Mechanisms of Cold Preservation and Reperfusion Injury for Solid Organ Transplantation: Implications for Partial Heart Transplantations
Abstract
:1. Introduction
2. Physiology of Ischemia and Reperfusion Injury
2.1. Metabolic and Biochemical Basis of CIT and WIT
2.2. Reactive Oxygen Species Generation and Damage
2.2.1. Xanthine Oxidase Pathway in IRI
2.2.2. NADPH Oxidase Pathway in IRI
2.2.3. Iron-Dependent Mechanisms of ROS Production
2.2.4. Reactive Nitrogen Species and the Electron Transport Chain in IRI
2.3. Innate Immunity and Complement in IRI
The Complement System’s Role in IRI
2.4. Adaptive Immunity in the Physiology of IRI
2.4.1. T Cells in Reperfusion Injury following CIT
2.4.2. B Cells in Reperfusion Injury following CIT
3. Variation in CIT/WIT among Solid Organs
4. Discussion
5. Conclusions
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CIT | Cold ischemic time |
WIT | Warm ischemic time |
pHT | Partial heart transplantation |
IRI | Ischemia and reperfusion injury |
ATP | Adenosine triphosphate |
ROS | Reactive oxygen species |
NADPH | Nicotinamide adenine dinucleotide phosphate |
HIF | Hypoxia-inducible factor |
ETC | Electron transport chain |
NO | Nitric oxide |
DAMPs | Damage-associated molecular patterns |
PAMPs | Pathogen-associated molecular patterns |
TLR | Toll-like receptor |
MAPK | Mitogen-activated protein kinase |
MAC | Membrane attack complex |
References
- Organ Procurement & Transplantation Network: Data. Available online: https://optn.transplant.hrsa.gov/data/ (accessed on 30 March 2023).
- Organ Procurement & Transplantation Network: National Data. Available online: https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/# (accessed on 30 March 2023).
- Gilbo, N.; Monbaliu, D. Temperature and oxygenation during organ preservation: Friends or foes? Curr. Opin. Organ. Transplant. 2017, 22, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Jing, L.; Yao, L.; Zhao, M.; Peng, L.P.; Liu, M. Organ preservation: From the past to the future. Acta Pharm. Sin. 2018, 39, 845–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salahudeen, A.K. Cold ischemic injury of transplanted kidneys: New insights from experimental studies. Am. J. Physiol. Ren. Physiol. 2004, 287, F181–F187. [Google Scholar] [CrossRef] [Green Version]
- Chen-Yoshikawa, T.F. Ischemia-Reperfusion Injury in Lung Transplantation. Cells 2021, 10, 1333. [Google Scholar] [CrossRef]
- Helanterä, I.; Ibrahim, H.; Lempinen, M.; Finne, P. Donor Age, Cold Ischemia Time, and Delayed Graft Function. CJASN 2020, 15, 813–821. [Google Scholar] [CrossRef]
- Konsek, H.; Sherard, C.; Bisbee, C.; Kang, L.; Turek, J.W.; Rajab, T.K. Growing Heart Valve Implants for Children. J. Cardiovasc. Dev. Dis. 2023, 10, 148. [Google Scholar] [CrossRef]
- Eltzschig, H.K.; Eckle, T. Ischemia and reperfusion—From mechanism to translation. Nat. Med. 2011, 17, 1391–1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Alam, A.; Soo, A.P.; George, A.J.T.; Ma, D. Ischemia-Reperfusion Injury Reduces Long Term Renal Graft Survival: Mechanism and Beyond. EBioMedicine 2018, 28, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Kalisvaart, M.; Croome, K.P.; Hernandez-Alejandro, R.; Pirenne, J.; Cortes-Cerisuelo, M.; Miñambres, E.; Abt, P.L. Donor Warm Ischemia Time in DCD Liver Transplantation—Working Group Report from the ILTS DCD, Liver Preservation, and Machine Perfusion Consensus Conference. Transplantation 2021, 105, 1156–1164. [Google Scholar] [CrossRef]
- Wu, M.-Y.; Yiang, G.-T.; Liao, W.-T.; Tsai, A.P.-Y.; Cheng, Y.-L.; Cheng, P.-W.; Li, C.-Y.; Li, C.-J. Current Mechanistic Concepts in Ischemia and Reperfusion Injury. Cell. Physiol. Biochem. 2018, 46, 1650–1667. [Google Scholar] [CrossRef]
- Kalogeris, T.; Baines, C.P.; Krenz, M.; Korthuis, R.J. Ischemia/Reperfusion. Compr. Physiol. 2016, 7, 113–170. [Google Scholar] [CrossRef] [Green Version]
- Soares, R.O.S.; Losada, D.M.; Jordani, M.C.; Évora, P.; Castro-E-Silva, O. Ischemia/Reperfusion Injury Revisited: An Overview of the Latest Pharmacological Strategies. Int. J. Mol. Sci. 2019, 20, 5034. [Google Scholar] [CrossRef] [Green Version]
- Orrenius, S.; Burkitt, M.J.; Kass, G.E.N.; Dypbukt, J.M.; Nicotera, P. Calcium ions and oxidative cell injury. Ann. Neurol. 1992, 32, S33–S42. [Google Scholar] [CrossRef]
- Pefanis, A.; Ierino, F.L.; Murphy, J.M.; Cowan, P.J. Regulated necrosis in kidney ischemia-reperfusion injury. Kidney Int. 2019, 96, 291–301. [Google Scholar] [CrossRef]
- McCully, J.D.; Wakiyama, H.; Hsieh, Y.J.; Jones, M.; Levitsky, S. Differential contribution of necrosis and apoptosis in myocardial ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 2004, 286, H1923–H1935. [Google Scholar] [CrossRef]
- Gottlieb, R.A. Cell death pathways in acute ischemia/reperfusion injury. J. Cardiovasc. Pharm. 2011, 16, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Fernández, A.R.; Sánchez-Tarjuelo, R.; Cravedi, P.; Ochando, J.; López-Hoyos, M. Review: Ischemia Reperfusion Injury—A Translational Perspective in Organ Transplantation. Int. J. Mol. Sci. 2020, 21, 8549. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.P.; Mao, X.L.; Chen, Y.H.; Yan, L.L.; Ye, L.P.; Li, S.W. Reactive Oxygen Species Induce Fatty Liver and Ischemia-Reperfusion Injury by Promoting Inflammation and Cell Death. Front. Immunol. 2022, 29, 870239. [Google Scholar] [CrossRef]
- Li, J.Y.; Liu, S.Q.; Yao, R.Q.; Tian, Y.P.; Yao, Y.M. A Novel Insight Into the Fate of Cardiomyocytes in Ischemia-Reperfusion Injury: From Iron Metabolism to Ferroptosis. Front. Cell. Dev. Biol. 2021, 9, 799499. [Google Scholar] [CrossRef] [PubMed]
- De Pascali, F.; Hemann, C.; Samons, K.; Chen, C.A.; Zweier, J.L. Hypoxia and reoxygenation induce endothelial nitric oxide synthase uncoupling in endothelial cells through tetrahydrobiopterin depletion and S-glutathionylation. Biochemistry 2014, 53, 3679–3688. [Google Scholar] [CrossRef]
- Yapca, O.E.; Borekci, B.; Suleyman, H. Ischemia-reperfusion damage. Eurasian J. Med. 2013, 45, 126–127. [Google Scholar] [CrossRef] [Green Version]
- Granger, D.N.; Kvietys, P.R. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol. 2015, 6, 524–551. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.Y.; Baek, B.S.; Song, S.H.; Kim, M.S.; Huh, J.I.; Shim, K.H.; Kim, K.W.; Lee, K.H. Xanthine dehydrogenase/xanthine oxidase and oxidative stress. Age 1997, 20, 127–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrenko, A.; Carnevale, M.; Somov, A.; Osorio, J.; Rodríguez, J.; Guibert, E.; Fuller, B.; Froghi, F. Organ Preservation into the 2020s: The Era of Dynamic Intervention. Transfus. Med. Hemother 2019, 46, 151–172. [Google Scholar] [CrossRef] [Green Version]
- Bedard, K.; Krause, K.H. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol. Rev. 2007, 87, 245–313. [Google Scholar] [CrossRef] [PubMed]
- Brieger, K.; Schiavone, S.; Miller, F.J., Jr.; Krause, K.H. Reactive oxygen species: From health to disease. Swiss Med. Wkly. 2012, 17, w13659. [Google Scholar] [CrossRef] [PubMed]
- Radovits, T.; Lin, L.N.; Zotkina, J.; Koch, A.; Rauen, U.; Köhler, G.; Karck, M.; Szabó, G. Endothelial dysfunction after long-term cold storage in HTK organ preservation solutions: Effects of iron chelators and N-alpha-acetyl-L-histidine. J. Heart Lung Transplant. 2008, 27, 208–216. [Google Scholar] [CrossRef]
- Schaefer, B.; Effenberger, M.; Zoller, H. Iron metabolism in transplantation. Transpl. Int. 2014, 27, 1109–1117. [Google Scholar] [CrossRef]
- Kniepeiss, D.; Houben, P.; Stiegler, P.; Berghold, A.; Riedl, R.; Kahn, J.; Schemmer, P. A prospective, randomized, single-blind, multicentre, phase III study on organ preservation with Custodiol-N solution compared with Custodiol® solution in organ transplantation (kidney, liver and pancreas). Trials 2020, 10, 62. [Google Scholar] [CrossRef]
- Szabó, G.; Loganathan, S.; Korkmaz-Icöz, S.; Balogh, Á.; Papp, Z.; Brlecic, P.; Hegedüs, P.; Radovits, T.; Karck, M.; Merkely, B.; et al. Improvement of Left Ventricular Graft Function Using an Iron-Chelator-Supplemented Bretschneider Solution in a Canine Model of Orthotopic Heart Transplantation. Int. J. Mol. Sci. 2022, 5, 7453. [Google Scholar] [CrossRef]
- Bice, J.S.; Jones, B.R.; Chamberlain, G.R.; Baxter, G.F. Nitric oxide treatments as adjuncts to reperfusion in acute myocardial infarction: A systematic review of experimental and clinical studies. Basic Res. Cardiol. 2016, 111, 23. [Google Scholar] [CrossRef] [Green Version]
- Nolfi-Donegan, D.; Braganza, A.; Shiva, S. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. 2020, 37, 101674. [Google Scholar] [CrossRef]
- Chen, G.Y.; Nuñez, G. Sterile inflammation: Sensing and reacting to damage. Nat. Rev. Immunol. 2010, 10, 826–837. [Google Scholar] [CrossRef] [Green Version]
- Perry, B.C.; Soltys, D.; Toledo, A.H.; Toledo-Pereyra, L.H. Tumor Necrosis Factor-α in Liver Ischemia/Reperfusion Injury. J. Investig. Surg. 2011, 24, 177–188. [Google Scholar] [CrossRef]
- Karpman, D.; Bekassy, Z.; Grunenwald, A.; Roumenina, L.T. A role for complement blockade in kidney transplantation. Cell. Mol. Immunol. 2022, 19, 755–757. [Google Scholar] [CrossRef]
- Thorgersen, E.B.; Barratt-Due, A.; Haugaa, H.; Harboe, M.; Pischke, S.E.; Nilsson, P.H.; Mollnes, T.E. The Role of Complement in Liver Injury, Regeneration, and Transplantation. Hepatology 2019, 70, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Stites, E.; Le Quintrec, M.; Thurman, J.M. The Complement System and Antibody-Mediated Transplant Rejection. J. Immunol. 2015, 195, 5525–5531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbas, A.K.; Lichtman, A.H.; Pillai, S. Basic Immunology: Functions and Disorders of the Immune System, 6th ed.; Elsevier Inc.: Philadelphia, PA, USA, 2020; pp. 158–176. ISBN 978-0-323-54943-1. [Google Scholar]
- Huang, E.; Vo, A.; Choi, J.; Ammerman, N.; Lim, K.; Sethi, S.; Kim, I.; Kumar, S.; Najjar, R.; Peng, A.; et al. Three-Year Outcomes of a Randomized, Double-Blind, Placebo-Controlled Study Assessing Safety and Efficacy of C1 Esterase Inhibitor for Prevention of Delayed Graft Function in Deceased Donor Kidney Transplant Recipients. Clin. J. Am. Soc. Nephrol. 2020, 15, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Viglietti, D.; Gosset, C.; Loupy, A.; Deville, L.; Verine, J.; Zeevi, A.; Glotz, D.; Lefaucheur, C. C1 Inhibitor in acute antibody-mediated rejection nonresponsive to conventional therapy in kidney transplant recipients: A pilot study. Am. J. Transpl. 2016, 16, 1596–1603. [Google Scholar] [CrossRef] [Green Version]
- Eskandary, F.; Jilma, B.; Muhlbacher, J.; Wahrmann, M.; Regele, H.; Kozakowski, N.; Firbas, C.; Panicker, S.; Parry, G.C.; Gilbert, J.C.; et al. Anti-C1s monoclonal antibody BIVV009 in late antibody-mediated kidney allograft rejection-results from a first-in-patient phase 1 trial. Am. J. Transpl. 2018, 18, 916–926. [Google Scholar] [CrossRef] [Green Version]
- Farrar, C.A.; Zhou, W.; Lin, T.; Sacks, S.H. Local extravascular pool of C3 is a determinant of postischemic acute renal failure. FASEB J. 2006, 20, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Kaabak, M.; Babenko, N.; Shapiro, R.; Zokoyev, A.; Dymova, O.; Kim, E. A prospective randomized, controlled trial of eculizumab to prevent ischemia-reperfusion injury in pediatric kidney transplantation. Pediatr. Transplant. 2018, 22, e13129. [Google Scholar] [CrossRef]
- Schmitz, R.; Fitch, Z.W.; Schroder, P.M.; Choi, A.Y.; Manook, M.; Yoon, J.; Song, M.; Yi, J.S.; Khandelwal, S.; Arepally, G.M.; et al. C3 complement inhibition prevents antibody-mediated rejection and prolongs renal allograft survival in sensitized non-human primates. Nat. Commun. 2021, 12, 5456. [Google Scholar] [CrossRef]
- de Perrot, M.; Young, K.; Imai, Y.; Waddell, T.K.; Fischer, S.; Zhang, L.; Keshavjee, S. Recipient T Cells Mediate Reperfusion Injury after Lung Transplantation in the Rat. J. Immunol. 2003, 171, 4995–5002. [Google Scholar] [CrossRef] [Green Version]
- Satpute, S.R.; Park, J.M.; Jang, H.R.; Agreda, P.; Liu, M.; Gandolfo, M.T.; Racusen, L.; Rabb, H. The role for T cell repertoire/antigen-specific interactions in experimental kidney ischemia reperfusion injury. J. Immunol. 2009, 183, 984–992. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Wang, Y.; Gao, F.; Ren, F.; Busuttil, R.W.; Kupiec-Weglinski, J.W.; Zhai, Y. CD4 T cells promote tissue inflammation via CD40 signaling without de novo activation in a murine model of liver ischemia/reperfusion injury. Hepatology 2009, 50, 1537–1546. [Google Scholar] [CrossRef]
- Ke, B.; Shen, X.D.; Gao, F.; Tsuchihashi, S.; Farmer, D.G.; Briscoe, D.; Busuttil, R.W.; Kupiec-Weglinski, J.W. The CD154-CD40 T-cell co-stimulation pathway in liver ischemia and reperfusion inflammatory responses. Transplantation 2005, 79, 1078–1083. [Google Scholar] [CrossRef] [Green Version]
- Loverre, A.; Divella, C.; Castellano, G.; Tataranni, T.; Zaza, G.; Rossini, M.; Ditonno, P.; Battaglia, M.; Palazzo, S.; Gigante, M.; et al. T helper 1, 2 and 17 cell subsets in renal transplant patients with delayed graft function. Transpl. Int. 2011, 24, 233–242. [Google Scholar] [CrossRef]
- Tang, Q.; Dong, C.; Sun, Q. Immune response associated with ischemia and reperfusion injury during organ transplantation. Inflamm. Res. 2022, 71, 1463–1476. [Google Scholar] [CrossRef]
- Rao, J.; Lu, L.; Zhai, Y. T cells in organ ischemia reperfusion injury. Curr. Opin. Organ. Transplant. 2014, 19, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Shan, J.; Guo, Y.; Luo, L.; Lu, J.; Li, C.; Zhang, C.; Huang, Y.; Feng, L.; Wu, W.; Long, D.; et al. Do CD4+Foxp3+ Treg cells correlate with transplant outcomes: A systematic review on recipients of solid organ transplantation. Cell. Immunol. 2011, 270, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Eiji, N.; Toshiko, S.; Ruka, S.; Koichi, T.; Shimon, S. Induction of antigen-specific immunologic tolerance by in vivo and in vitro antigen-specific expansion of naturally arising Foxp3+ CD25+ CD4+ regulatory T cells. Int. Immunol. 2004, 16, 1189–1201. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, R.M.; Camara, N.O.; Rodrigues, M.M.; Tzelepis, F.; Damiao, M.J.; Cenedeze, M.A.; Teixeira Vde, P.; dos Reis, M.A.; Pacheco-Silva, A. A role for regulatory T cells in renal acute kidney injury. Transpl. Immunol. 2009, 21, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Siu, J.H.Y.; Surendrakumar, V.; Richards, J.A.; Pettigrew, G.J. T cell allorecognition pathways in solid organ transplantation. Front. Immunol. 2018, 9, 2548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haudebourg, T.; Poirier, N.; Vanhove, B. Depleting T-cell subpopulations in organ transplantation. Transpl. Int. 2008, 22, 509–592. [Google Scholar] [CrossRef]
- Chong, A.S. Mechanisms of organ transplant injury mediated by B cells and antibodies: Implications for antibody-mediated rejection. Am. J. Transplant. 2020, 20, 23–32. [Google Scholar] [CrossRef]
- Li, Y.; Ma, L.; Yin, D.; Shen, J.; Chong, A.S. Long-term control of alloreactive B cell responses by the suppression of T cell help. J. Immunol. 2008, 180, 6077–6084. [Google Scholar] [CrossRef] [Green Version]
- Rabant, M.; Gorbacheva, V.; Fan, R.; Yu, H.; Valujskikh, A. CD40-independent help by memory CD4 T cells induces pathogenic alloantibody but does not lead to long-lasting humoral immunity. Am. J. Transpl. 2013, 13, 2831–2841. [Google Scholar] [CrossRef] [Green Version]
- Halloran, P.F.; Chang, J.; Famulski, K.; Hidalgo, L.G.; Salazar, I.D.R.; Lopez, M.M.; Matas, A.; Picton, M.; De Freitas, D.; Bromberg, J.; et al. Disappearance of T cell-mediated rejection despite continued antibody-mediated rejection in late kidney transplant recipients. J. Am. Soc. Nephrol. 2015, 26, 1711–1720. [Google Scholar] [CrossRef] [Green Version]
- Lum, E.L.; Homkrailas, P.; Abdalla, B.; Danovitch, G.M.; Bunnapradist, S. Cold Ischemia Time, Kidney Donor Profile Index, and Kidney Transplant Outcomes: A Cohort Study. Kidney Med. 2022, 5, 100570. [Google Scholar] [CrossRef]
- Lund, L.H.; Khush, K.K.; Cherikh, W.S.; Goldfarb, S.; Kucheryavaya, A.Y.; Levvey, B.J.; Meiser, B.; Rossano, J.W.; Chambers, D.C.; Yusen, R.D.; et al. The Registry of the International Society for Heart and Lung Transplantation: Thirty-fourth Adult Heart Transplantation Report-2017; Focus Theme: Allograft ischemic time. J. Heart Lung Transplant. 2017, 36, 1037–1046. [Google Scholar] [CrossRef] [Green Version]
- Villavicencio, M.A.; Kashem, M.A.; Loor, G.; Hartwig, M.; Bottinger, B.; Ius, F.; Daoud, D.; Warnecke, G.; Wei, Q.; Chandrashekaran, S.; et al. Impact of Cold Ischemic Time on Morbidity and Mortality after Lung Transplantation. An. Updated Analysis of the International Multicenter Extracorporeal Life Support. in Lung Transplantation Registry. J. Heart Lung Transplant. 2021, 40, S64. [Google Scholar] [CrossRef]
- Lozanovski, V.J.; Döhler, B.; Weiss, K.H.; Mehrabi, A.; Süsal, C. The Differential Influence of Cold Ischemia Time on Outcome After Liver Transplantation for Different Indications-Who Is at Risk? A Collaborative Transplant Study Report. Front. Immunol. 2020, 11, 892. [Google Scholar] [CrossRef]
- Vistoli, F.; Kauffmann, E.F.; Boggi, U. Pancreas transplantation. Curr. Opin. Organ. Transpl. 2021, 26, 381–389. [Google Scholar] [CrossRef]
- Kesseli, S.; Sudan, D. Small Bowel Transplantation. Surg. Clin. N. Am. 2019, 99, 103–116. [Google Scholar] [CrossRef]
- Ahmed, H.; Garcia, D.S.; Zych, B.; Dunning, J.; Khoshbin, E. Moderately Prolong. Cold Ischemic Time. Does It Impact Outcome Lung Transplantation. J. Heart Lung Transplant. 2023, 42, S527–S528. [Google Scholar] [CrossRef]
- Williams, R.J.; Lu, M.; Sleeper, L.A.; Blume, E.D.; Esteso, P.; Fynn-Thompson, F.; Vanderpluym, C.J.; Urbach, S.; Daly, K.P. Pediatric heart transplant waiting times in the United States since the 2016 allocation policy change. Am. J. Transpl. 2022, 22, 833–842. [Google Scholar] [CrossRef]
- Deshpande, S.; Sparks, J.D.; Alsoufi, B. Pediatric heart transplantation: Year in review 2020. J. Thorac. Cardiovasc. Surg. 2021, 162, 418–421. [Google Scholar] [CrossRef]
- Sherard, C.; Atteya, M.; Vogel, A.D.; Bisbee, C.; Kang, L.; Turek, J.W.; Rajab, T.K. Partial heart transplantation can ameliorate donor organ utilization. J. Card. Surg. 2022, 37, 5307–5312. [Google Scholar] [CrossRef]
- Hill, M.A.; Kwon, J.H.; Gerry, B.; Hardy, W.A.; Walkowiak, O.A.; Kavarana, M.N.; Nadig, S.N.; Rajab, T.K. Immune Privilege of Heart Valves. Front. Immunol. 2021, 12, 731361. [Google Scholar] [CrossRef]
- Mitchell, R.N.; Jonas, R.A.; Schoen, F.J. Pathology of Explanted Cryopreserved Allograft Heart Valves: Comparison With Aortic Valves From Orthotopic Heart Transplants. J. Thorac. Cardiovasc. Surg. 1998, 115, 118–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabkin-Aikawa, E.; Mayer, J.E., Jr.; Schoen, F.J. Heart valve regeneration. Adv. Biochem. Eng. Biotechnol. 2005, 94, 141–179. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mealer, C.; Konsek, H.; Travis, Z.; Suk, R.N.; Rajab, T.K. Mechanisms of Cold Preservation and Reperfusion Injury for Solid Organ Transplantation: Implications for Partial Heart Transplantations. Transplantology 2023, 4, 124-138. https://doi.org/10.3390/transplantology4030013
Mealer C, Konsek H, Travis Z, Suk RN, Rajab TK. Mechanisms of Cold Preservation and Reperfusion Injury for Solid Organ Transplantation: Implications for Partial Heart Transplantations. Transplantology. 2023; 4(3):124-138. https://doi.org/10.3390/transplantology4030013
Chicago/Turabian StyleMealer, Corey, Haley Konsek, Zachary Travis, Rebecca N. Suk, and Taufiek Konrad Rajab. 2023. "Mechanisms of Cold Preservation and Reperfusion Injury for Solid Organ Transplantation: Implications for Partial Heart Transplantations" Transplantology 4, no. 3: 124-138. https://doi.org/10.3390/transplantology4030013
APA StyleMealer, C., Konsek, H., Travis, Z., Suk, R. N., & Rajab, T. K. (2023). Mechanisms of Cold Preservation and Reperfusion Injury for Solid Organ Transplantation: Implications for Partial Heart Transplantations. Transplantology, 4(3), 124-138. https://doi.org/10.3390/transplantology4030013