A Numerical Model for Tracing Structural Response of Ultra-High Performance Concrete Beams
Abstract
:1. Introduction
2. Finite Element Model
2.1. Discretization of the Beam
2.2. Material Models for UHPC
2.2.1. Parameters for Modeling UHPC Behavior
2.2.2. Compressive Behavior of UHPC
2.2.3. Tensile Behavior of UHPC
2.2.4. Steel Reinforcement
2.2.5. Bond Slip Behavior of UHPC
2.3. Analysis Details
2.4. Modeling Interfacial Bond between Rebar and Concrete
3. Model Validation
3.1. Selected Beams for Validation
3.2. Comparison of Response Parameters
3.2.1. Load-Deflection Response
3.2.2. Load–Strain Response
3.2.3. Crack Propagation and Failure Mode
3.2.4. Concrete and Stirrups Contribution to Shear Capacity
4. Conclusions
- UHPC or UHPFRC exhibits significantly different mechanical properties as compared to conventional concrete. The proposed numerical model utilizing concrete damage plasticity model with adjusted parameters is capable of tracing the structural response of UHPC beams in the entire range of loading; from precracking stage till failure.
- The numerical model presented here can accommodate various configurations in beams, including different loading patterns (flexure or shear), and different material characteristics such as presence of fibers, fibers volume fraction, and presence of shear reinforcement. Moreover, the model is capable of predicting contribution of stirrups and concrete (including compression block and interfacial shear resistance) to shear capacity of UHPFRC beams.
- Tensile damage contour predictions along with principal direction, is an effective response parameter for tracing crack propagation zone and failure modes in UHPFRC beams.
- Removing stirrups does not result in reduction of ductility or load carrying capacity of UHPFRC beams. In other words, UHPFRC beams without shear reinforcement, subjected to dominant shear loading, can attain ultimate moment capacity, without experiencing brittle failure before rebar yielding.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kang, S.-T.; Lee, Y.; Park, Y.-D.; Kim, J.-K. Tensile Fracture Properties of an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) with Steel Fiber. Compos. Struct. 2010, 92, 61–71. [Google Scholar] [CrossRef]
- Xu, M.; Wille, K. Fracture Energy of UHP-FRC under Direct Tensile Loading Applied at Low Strain Rates. Compos. Part B Eng. 2015, 80, 116–125. [Google Scholar] [CrossRef]
- Empelmann, M.; Teutsch, M.; Steven, G. Improvement of the Post Fracture Behaviour of UHPC by Fibres. In Proceedings of the Second International Symposium on Ultra High Performance Concrete, Kassel, Germany, 5–7 March 2008; p. 177. [Google Scholar]
- Yoo, D.-Y.; Banthia, N. Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review. Cem. Concr. Compos. 2016, 73, 267–280. [Google Scholar] [CrossRef]
- Yang, I.-H.; Joh, C.; Kim, B.-S. Flexural Response Predictions for Ultra-High-Performance Fibre-Reinforced Concrete Beams. Mag. Concr. Res. 2011, 64, 113–127. [Google Scholar] [CrossRef]
- Graybeal, B.; Tanesi, J. Durability of an Ultrahigh-Performance Concrete. J. Mater. Civ. Eng. 2007, 19, 848–854. [Google Scholar] [CrossRef]
- Solhmirzaei, R.; Kodur, V.; Banerji, S. Shear Behavior of Ultra High Performance Concrete Beams without Stirrups. In Proceedings of the International Interactive Symposium on Ultra-High Performance Concrete, Albany, GA, USA, 2–5 June 2019; Iowa State University Digital Press: Albany, NY, USA, 2019; Volume 2. [Google Scholar]
- AFGC/SETRA. Ultra High Performance Fibre-Reinforced Concretes; French Civil Engineering Association: Bagneux, France, 2002. [Google Scholar]
- JSCE. Recommendations for Design and Construction of Ultra–High Strength Fiber Reinforced Concrete Structures; Japan Society of Civil Engineers: Shinjuku, Tokyo, 2004. [Google Scholar]
- KCI. Design Recommendations for Ultra-High Performance Concrete K-UHPC; Korea Concrete Institute: Seoul, Korea, 2012. [Google Scholar]
- Yoo, D.-Y.; Yoon, Y.-S. Structural Performance of Ultra-High-Performance Concrete Beams with Different Steel Fibers. Eng. Struct. 2015, 102, 409–423. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; Banthia, N.; Yoon, Y.-S. Experimental and Numerical Study on Flexural Behavior of Ultra-High-Performance Fiber-Reinforced Concrete Beams with Low Reinforcement Ratios. Can. J. Civ. Eng. 2016, 44, 18–28. [Google Scholar] [CrossRef]
- Yang, I.H.; Joh, C.; Kim, B.-S. Structural Behavior of Ultra High Performance Concrete Beams Subjected to Bending. Eng. Struct. 2010, 32, 3478–3487. [Google Scholar] [CrossRef]
- Yang, I.-H.; Joh, C.; Kim, B.-S. Shear Behaviour of Ultra-High-Performance Fibre-Reinforced Concrete Beams without Stirrups. Mag. Concr. Res. 2012, 64, 979–993. [Google Scholar] [CrossRef]
- Voo, Y.L.; Poon, W.K.; Foster, S.J. Shear Strength of Steel Fiber-Reinforced Ultrahigh—Performance Concrete Beams without Stirrups. J. Struct. Eng. 2010, 136, 1393–1400. [Google Scholar] [CrossRef]
- Baby, F.; Marchand, P.; Toutlemonde, F. Shear Behavior of Ultrahigh Performance Fiber-Reinforced Concrete Beams. I: Experimental Investigation. J. Struct. Eng. 2014, 140, 4013111. [Google Scholar] [CrossRef]
- Kodur, V.; Solhmirzaei, R.; Agrawal, A.; Aziz, E.M.; Soroushian, P. Analysis of Flexural and Shear Resistance of Ultra High Performance Fiber Reinforced Concrete Beams without Stirrups. Eng. Struct. 2018, 174, 873–884. [Google Scholar] [CrossRef]
- Jankowiak, T.; Lodygowski, T. Identification of Parameters of Concrete Damage Plasticity Constitutive Model. Found. Civ. Environ. Eng. 2005, 6, 53–69. [Google Scholar]
- Oller, S.; Oñate, E.; Oliver, J.; Lubliner, J. Finite Element Nonlinear Analysis of Concrete Structures Using a “Plastic-Damage Model”. Eng. Fract. Mech. 1990, 35, 219–231. [Google Scholar] [CrossRef]
- Lee, D.H.; Hwang, J.-H.; Ju, H.; Kim, K.S.; Kuchma, D.A. Nonlinear Finite Element Analysis of Steel Fiber-Reinforced Concrete Members Using Direct Tension Force Transfer Model. Finite Elem. Anal. Des. 2012, 50, 266–286. [Google Scholar] [CrossRef]
- Özcan, D.M.; Bayraktar, A.; Şahin, A.; Haktanir, T.; Türker, T. Experimental and Finite Element Analysis on the Steel Fiber-Reinforced Concrete (SFRC) Beams Ultimate Behavior. Constr. Build. Mater. 2009, 23, 1064–1077. [Google Scholar] [CrossRef]
- Cedolin, L.; Dei Poli, S. Finite Element Studies of Shear-Critical R/C Beams. J. Eng. Mech. Div. 1977, 103, 395–410. [Google Scholar] [CrossRef]
- Jiang, J. Nonlinear Finite Element Analysis of Reinforced Concrete Structures. Xi’an Shanxi Sci. Technol. Press 1994, 24, 34. [Google Scholar]
- Barbosa, A.; Idelsohn, S.; Oñate, E.; Dvorkin, E. Analysis of Reinforced Concrete Structures Using ANSYS Nonlinear Concrete Model. In Computational Mechanics: New Trends and Applications; Centro Internacional de Métodos Numéricos en Ingeniería: Barcelona, Spain, 1998. [Google Scholar]
- Hawileh, R. Finite Element Modeling of Reinforced Concrete Beams with a Hybrid Combination of Steel and Aramid Reinforcement. Mater. Des. 2015, 65, 831–839. [Google Scholar] [CrossRef]
- Chi, Y.; Yu, M.; Huang, L.; Xu, L. Finite Element Modeling of Steel-Polypropylene Hybrid Fiber Reinforced Concrete Using Modified Concrete Damaged Plasticity. Eng. Struct. 2017, 148, 23–35. [Google Scholar] [CrossRef]
- Hu, H.-T.; Lin, F.-M.; Jan, Y.-Y. Nonlinear Finite Element Analysis of Reinforced Concrete Beams Strengthened by Fiber-Reinforced Plastics. Compos. Struct. 2004, 63, 271–281. [Google Scholar] [CrossRef]
- Foster, S.J.; Voo, Y.; Chong, K. FE Analysis of Steel Fiber Reinforced Concrete Beams Failing in Shear: Variable Engagement Model. Spec. Publ. 2006, 237, 55–70. [Google Scholar]
- Padmarajaiah, S.; Ramaswamy, A. A Finite Element Assessment of Flexural Strength of Prestressed Concrete Beams with Fiber Reinforcement. Cem. Concr. Compos. 2002, 24, 229–241. [Google Scholar] [CrossRef]
- Sinaei, H.; Shariati, M.; Abna, A.H.; Aghaei, M.; Shariati, A. Evaluation of Reinforced Concrete Beam Behaviour Using Finite Element Analysis by ABAQUS. Sci. Res. Essays 2012, 7, 2002–2009. [Google Scholar]
- Wang, T.; Hsu, T.T. Nonlinear Finite Element Analysis of Concrete Structures Using New Constitutive Models. Comput. Struct. 2001, 79, 2781–2791. [Google Scholar] [CrossRef]
- Seraj, S.; Kotsovos, M.; Pavlović, M. Three-Dimensional Finite-Element Modelling of Normal-and High-Strength Reinforced Concrete Members, with Special Reference to T-Beams. Comput. Struct. 1992, 44, 699–716. [Google Scholar] [CrossRef]
- Tysmans, T.; Wozniak, M.; Remy, O.; Vantomme, J. Finite Element Modelling of the Biaxial Behaviour of High-Performance Fibre-Reinforced Cement Composites (HPFRCC) Using Concrete Damaged Plasticity. Finite Elem. Anal. Des. 2015, 100, 47–53. [Google Scholar] [CrossRef]
- Singh, M.; Sheikh, A.; Ali, M.M.; Visintin, P.; Griffith, M. Experimental and Numerical Study of the Flexural Behaviour of Ultra-High Performance Fibre Reinforced Concrete Beams. Constr. Build. Mater. 2017, 138, 12–25. [Google Scholar] [CrossRef]
- Chen, L.; Graybeal, B.A. Modeling Structural Performance of Second-Generation Ultrahigh-Performance Concrete Pi-Girders. J. Bridge Eng. 2011, 17, 634–643. [Google Scholar] [CrossRef]
- Chen, L.; Graybeal, B.A. Modeling Structural Performance of Ultrahigh Performance Concrete I-Girders. J. Bridge Eng. 2011, 17, 754–764. [Google Scholar] [CrossRef]
- Bahij, S.; Adekunle, S.K.; Al-Osta, M.; Ahmad, S.; Al-Dulaijan, S.U.; Rahman, M.K. Numerical Investigation of the Shear Behavior of Reinforced Ultra-high-performance Concrete Beams. Struct. Concr. 2018, 19, 305–317. [Google Scholar] [CrossRef] [Green Version]
- Solhmirzaei, R.; Kodur, V. Modeling the Response of Ultra High Performance Fiber Reinforced Concrete Beams. Procedia Eng. 2017, 210, 211–219. [Google Scholar] [CrossRef]
- ABAQUS. Version 6.18 Documentation; Dassault Systems Simulia Corp: Providence, RI, USA, 2018. [Google Scholar]
- Kodur, V.; Agrawal, A. Effect of Temperature Induced Bond Degradation on Fire Response of Reinforced Concrete Beams. Eng. Struct. 2017, 142, 98–109. [Google Scholar] [CrossRef]
- Lubliner, J.; Oliver, J.; Oller, S.; Onate, E. A Plastic-Damage Model for Concrete. Int. J. Solids Struct. 1989, 25, 299–326. [Google Scholar] [CrossRef]
- Lee, J.; Fenves, G.L. Plastic-Damage Model for Cyclic Loading of Concrete Structures. J. Eng. Mech. 1998, 124, 892–900. [Google Scholar] [CrossRef]
- Mahmud, G.H.; Yang, Z.; Hassan, A.M. Experimental and Numerical Studies of Size Effects of Ultra High Performance Steel Fibre Reinforced Concrete (UHPFRC) Beams. Constr. Build. Mater. 2013, 48, 1027–1034. [Google Scholar] [CrossRef]
- Luaay Hussein Structural Behavior of Ultra High Performance Fiber Reinforced Concrete Composite Members. Ph.D. Thesis, Ryerson University, Toronto, ON, Canada, 2015.
- Speck, K. Concrete under Multiaxial Loading Conditions—A Constitutive Model for Short-Time Loading of High Performance Concretes. Doctoral Dissertation, Technische Universität Dresden, Dresden, Germany, 2007. (In German). [Google Scholar]
- Graybeal, B.A. Compressive Behavior of Ultra-High-Performance Fiber-Reinforced Concrete. ACI Mater. J. 2007, 104, 146. [Google Scholar]
- Ahmad, S.; Bahij, S.; Al-Osta, M.; Adekunle, S.; Al-Dulaijan, S. Shear Behavior of Ultra-High-Performance Concrete Beams Reinforced with High-Strength Steel Bars. ACI Struct. J. 2019, 116, 3–14. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, C.; He, W.; Wu, L. Effects of Steel Fiber Content and Shape on Mechanical Properties of Ultra High Performance Concrete. Constr. Build. Mater. 2016, 103, 8–14. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; Kang, S.-T.; Yoon, Y.-S. Effect of Fiber Length and Placement Method on Flexural Behavior, Tension-Softening Curve, and Fiber Distribution Characteristics of UHPFRC. Constr. Build. Mater. 2014, 64, 67–81. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; Shin, H.-O.; Yang, J.-M.; Yoon, Y.-S. Material and Bond Properties of Ultra High Performance Fiber Reinforced Concrete with Micro Steel Fibers. Compos. Part. B Eng. 2014, 58, 122–133. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; Lee, J.-H.; Yoon, Y.-S. Effect of Fiber Content on Mechanical and Fracture Properties of Ultra High Performance Fiber Reinforced Cementitious Composites. Compos. Struct. 2013, 106, 742–753. [Google Scholar] [CrossRef]
- Voit, K.; Kirnbauer, J. Tensile Characteristics and Fracture Energy of Fiber Reinforced and Non-Reinforced Ultra High Performance Concrete (UHPC). Int. J. Fract. 2014, 188, 147–157. [Google Scholar] [CrossRef]
- Graybeal, B.A.; Davis, M. Cylinder or Cube: Strength Testing of 80 to 200 MPa (11.6 to 29 Ksi) Ultra-High-Performance Fiber-Reinforced Concrete. ACI Mater. J. 2008, 105, 603–609. [Google Scholar]
- Benjamin, A. Graybeal Flexural Behavior of an Ultrahigh-Performance Concrete I-Girder. J. Bridge Eng. 2008, 13, 602–610. [Google Scholar]
- Van Gysel, A.; Taerwe, L. Analytical Formulation of the Complete Stress-Strain Curve for High Strength Concrete. Mater. Struct. 1996, 29, 529–533. [Google Scholar] [CrossRef]
- Fehling, E.; Leutbecher, T.; Bunje, K. Design Relevant Properties of Hardened Ultra High Performance Concrete. In Proceedings of the International Symposium on Ultra High Performance Concrete, Kassel, Germany, 13–15 September 2004; Volume 1, pp. 327–338. [Google Scholar]
- Wille, K.; El-Tawil, S.; Naaman, A. Properties of Strain Hardening Ultra High Performance Fiber Reinforced Concrete (UHP-FRC) under Direct Tensile Loading. Cem. Concr. Compos. 2014, 48, 53–66. [Google Scholar] [CrossRef]
- Wille, K.; Kim, D.J.; Naaman, A.E. Strain-Hardening UHP-FRC with Low Fiber Contents. Mater. Struct. 2011, 44, 583–598. [Google Scholar] [CrossRef]
- Priestley, M.N.; Seible, F.; Calvi, G.M.; Calvi, G.M. Seismic Design and Retrofit of Bridges; John Wiley & Sons: Hoboken, NJ, USA, 1996; ISBN 0-471-57998-X. [Google Scholar]
- Cosenza, E.; Manfredi, G.; Realfonzo, R. Analytical Modelling of Bond between FRP Reinforcing Bars and Concrete. In Non-Metallic (FRP) Reinforcement for Concrete StructuresÐProceedings of the Second International RILEM Symposium (FRPRCS-2); Taerwe, L., Ed.; E & FN Spon: London, UK, 1995; Volume 29, pp. 164–171. [Google Scholar]
- Crisfield, M. Accelerated Solution Techniques and Concrete Cracking. Comput. Methods Appl. Mech. Eng. 1982, 33, 585–607. [Google Scholar] [CrossRef]
- Keuser, M.; Mehlhorn, G. Finite Element Models for Bond Problems. J. Struct. Eng. 1987, 113, 2160–2173. [Google Scholar] [CrossRef]
- Solhmirzaei, R. Response of Ultra High Performance Fiber Reinforced Concrete Beams under Flexure and Shear; Michigan State University: East lansing, MI, USA, 2021; ISBN 9798569903368. [Google Scholar]
- Solhmirzaei, R.; Kodur, V.K. Structural Behavior of Ultra High Performance Concrete Beams without Stirrups. In Proceedings of the Transportation Research Board 97th Annual Meeting, Washington, DC, USA, 7–11 January 2018. [Google Scholar]
- Dinh, H.H.; Parra-Montesinos, G.J.; Wight, J.K. Shear Strength Model for Steel Fiber Reinforced Concrete Beams without Stirrup Reinforcement. J. Struct. Eng. 2010, 137, 1039–1051. [Google Scholar] [CrossRef]
Beams | Width (mm) | Depth (mm) | Span (mm) | Loading Condition | Peak Load (kN) | Ratio (1)/(2) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
FEA (1) | Test (2) | ||||||||||
U-B3 | 1.5 | 180 | 270 | 3658 | 0.90 | 0 | 0 | 4-point | 94.9 | 97.1 | 0.98 |
U-B4 | 1.5 | 180 | 270 | 3658 | 0.90 | 0 | 0 | 3-point | 140.1 | 142.1 | 0.99 |
U-B5 | 1.5 | 180 | 270 | 3658 | 1.20 | 0 | 0 | 4-point | 121.6 | 126.6 | 0.96 |
U-B6 | 1.5 | 180 | 270 | 3658 | 1.20 | 0 | 0 | 3-point | 163.5 | 177.1 | 0.92 |
B15-1 | 2.25 | 150 | 150 | 1350 | 2.31 | 2.31 | 0.42 | 3-point | 95.9 | 106.4 | 0.90 |
B25 | 2.25 | 250 | 250 | 3250 | 1.80 | 0.30 | 0.70 | 4-point | 163.3 | 171.7 | 0.95 |
R13 | 2 | 180 | 270 | 2700 | 0.90 | 0 | 0 | 4-point | 190.4 | 188.9 | 1.01 |
R14 | 2 | 180 | 270 | 2700 | 1.20 | 0 | 0 | 4-point | 210.5 | 205.2 | 1.03 |
0.94%-S13 | 2 | 150 | 220 | 2200 | 0.94 | 0.59 | 1.31 | 4-point | 82.5 | 86.5 | 0.95 |
0.94%-NF | 0 | 150 | 220 | 2200 | 1.50 | 0.59 | 1.31 | 4-point | 64.0 | 62.6 | 1.02 |
Beam | First Cracking | Peak State | Ultimate State (before Failure) | ||||||
---|---|---|---|---|---|---|---|---|---|
V (kN) | Vcc/V | Vi/V | V (kN) | Vcc/V | Vi/V | V (kN) | Vcc/V | Vi/V | |
U-B4 ( = 0.90%) | 35.2 | 0.67 | 0.33 | 116.7 | 0.65 | 0.35 | 105.7 | 0.54 | 0.46 |
U-B6 ( = 1.20%) | 36.6 | 0.65 | 0.35 | 163.5 | 0.54 | 0.46 | 155.0 | 0.32 | 0.68 |
NSC ( = 0.90%) | 17.1 | 0.67 | 0.33 | 47.3 | 0.61 | 0.39 | 30.9 | 0.55 | 0.45 |
NSC ( = 1.20%) | 17.3 | 0.69 | 0.31 | 47.8 | 0.74 | 0.26 | 33.3 | 0.64 | 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solhmirzaei, R.; Kodur, V. A Numerical Model for Tracing Structural Response of Ultra-High Performance Concrete Beams. Modelling 2021, 2, 448-466. https://doi.org/10.3390/modelling2040024
Solhmirzaei R, Kodur V. A Numerical Model for Tracing Structural Response of Ultra-High Performance Concrete Beams. Modelling. 2021; 2(4):448-466. https://doi.org/10.3390/modelling2040024
Chicago/Turabian StyleSolhmirzaei, Roya, and Venkatesh Kodur. 2021. "A Numerical Model for Tracing Structural Response of Ultra-High Performance Concrete Beams" Modelling 2, no. 4: 448-466. https://doi.org/10.3390/modelling2040024
APA StyleSolhmirzaei, R., & Kodur, V. (2021). A Numerical Model for Tracing Structural Response of Ultra-High Performance Concrete Beams. Modelling, 2(4), 448-466. https://doi.org/10.3390/modelling2040024