D.K. The genetic basis of infertility. Reproduction 2003, 126, 13–25. [Google Scholar] [CrossRef]
- Ferlin, A.; Raicu, F.; Gatta, V.; Zuccarello, D.; Palka, G.; Foresta, C. Male infertility: Role of genetic background. Reprod. Biomed. Online 2007, 14, 734–745. [Google Scholar] [CrossRef] [PubMed]
- O’brien, K.L.F.; Varghese, A.C.; Agarwal, A. The genetic causes of male factor infertility: A review. Fertil. Steril. 2010, 93, 1–12. [Google Scholar]
- Ferlin, A.; Arredi, B.; Foresta, C. Genetic causes of male infertility. Reprod. Toxicol. 2006, 22, 133–141. [Google Scholar] [CrossRef]
- Jenkins, T.G.; Carrell, D.T. The sperm epigenome and potential implications for the developing embryo. Reproduction 2012, 143, 727–734. [Google Scholar] [CrossRef]
- Chianese, C.; Gunning, A.C.; Giachini, C.; Daguin, F.; Balercia, G.; Ars, E.; Krausz, C. X chromosome-linked CNVs in male infertility: Discovery of overall duplication load and recurrent, patient-specific gains with potential clinical relevance. PLoS ONE 2014, 9, e97746. [Google Scholar] [CrossRef] [PubMed]
- Krausz, C. Male infertility: Pathogenesis and clinical diagnosis. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 271–285. [Google Scholar] [CrossRef]
- Tiepolo, L.; Zuffardi, O. Localization of factors controlling spermatogenesis in the nonfluorescent portion of the human Y chromosome long arm. Hum. Genet. 1976, 34, 119–124. [Google Scholar] [CrossRef]
- Stojanov, D.; Koceski, S.; Mileva, A.; Koceska, N.; Bande, C.M. Towards computational improvement of DNA database indexing and short DNA query searching. Biotechnol. Biotechnol. Equip. 2014, 28, 958–967. [Google Scholar] [CrossRef] [PubMed]
- Stojanov, D.; Madevska Bogdanova, A.; Orzechowski, T.M. TMO: Time and memory optimized algorithm applicable for more accurate alignment of trinucleotide repeat disorders associated genes. Biotechnol. Biotechnol. Equip. 2016, 30, 388–403. [Google Scholar] [CrossRef]
- Stojanov, D.; Lazarova, E.; Veljkova, E.; Rubartelli, P.; Giacomini, M. Predicting the outcome of heart failure against chronic-ischemic heart disease in elderly population–Machine learning approach based on logistic regression, case to Villa Scassi hospital Genoa, Italy. J. King Saud Univ.-Sci. 2023, 35, 102573. [Google Scholar] [CrossRef]
- Simoni, M.; Tempfer, C.B.; Destenaves, B.; Fauser, B.C.J.M. Functional genetic polymorphisms and female reproductive disorders: Part I: Polycystic ovary syndrome and ovarian response. Hum. Reprod. Update 2008, 14, 459–484. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Ouma, W.Z.; Li, W.; Doseff, A.I.; Grotewold, E. Establishing the Architecture of Plant Gene Regulatory Networks. In Methods in Enzymology; Academic Press: London, UK, 2016; Volume 576, pp. 251–304. [Google Scholar]
- Lai, H.Y.; Zhang, Z.Y.; Su, Z.D.; Su, W.; Ding, H.; Chen, W.; Lin, H. iProEP: A computational predictor for predicting promoter. Mol. Ther.-Nucleic Acids 2019, 17, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.M.; Freitas, A.T.; Oliveira, A.L.; Sagot, M.F. An efficient algorithm for the identification of structured motifs in DNA promoter sequences. IEEE/ACM Trans. Comput. Biol. Bioinform. 2006, 3, 126–140. [Google Scholar] [CrossRef] [PubMed]
- Lambert, S.A.; Jolma, A.; Campitelli, L.F.; Das, P.K.; Yin, Y.; Albu, M.; Chen, X.; Taipale, J.; Hughes, T.R.; Weirauch, M.T. The human transcription factors. Cell 2018, 172, 650–665. [Google Scholar] [CrossRef] [PubMed]
- Reményi, A.; Schöler, H.R.; Wilmanns, M. Combinatorial control of gene expression. Nat. Struct. Mol. Biol. 2004, 11, 812–815. [Google Scholar] [CrossRef]
- Larson, D.; Bradford-Wilcox, J.; Young, L.S.; Sprague, K.U. A short 5′ flanking region containing conserved sequences is required for silkworm alanine tRNA gene activity. Proc. Natl. Acad. Sci. USA 1983, 80, 3416–3420. [Google Scholar] [CrossRef]
- Morton, D.G.; Sprague, K.U. In vitro transcription of a silkworm 5S RNA gene requires an upstream signal. Proc. Natl. Acad. Sci. USA 1984, 81, 5519–5522. [Google Scholar] [CrossRef]
- Selker, E.U.; Morzycka-Wroblewska, E.; Stevens, J.N.; Metzenberg, R.L. An upstream signal is required for in vitro transcription of Neurospora 5S RNA genes. Mol. Gen. Genet. 1986, 205, 189–192. [Google Scholar] [CrossRef]
- Garcia, A.D.; O’Connell, A.M.; Sharp, S.J. Formation of an active transcription complex in the Drosophila melanogaster 5S RNA gene is dependent on an upstream region. Mol. Cell. Biol. 1987, 7, 2046–2051. [Google Scholar] [PubMed]
- Venkatesh, T.; Thankachan, S.; Kabekkodu, S.P.; Chakraborti, S.; Suresh, P.S. Emerging Patterns and Implications of Breast Cancer Epigenetics: An Update of the Current Knowledge. In Epigenetics Reprod Health; Academic Press: London, UK, 2021; Volume 21, pp. 295–324. [Google Scholar]
- Mehmood, M.A.; Sehar, U.; Ahmad, N. Use of bioinformatics tools in different spheres of life sciences. J. Data Min. Genom. Proteom. 2014, 5, 1. [Google Scholar]
- Stojanov, D. Structural implications of SARS-CoV-2 Surface Glycoprotein N501Y mutation within receptor-binding domain [499–505]–computational analysis of the most frequent Asn501 polar uncharged amino acid mutations. Biotechnol. Biotechnol. Equip. 2023, 37, 2206492. [Google Scholar] [CrossRef]
- Stojanov, D. Phylogenicity of B. 1.1. 7 surface glycoprotein, novel distance function and first report of V90T missense mutation in SARS-CoV-2 surface glycoprotein. Meta Gene 2021, 30, 100967. [Google Scholar] [CrossRef] [PubMed]
- Stojanov, D. Data on multiple SARS-CoV-2 surface glycoprotein alignments. Data Brief 2021, 38, 107414. [Google Scholar] [CrossRef] [PubMed]
- Yahaya, T.O.; Liman, U.U.; Abdullahi, H.; Koko, Y.S.; Ribah, S.S.; Adamu, Z.; Abubakar, S. Genes predisposing to syndromic and nonsyndromic infertility: A narrative review. Egypt. J. Med. Hum. Genet. 2020, 21, 46. [Google Scholar] [CrossRef]
- Guerri, G.; Maniscalchi, T.; Barati, S.; Gerli, S.; Di Renzo, G.C.; Della Morte, C.; Marceddu, G.; Casadei, A.; Laganà, A.S.; Sturla, D.; et al. Non-syndromic monogenic female infertility. Acta Bio Medica Atenei Parm. 2019, 90, 68. [Google Scholar]
- Okutman, O.; Rhouma, M.B.; Benkhalifa, M.; Muller, J.; Viville, S. Genetic evaluation of patients with non-syndromic male infertility. J. Assist. Reprod. Genet. 2018, 35, 1939–1951. [Google Scholar] [CrossRef]
- Joseph, S.; Mahale, S.D. Male Infertility Knowledgebase: Decoding the genetic and disease landscape. Database 2021, 2021, baab049. [Google Scholar]
- Samuel, B.; Dinka, H. In silico analysis of the promoter region of olfactory receptors in cattle (Bos indicus) to understand its gene regulation. Nucleosides Nucleotides Nucleic Acids 2020, 39, 853–865. [Google Scholar] [CrossRef]
- Beshir, J.A.; Kebede, M. In silico analysis of promoter regions and regulatory elements (motifs and CpG islands) of the genes encoding for alcohol production in Saccharomyces cerevisiaea S288C and Schizosaccharomyces pombe 972h. J. Genet. Eng. Biotechnol. 2021, 19, 8. [Google Scholar]
- Bharathesree, R.; Murali, N.; Saravanan, R.; Anilkumar, R. Polymorphism of Keratin-Associated Protein (KAP) 6.1 gene and its association with wool traits of Sandyno and Nilagiri breeds of sheep. Indian J. Anim. Res. 2019, 53, 1566–1571. [Google Scholar] [CrossRef]
- Bock, C.; Lengauer, T. Computational epigenetics. Bioinformatics 2008, 24, 1–10. [Google Scholar] [CrossRef]
- Kanhere, A.; Bansal, M. Structural properties of promoters: Similarities and differences between prokaryotes and eukaryotes. Nucleic Acids Res. 2005, 33, 3165–3175. [Google Scholar] [CrossRef]
- Bucher, P. Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J. Mol. Biol. 1990, 212, 563–578. [Google Scholar] [CrossRef]
- Michaloski, J.S.; Galante, P.A.; Nagai, M.H.; Armelin-Correa, L.; Chien, M.S.; Matsunami, H.; Malnic, B. Common promoter elements in odorant and vomeronasal receptor genes. PLoS ONE 2011, 6, e29065. [Google Scholar] [CrossRef]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef]
- Gupta, S.; Stamatoyannopoulos, J.A.; Bailey, T.L.; Noble, W.S. Quantifying similarity between motifs. Genome Biol. 2007, 8, R24. [Google Scholar] [CrossRef]
- Buske, F.A.; Bodén, M.; Bauer, D.C.; Bailey, T.L. Assigning roles to DNA regulatory motifs using comparative genomics. Bioinformatics 2010, 26, 860–866. [Google Scholar] [CrossRef]
- Takai, D.; Jones, P.A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl. Acad. Sci. USA 2002, 99, 3740–3745. [Google Scholar] [CrossRef]
- Zhao, Z.; Han, L. CpG islands: Algorithms and applications in methylation studies. Biochem. Biophys. Res. Commun. 2009, 382, 643–645. [Google Scholar] [CrossRef] [PubMed]
- Hahn, M.A.; Wu, X.; Li, A.X.; Hahn, T.; Pfeifer, G.P. Relationship between gene body DNA methylation and intragenic H3K9me3 and H3K36me3 chromatin marks. PLoS ONE 2011, 6, e18844. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xiong, F.; Wu, G.; Liu, W.; Chen, J.; Wang, B.; Chen, Y. Gene body methylation in cancer: Molecular mechanisms and clinical applications. Clin. Epigenet. 2022, 14, 154. [Google Scholar] [CrossRef] [PubMed]
- Sandelin, A.; Carninci, P.; Lenhard, B.; Ponjavic, J.; Hayashizaki, Y.; Hume, D.A. Mammalian RNA polymerase II core promoters: Insights from genome-wide studies. Nat. Rev. Genet. 2007, 8, 424–436. [Google Scholar] [CrossRef] [PubMed]
- Rice, P.; Longden, I.; Bleasby, A. EMBOSS: The European molecular biology open software suite. Trends Genet. 2000, 16, 276–277. [Google Scholar] [CrossRef] [PubMed]
- Jedidi, I.; Ouchari, M.; Yin, Q. Autosomal single-gene disorders involved in human infertility. Saudi J. Biol. Sci. 2018, 25, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Zorrilla, M.; Yatsenko, A.N. The genetics of infertility: Current status of the field. Curr. Genet. Med. Rep. 2013, 1, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Smale, S.T.; Kadonaga, J.T. The RNA polymerase II core promoter. Annu. Rev. Biochem. 2003, 72, 449–479. [Google Scholar] [CrossRef]
- Juven-Gershon, T.; Hsu, J.Y.; Kadonaga, J.T. Perspectives on the RNA polymerase II core promoter. Wiley Interdiscip. Rev. Dev. Biol. 2006, 1, 40–51. [Google Scholar] [CrossRef]
- Juven-Gershon, T.; Hsu, J.Y.; Theisen, J.W.; Kadonaga, J.T. The RNA polymerase II core promoter—The gateway to transcription. Curr. Opin. Cell Biol. 2008, 20, 253–259. [Google Scholar] [CrossRef]
- Juven-Gershon, T.; Kadonaga, J.T. Regulation of gene expression via the core promoter and the basal transcriptional machinery. Dev. Biol. 2010, 339, 225–229. [Google Scholar] [CrossRef]
- Djebali, S.; Davis, C.A.; Merkel, A.; Dobin, A.; Lassmann, T.; Mortazavi, A.; Tanzer, A.; Lagarde, J.; Lin, W.; Schlesinger, F.; et al. Landscape of transcription in human cells. Nature 2012, 489, 101–108. [Google Scholar] [CrossRef]
- The FANTOM Consortium and the RIKEN PMI and CLST (DGT). A promoter-level mammalian expression atlas. Nature 2014, 507, 462–470. [Google Scholar] [CrossRef]
- de Klerk, E.; AC‘tHoen, P. Alternative mRNA transcription, processing, and translation: Insights from RNA sequencing. Trends Genet. 2015, 31, 128–139. [Google Scholar] [CrossRef]
- Landry, J.R.; Mager, D.L.; Wilhelm, B.T. Complex controls: The role of alternative promoters in mammalian genomes. Trends Genet. 2003, 19, 640–648. [Google Scholar] [CrossRef]
- FitzGerald, P.C.; Sturgill, D.; Shyakhtenko, A.; Oliver, B.; Vinson, C. Comparative genomics of Drosophila and human core promoters. Genome Biol. 2006, 7, R53. [Google Scholar] [CrossRef]
- Hoskins, R.A.; Landolin, J.M.; Brown, J.B.; Sandler, J.E.; Takahashi, H.; Lassmann, T.; Yamamoto, J.-I.; Sekine, M.; Tsuritani, K.; Wakaguri, H.; et al. Genome-wide analysis of promoter architecture in Drosophila melanogaster. Genome Res. 2011, 21, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Duran, M.F.; Gilbert, W.V. Alternative transcription start site selection leads to large differences in translation activity in yeast. RNA 2012, 18, 2299–2305. [Google Scholar] [CrossRef]
- Kimura, K.; Wakamatsu, A.; Suzuki, Y.; Ota, T.; Nishikawa, T.; Yamashita, R.; Yamamoto, J.-I.; Sekine, M.; Tsuritani, K.; Wakaguri, H.; et al. Diversification of transcriptional modulation: Large-scale identification and characterization of putative alternative promoters of human genes. Genome Res. 2006, 16, 55–65. [Google Scholar] [CrossRef]
- Xu, C.; Park, J.K.; Zhang, J. Evidence that alternative transcriptional initiation is largely nonadaptive. PLoS Biol. 2019, 17, e3000197. [Google Scholar] [CrossRef] [PubMed]
- Bantihun, G.; Kebede, M. In silico analysis of promoter region and regulatory elements of mitogenome co-expressed trn gene clusters encoding for bio-pesticide in entomopathogenic fungus, Metarhiziumanisopliae: Strain ME1. J. Genet. Eng. Biotechnol. 2021, 19, 94. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Xiong, Y.; Dai, X. DNA signals at isoform promoters. Sci. Rep. 2016, 6, 28977. [Google Scholar] [CrossRef] [PubMed]
- Xavier, M.J.; Salas-Huetos, A.; Oud, M.S.; Aston, K.I.; Veltman, J.A. Disease gene discovery in male infertility: Past, present and future. Hum. Genet. 2021, 140, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, V.; Dumitriu, B.; Penzo-Méndez, A.; Han, Y.; Pallavi, B. Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors. Int. J. Biochem. Cell Biol. 2007, 39, 2195–2214. [Google Scholar] [CrossRef] [PubMed]
- Hammes, A.; Guo, J.K.; Lutsch, G.; Leheste, J.R.; Landrock, D.; Ziegler, U.; Gubler, M.C.; Schedl, A. Two splice variants of the Wilms’ tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 2001, 106, 319–329. [Google Scholar] [CrossRef]
- Heinlein, C.A.; Chang, C. Androgen receptor (AR) coregulators: An overview. Endocr. Rev. 2002, 23, 175–200. [Google Scholar] [CrossRef]
- Parker, K.L.; Schimmer, B.P. Steroidogenic factor 1: A key determinant of endocrine development and function. Endocr. Rev. 1997, 18, 361–377. [Google Scholar] [CrossRef]
- Uhlenhaut, N.H.; Jakob, S.; Anlag, K.; Eisenberger, T.; Sekido, R.; Kress, J.; Treier, A.-C.; Klugmann, C.; Klasen, C.; Holter, N.I.; et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 2009, 139, 1130–1142. [Google Scholar] [CrossRef]
- Bucher, P.; Trifonov, E.N. Compilation and analysis of eukaryotic POL II promoter sequences. Nucleic Acids Res. 1986, 14, 10009–10026. [Google Scholar] [CrossRef]
- Sandelin, A.; Wasserman, W.W. Constrained binding site diversity within families of transcription factors enhances pattern discovery bioinformatics. J. Mol. Biol. 2004, 338, 207–215. [Google Scholar] [CrossRef] [PubMed]
Gene Symbol (Gene ID) Full Name * | Corresponding Promoter Region Name | No. of Promoters Identified in Promoter Region (1000 bp Upstream) | Predictive Score at Cut Off Value 0.8 ** | Distance from Start Codon (ATG) to Upstream |
---|---|---|---|---|
SPATA16 (ID: 83893) spermatogenesis associated 16 gene | Prom_SPATA | 0 | ||
AURKC (ID: 6795) aurora kinase C | Prom_AURC | 0 | ||
CATSPER1 (ID: 117144) cation channel sperm associated 1 | Prom_CATSPER | 0 | ||
MTHFR (ID: 4524) methylenetetrahydrofolate reductase | Prom_MTHFR | 2 | 0.87, 0.98 | −3719, −3709 |
EFCAB9 (ID: 285588) EF-hand calcium binding domain 9 | Prom_EFCAB9 | 2 | 0.97,0.96 | −738, −305 |
FKBP6(ID: 8468) FKBP prolyl isomerase family member 6 (inactive) | Prom_ FKBP6 | 2 | 0.85, 0.82 | −1181, −484 |
SYCP3(ID: 50511) synaptonemal complex protein 3 | Prom_SYCP3 | 0 | ||
HSF2 (ID: 3298) heat shock transcription factor 2 | Prom_HSF2 | 3 | 0.95, 0.85, 0.99 | −720, −622, −328 |
SYCP2 (ID: 10388) synaptonemal complex protein 2 | Prom_SYCP2 | 0 | ||
MYBL1 (ID: 4603) MYB proto-oncogene like 1 | Prom_MYBL1 | 2 | 0.86, 1.00 | −989, −966 |
KIT (ID: 3815) KIT proto-oncogene, receptor tyrosine kinase | Prom_KIT | 2 | 0.92, 0.82 | −772, −203 |
KLHL10 (ID: 317719) kelch like family member 10 | Prom_KLHL10 | 1 | 0.96 | −2604 |
NANOS1 (ID: 340719) nanos C2HC-type zinc finger 1 | Prom_NANOS1 | 6 | 0.96, 0.85, 0.80, 0.85, 1.00, 0.87 | −611, −588, −234, −95, −86, −65 |
PRM1 (ID: 5619) protamine 1 | Prom_PRM1 | 4 | 0.84, 0.98, 0.93, 1.00 | −736, −355, −101, −92 |
PRM2 (ID: 5620) protamine 2 | Prom_PRM2 | 3 | 0.80, 0.93, 1.00 | −319, −113, −105 |
SEPTIN12 (ID: 124404) septin 12 | Prom_SEPT12 | 3 | 1.00, 0.97, 0.92 | −1226, −1083, −579 |
TNP1 (ID: 7141) transition protein 1 | Prom_TNP1 | 3 | 0.93, 0.96, 0.93 | −973, −192, −33 |
TNP2 (ID: 7142) transition protein 2 | Prom_TNP2 | 1 | 0.99 | −61 |
DAZ1(ID: 1617) deleted in azoospermia 1 | Prom_DAZ1 | 0 | ||
XRCC2 (ID: 7516) X-ray repair cross complementing 2 | Prom_ XRCC2 | 0 | ||
ZMYND15 (ID: 84225) zinc finger MYND-type containing 15 | Prom_ZMYND15 | 1 | 0.90 | −736 |
TEX11 (ID: 56159) testis expressed 11 | Prom_TEX11 | 0 | ||
ADGRG2 (ID: 10149) adhesion G protein-coupled receptor G2 | Prom_ ADGRG2 | 5 | 0.80, 0.84, 0.99, 0.99, 0.99 | −54850, −54799, −54573, −54547, −54319 |
CCDC62 (ID: 84660) coiled-coil domain containing 62 | Prom_ CCDC62 | 1 | 0.87 | −270 |
TAF4B (ID: 6875) TATA-box binding protein associated factor 4b | Prom_TAF4B | 0 | ||
GALNTL5 (ID: 168391) polypeptide N-acetylgalactosaminyltransferase like 5 | Prom_GALNTL5 | 3 | 0.99, 0.97, 0.92 | −11388, −11254, −11021 |
Discovered Candidate Motifs | Number (%) Promoters Containing Each One of the Motifs | E-Value | Motif Width | Number of Binding Sites |
---|---|---|---|---|
Motif1 | 9 (64.2%) | 1.20e-43 | 41 | 9 |
Motif2 | 6 (42.8%) | 2.00e-44 | 50 | 6 |
Motif3 | 6 (42.8%) | 2.00e-38 | 50 | 6 |
Motif4 | 6 (42.8%) | 1.40e-33 | 50 | 6 |
Motif5 | 9 (64.2%) | 1.30e-18 | 41 | 9 |
Gene ID | Gene Name | Species | TF Family | Candidate TF | Statistical Significance |
---|---|---|---|---|---|
GLIS1 | GLIS1.H12CORE.0.P.B | Homo sapiens | More than 3 adjacent zinc finger factors | C2H2 zinc finger factors | 5.43e-04 |
ZSCAN21 | ZSC21.H12CORE.0.P.C | Homo sapiens | More than 3 adjacent zinc finger factors | C2H2 zinc finger factors | 6.58e-04 |
GLIS3 | GLIS3.H12CORE.0.P.C | Homo sapiens | More than 3 adjacent zinc finger factors | C2H2 zinc finger factors | 9.23e-04 |
GLIS1 | GLIS1.H12CORE.1.P.B | Homo sapiens | More than 3 adjacent zinc finger factors | C2H2 zinc finger factors | 2.67e-03 |
ZNF770 | ZN770.H12CORE.0.P.B | Homo sapiens | Multiple dispersed zinc fingers | C2H2 zinc finger factors | 2.92e-03 |
ZNF780A | Z780A.H12CORE.0.P.C | Homo sapiens | More than 3 adjacent zinc finger factors | C2H2 zinc finger factors | 3.52e-03 |
ZNF81 | ZNF81.H12CORE.0.P.C | Homo sapiens | More than 3 adjacent zinc finger factors | C2H2 zinc finger factors | 4.51e-03 |
ZNF264 | ZN264.H12CORE.0.P.B | Homo sapiens | More than 3 adjacent zinc finger factors | C2H2 zinc finger factors | 4.98e-03 |
JUNB | JUNB.H12CORE.0.PM.A | Homo sapiens | Jun-related | Basic leucine zipper factors (bZIPs) | 5.08e-03 |
Region | Sequence Name | No. CpG Islands Discovered (Start Location) | Fragment Sizes (>500 bp) | % GC Content |
---|---|---|---|---|
1 kb upstream from the TSS | Prom_FKBP6 | 1 (331) | 720 | 62% |
Prom_KIT | 1 (731) | 1009 | 61% | |
Prom_NANOS1 | 1 (119) | 947 | 69% | |
Prom_ZMYND15 | 1 (86) | 997 | 67% | |
Prom_MYBL1 | 1 (77) | 1007 | 59% | |
Prom_SEPT12 | 1 (99) | 590 | 56% | |
Prom_MTHFR | 1 (399) | 685 | 64% | |
Gene body | FKBP6 | 2 (82, 26751) | 855, 640 | 58%, 51% |
HSF2 | 1 (82) | 1006 | 59% | |
KIT | 1 (821) | 1666 | 62% | |
KLHL10 | 1 (961) | 1162 | 65% | |
NANOS1 | 1 (77) | 1584 | 65% | |
SEPT12 | 3 (5151, 7593, 12776) | 759, 869, 521 | 53%, 63%, 50% | |
ZMYND15 | 2 (75, 5119) | 655, 1172 | 60%, 65% | |
MYBL1 | 1 (90) | 1105 | 59% | |
CCDC62 | 4 (80, 8559, 40725, 50782) | 911, 521, 527, 994 | 56%, 50%, 51%, 50% | |
ADGRG2 | 2 (81, 71660) | 1616, 565 | 68%, 53% | |
MTHFR | 1 (78) | 1011 | 61% | |
GALNTL5 | 1 (38166) | 865 | 51% |
Gene Symbol (Gene ID) Full Name * | Corresponding Promoter Region Name | No. of Promoters Identified in Promoter Region (1000 bp Upstream) | Predictive Score at Cut Off Value 0.8 ** |
---|---|---|---|
GAPDH (Gene ID: 2597) glyceraldehyde-3-phosphate dehydrogenase | Prom_GAPDH | 4 | 0.84, 1.0, 0.87, 1.0 |
PGK1 (ID: 5230) phosphoglycerate kinase 1 | Prom_PGK1 | 3 | 0.98, 0.97, 1.0 |
PPIA (ID: 5478) Peptidylprolyl isomerase A | Prom_PPIA | 2 | 0.91, 1.0 |
RPL13A (ID: 23521) ribosomal protein L13a | Prom_RPL13A | 3 | 0.98, 1.0, 1.0 |
RPLP0 (ID:285588) Ribosomal protein, large, P0 | Prom_RPLP0 | 3 | 0.89, 1.0, 0.88 |
B2M (ID: 567) Beta-2-microglobulin | Prom_B2M | 1 | 1.0 |
SDHA (ID: 6389) Succinate dehydrogenase complex, subunit A, flavoprotein (Fp) | Prom_SDHA | 3 | 0.95, 0.99, 0.99 |
GUSB (ID: 2990) glucuronidase beta | Prom_GUSB | 3 | 0.86, 0.89, 0.82 |
HMBS (ID: 3145) Hydroxymethylbilane synthase | Prom_HMBS | 2 | 0.96, 0.82 |
TBP (ID: 6908) TATA box binding protein | Prom_TBP | 1 | 0.95 |
Common Promoter Motif | Motif 1 |
---|---|
hkg_cpm1 | 41.3% |
hkg_cpm2 | 12.5% |
hkg_cpm3 | 29.9% |
hkg_cpm4 | 28.8% |
hkg_cpm5 | 6.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hristov, D.; Stojanov, D. Exploring Regulatory Properties of Genes Associated with Nonsyndromic Male Infertility. Reprod. Med. 2024, 5, 136-153. https://doi.org/10.3390/reprodmed5030013
Hristov D, Stojanov D. Exploring Regulatory Properties of Genes Associated with Nonsyndromic Male Infertility. Reproductive Medicine. 2024; 5(3):136-153. https://doi.org/10.3390/reprodmed5030013
Chicago/Turabian StyleHristov, Daniela, and Done Stojanov. 2024. "Exploring Regulatory Properties of Genes Associated with Nonsyndromic Male Infertility" Reproductive Medicine 5, no. 3: 136-153. https://doi.org/10.3390/reprodmed5030013
APA StyleHristov, D., & Stojanov, D. (2024). Exploring Regulatory Properties of Genes Associated with Nonsyndromic Male Infertility. Reproductive Medicine, 5(3), 136-153. https://doi.org/10.3390/reprodmed5030013