Wasted Potential: Decoding the Trifecta of Donor Kidney Shortage, Underutilization, and Rising Discard Rates
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Donor Demographics
3.2. Donor Kidney Availability and Discard Rate
3.3. Reasons for Discard
3.4. Discard per Preservation Technique
3.5. Discard Based on Biopsy Rates
3.6. Logistic Regression Analysis and ROC Curves
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- OPTN: Organ Procurement and Transplantation Network—OPTN. Available online: https://optn.transplant.hrsa.gov (accessed on 8 December 2023).
- OPTN Annual Report 2021. Available online: https://srtr.transplant.hrsa.gov/annual_reports/2021_ADR_Preview.aspx (accessed on 8 December 2023).
- Kaballo, M.A.; Canney, M.; O’Kelly, P.; Williams, Y.; O’Seaghdha, C.M.; Conlon, P.J. A comparative analysis of survival of patients on dialysis and after kidney transplantation. Clin. Kidney J. 2018, 11, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Lentine, K.L.; Smith, J.M.; Hart, A.; Miller, J.; Skeans, M.A.; Larkin, L.; Robinson, A.; Gauntt, K.; Israni, A.K.; Hirose, R.; et al. OPTN/SRTR 2020 Annual Data Report: Kidney. Am. J. Transplant. 2022, 22 (Suppl. S2), 21–136. [Google Scholar] [CrossRef] [PubMed]
- Cron, D.C.; Husain, S.A.; Adler, J.T. The New Distance-Based Kidney Allocation System: Implications for Patients, Transplant Centers, and Organ Procurement Organizations. Curr. Transplant. Rep. 2022, 9, 302–307. [Google Scholar] [CrossRef] [PubMed]
- New Kidney, Pancreas Allocation Policies in Effect—OPTN. Available online: https://optn.transplant.hrsa.gov/news/new-kidney-pancreas-allocation-policies-in-effect (accessed on 8 December 2023).
- Eurotransplant. Eurotransplant Annual Report 2020. 2021. Available online: https://www.eurotransplant.org/statistics/annual-report/annual-reports-archive/ (accessed on 15 September 2021).
- Mohan, S.; Yu, M.; King, K.L.; Husain, S.A. Increasing Discards as an Unintended Consequence of Recent Changes in United States Kidney Allocation Policy. Kidney Int. Rep. 2023, 8, 1109. [Google Scholar] [CrossRef] [PubMed]
- Aubert, O.; Reese, P.P.; Audry, B.; Bouatou, Y.; Raynaud, M.; Viglietti, D.; Legendre, C.; Glotz, D.; Empana, J.P.; Jouven, X.; et al. Disparities in Acceptance of Deceased Donor Kidneys Between the United States and France and Estimated Effects of Increased US Acceptance. JAMA Intern. Med. 2019, 179, 1365–1374. [Google Scholar] [CrossRef] [PubMed]
- Statistics Library—Eurotransplant. Available online: https://www.eurotransplant.org/statistics/statistics-library/ (accessed on 4 March 2024).
- Ibrahim, M.; Vece, G.; Mehew, J.; Johnson, R.; Forsythe, J.; Klassen, D.; Callaghan, C.; Stewart, D. An international comparison of deceased donor kidney utilization: What can the United States and the United Kingdom learn from each other? Am. J. Transplant. 2020, 20, 1309–1322. [Google Scholar] [CrossRef] [PubMed]
- Schutter, R.; Vrijlandt, W.A.L.; Weima, G.M.; Pol, R.A.; Sanders, J.S.F.; Crop, M.J.; Leuvenink, H.G.D.; Moers, C. Kidney utilization in the Netherlands—Do we optimally use our donor organs? Nephrol. Dial. Transplant. 2023, 38, 787. [Google Scholar] [CrossRef] [PubMed]
- Avendano, M.; Glymour, M.M.; Banks, J.; Mackenbach, J.P. Health Disadvantage in US Adults Aged 50 to 74 Years: A Comparison of the Health of Rich and Poor Americans With That of Europeans. Am. J. Public Health 2009, 99, 540. [Google Scholar] [CrossRef]
- Doby, B.L.; Ross-Driscoll, K.; Yu, S.; Godwin, M.; Lee, K.J.; Lynch, R.J. Examining utilization of kidneys as a function of procurement performance. Am. J. Transplant. 2022, 22, 1614. [Google Scholar] [CrossRef]
- Redesign Map of OPTN Regions—OPTN. Available online: https://optn.transplant.hrsa.gov/media/zyybn2mn/redesign-map-of-optn-region_20210126_winter-2022-pc.pdf (accessed on 4 March 2024).
- Adler, J.T.; Husain, S.A.; King, K.L.; Mohan, S. Greater complexity and monitoring of the new Kidney Allocation System: Implications and unintended consequences of concentric circle kidney allocation on network complexity. Am. J. Transplant. 2021, 21, 2007–2013. [Google Scholar] [CrossRef]
- Lum, E.L.; Homkrailas, P.; Abdalla, B.; Danovitch, G.M.; Bunnapradist, S. Cold Ischemia Time, Kidney Donor Profile Index, and Kidney Transplant Outcomes: A Cohort Study. Kidney Med. 2023, 5, 100570. [Google Scholar] [CrossRef] [PubMed]
- Concepcion, B.P.; Harhay, M.; Ruterbories, J.; Finn, J.; Wiseman, A.; Cooper, M.; Mohan, S.; Doshi, M.D. Current landscape of kidney allocation: Organ procurement organization perspectives. Clin. Transplant. 2023, 37, e14925. [Google Scholar] [CrossRef] [PubMed]
- Kidney Donor Profile Index (KDPI) Guide for Clinicians—OPTN. Available online: https://optn.transplant.hrsa.gov/professionals/by-topic/guidance/kidney-donor-profile-index-kdpi-guide-for-clinicians/ (accessed on 4 March 2024).
- Chopra, B.; Sureshkumar, K.K. Kidney transplantation in older recipients: Preemptive high KDPI kidney vs. lower KDPI kidney after varying dialysis vintage. World J. Transplant. 2018, 8, 102. [Google Scholar] [CrossRef] [PubMed]
- Bui, K.; Kilambi, V.; Mehrotra, S. Functional-Status-Based Risk-Benefit Analyses of High-KDPI Kidney Transplant vs. Dialysis. Transpl. Int. 2019, 32, 1297. [Google Scholar] [CrossRef] [PubMed]
- Yemini, R.; Rahamimov, R.; Ghinea, R.; Mor, E. Long-Term Results of Kidney Transplantation in the Elderly: Comparison between Different Donor Settings. J. Clin. Med. 2021, 10, 5308. [Google Scholar] [CrossRef] [PubMed]
- Jay, C.L.; Washburn, K.; Dean, P.G.; Helmick, R.A.; Pugh, J.A.; Stegall, M.D. Survival Benefit in Older Patients Associated With Earlier Transplant With High KDPI Kidneys. Transplantation 2017, 101, 867. [Google Scholar] [CrossRef] [PubMed]
- Massie, A.B.; Luo, X.; Chow, E.K.H.; Alejo, J.L.; Desai, N.M.; Segev, D.L. Survival benefit of primary deceased donor transplantation with high-KDPI kidneys. Am. J. Transplant. 2014, 14, 2310–2316. [Google Scholar] [CrossRef] [PubMed]
- Cohen, B.; Smits, J.M.; Haase, B.; Persijn, G.; Vanrenterghem, Y.; Frei, U. Expanding the donor pool to increase renal transplantation. Nephrol. Dial. Transplant. 2005, 20, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Smits, J.M.A.; Persijn, G.G.; Van Houwelingen, H.C.; Claas, F.H.J.; Frei, U. Evaluation of the Eurotransplant Senior Program. The results of the first year. Am. J. Transplant. 2002, 2, 664–670. [Google Scholar] [CrossRef]
- Carpenter, D.; Ali Husain, S.; Brennan, C.; Batal, I.; Hall, I.E.; Santoriello, D.; Rosen, R.; John Crew, R.; Campenot, E.; Dube, G.K.; et al. Procurement biopsies in the evaluation of deceased donor kidneys. Clin. J. Am. Soc. Nephrol. 2018, 13, 1876–1885. [Google Scholar] [CrossRef]
- Kim, D.W.; Tsapepas, D.; King, K.L.; Husain, S.A.; Corvino, F.A.; Dillon, A.; Wang, W.; Mayne, T.J.; Mohan, S. Financial impact of delayed graft function in kidney transplantation. Clin. Transplant. 2020, 34, e14022. [Google Scholar] [CrossRef]
- Held, P.J.; McCormick, F.; Ojo, A.; Roberts, J.P. A Cost-Benefit Analysis of Government Compensation of Kidney Donors. Am. J. Transplant. 2016, 16, 877–885. [Google Scholar] [CrossRef]
- Ponticelli, C.; Reggiani, F.; Moroni, G. Delayed Graft Function in Kidney Transplant: Risk Factors, Consequences and Prevention Strategies. J. Pers. Med. 2022, 12, 1557. [Google Scholar] [CrossRef]
- Moers, C.; Smits, J.M.; Maathuis, M.-H.J.; Treckmann, J.; Van Gelder, F.; Napieralski, B.P.; Van Kasterop-Kutz, M.; Homan Van Der Heide, J.J.; Squifflet, J.-P.; Van Heurn, E.; et al. Machine Perfusion or Cold Storage in Decreased-Donor Kidney Transplantation. N. Engl. J. Med. 2009, 360, 7–19. [Google Scholar] [CrossRef]
- Jochmans, I.; Moers, C.; Smits, J.M.; Leuvenink, H.G.D.; Treckmann, J.; Paul, A.; Rahmel, A.; Squifflet, J.-P.; van Heurn, E.; Monbaliu, D.; et al. The prognostic value of renal resistance during hypothermic machine perfusion of deceased donor kidneys. Am. J. Transplant. 2011, 11, 2214–2220. [Google Scholar] [CrossRef]
- Sandal, S.; Paraskevas, S.; Cantarovich, M.; Baran, D.; Chaudhury, P.; Tchervenkov, J.I.; Sapir-Pichhadze, R. Renal resistance thresholds during hypothermic machine perfusion and transplantation outcomes—A retrospective cohort study. Transpl. Int. 2018, 31, 658–669. [Google Scholar] [CrossRef] [PubMed]
- Bissolati, M.; Gazzetta, P.G.; Caldara, R.; Guarneri, G.; Adamenko, O.; Giannone, F.; Mazza, M.; Maggi, G.; Tomanin, D.; Rosati, R.; et al. Renal Resistance Trend during Hypothermic Machine Perfusion Is More Predictive of Postoperative Outcome Than Biopsy Score: Preliminary Experience in 35 Consecutive Kidney Transplantations. Artif. Organs 2018, 42, 714–722. [Google Scholar] [CrossRef] [PubMed]
- Hoyer, D.P.; Gallinat, A.; Swoboda, S.; Wohlschlaeger, J.; Rauen, U.; Paul, A.; Minor, T. Influence of Oxygen Concentration during Hypothermic Machine Perfusion on Porcine Kidneys From Donation After Circulatory Death. Transplantation 2014, 98, 944–950. [Google Scholar] [CrossRef] [PubMed]
- Hosgood, S.A.; Callaghan, C.J.; Wilson, C.H.; Smith, L.; Mullings, J.; Mehew, J.; Oniscu, G.C.; Phillips, B.L.; Bates, L.; Nicholson, M.L. Normothermic machine perfusion versus static cold storage in donation after circulatory death kidney transplantation: A randomized controlled trial. Nat. Med. 2023, 29, 1511–1519. [Google Scholar] [CrossRef]
- Venema, L.H.; van Leeuwen, L.L.; Posma, R.A.; van Goor, H.; Ploeg, R.J.; Hannaert, P.; Hauet, T.; Minor, T.; Leuvenink, H.G.D. Impact of Red Blood Cells on Function and Metabolism of Porcine Deceased Donor Kidneys during Normothermic Machine Perfusion. Transplantation 2021, 106, 1170–1179. [Google Scholar] [CrossRef]
- van Leeuwen, L.L.; Leuvenink, H.G.D.; Olinga, P.; Ruigrok, M.J.R. Shifting paradigms for suppressing fibrosis in kidney transplants: Supplementing perfusion solutions with antifibrotic drugs. Front. Med. 2022, 8, 806774. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, L.L.; Ruigrok, M.J.R.; Kessler, B.M.; Leuvenink, H.G.D.; Olinga, P. Targeted delivery of galunisertib using machine perfusion reduces fibrogenesis in an integrated ex vivo renal transplant and fibrogenesis model. Br. J. Pharmacol. 2023, 181, 464–479. [Google Scholar] [CrossRef] [PubMed]
Donor Demographics | Total Donors = 105,472 |
---|---|
Age mean ± std | 40.4 ± 15.9 |
BMI mean ± std | 28.2 ± 7.1 |
Terminal SCr (mg/dL) mean ± std | 1.36 ± 1.3 |
KDPI Grouped n (%) | |
0–20 | 24,564 (23.3) |
21–40 | 21,807 (20.7) |
41–60 | 20,804 (19.7) |
61–80 | 19,326 (18.3) |
81–100 | 18,828 (17.9) |
Donor Type n (%) | |
SCD | 65,508 (62.1) |
ECD | 18,242 (17.3) |
DCD | 21,722 (20.6) |
DCD donor WIT mean ± std (minutes) | 21.6 ± 15.4 |
Left Discarded Kidneys | Right Discarded Kidneys | ROC Curves | |||||
---|---|---|---|---|---|---|---|
Predictor | (B) | Exp (B) | (B) | Exp (B) | Sig. | Left Kidney AUC | Right Kidney AUC |
KDPI Grouped | |||||||
0–20% (Constant) | 0.383 | 0.384 | |||||
21–40% | 0.482 | 1.619 | 0.505 | 1.658 | <0.001 | 0.424 | 0.428 |
41–60% | 0.966 | 2.628 | 0.969 | 2.635 | <0.001 | 0.465 | 0.469 |
61–80% | 1.573 | 4.821 | 1.518 | 4.563 | <0.001 | 0.538 | 0.537 |
81–100% | 2.536 | 12.631 | 2.478 | 11.915 | <0.001 | 0.69 | 0.682 |
Donor Type | |||||||
SCD (Constant) | 0.33 | 0.338 | |||||
ECD | 0.107 | 1.112 | 0.068 | 1.07 | <0.001 | 0.648 | 0.64 |
DCD | 0.362 | 1.437 | 0.377 | 1.459 | <0.001 | 0.522 | 0.522 |
HMP | −0.575 | 0.563 | −0.636 | 0.53 | <0.001 | 0.503 | 0.495 |
Biopsied | 1.638 | 5.146 | 1.554 | 4.729 | <0.001 | 0.715 | 0.706 |
Constant | −3.902 | 0.02 | −3.688 | 0.025 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McKenney, C.; Torabi, J.; Todd, R.; Akhtar, M.Z.; Tedla, F.M.; Shapiro, R.; Florman, S.S.; Holzner, M.L.; van Leeuwen, L.L. Wasted Potential: Decoding the Trifecta of Donor Kidney Shortage, Underutilization, and Rising Discard Rates. Transplantology 2024, 5, 51-64. https://doi.org/10.3390/transplantology5020006
McKenney C, Torabi J, Todd R, Akhtar MZ, Tedla FM, Shapiro R, Florman SS, Holzner ML, van Leeuwen LL. Wasted Potential: Decoding the Trifecta of Donor Kidney Shortage, Underutilization, and Rising Discard Rates. Transplantology. 2024; 5(2):51-64. https://doi.org/10.3390/transplantology5020006
Chicago/Turabian StyleMcKenney, Ceilidh, Julia Torabi, Rachel Todd, M. Zeeshan Akhtar, Fasika M. Tedla, Ron Shapiro, Sander S. Florman, Matthew L. Holzner, and L. Leonie van Leeuwen. 2024. "Wasted Potential: Decoding the Trifecta of Donor Kidney Shortage, Underutilization, and Rising Discard Rates" Transplantology 5, no. 2: 51-64. https://doi.org/10.3390/transplantology5020006
APA StyleMcKenney, C., Torabi, J., Todd, R., Akhtar, M. Z., Tedla, F. M., Shapiro, R., Florman, S. S., Holzner, M. L., & van Leeuwen, L. L. (2024). Wasted Potential: Decoding the Trifecta of Donor Kidney Shortage, Underutilization, and Rising Discard Rates. Transplantology, 5(2), 51-64. https://doi.org/10.3390/transplantology5020006