Investigating Mechanical Response and Structural Integrity of Tubercle Leading Edge under Static Loads
Abstract
:1. Introduction
1.1. Background
1.2. Research Objective
1.3. Significance of Study
2. Experimental Setup
2.1. Structural Properties
2.2. Strain Measurement Method
3. Result and Discussion
Experimental and Numerical Correlation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aftab, S.; Razak, N.; Rafie, A.M.; Ahmad, K. Mimicking the humpback whale: An aerodynamic perspective. Prog. Aerosp. Sci. 2016, 84, 48–69. [Google Scholar] [CrossRef]
- Chen, W.; Qiao, W.; Wei, Z. Aerodynamic performance and wake development of airfoils with wavy leading edges. Aerosp. Sci. Technol. 2020, 106, 106216. [Google Scholar] [CrossRef]
- Zhao, M.; Zhao, Y.; Liu, Z. Dynamic mode decomposition analysis of flow characteristics of an airfoil with leading edge protuberances. Aerosp. Sci. Technol. 2020, 98, 105684. [Google Scholar] [CrossRef]
- Liu, K.; Song, B.; Xue, D.; Yang, W.; Chen, A.; Wang, Z. Numerical study of the aerodynamic effects of bio-inspired leading-edge serrations on a heaving wing at a low Reynolds number. Aerosp. Sci. Technol. 2022, 124, 107529. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, W.; Xiao, Z.; Sun, H.; Huang, Y.; Liu, Z. DDES with adaptive coefficient for stalled flows past a wind turbine airfoil. Energy 2018, 161, 846–858. [Google Scholar] [CrossRef]
- Gopinathan, V.; Rose, J.B.R. Aerodynamics with state-of-the-art bioinspired technology: Tubercles of humpback whale. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2021, 235, 2359–2377. [Google Scholar] [CrossRef]
- Rostamzadeh, N.; Kelso, R.M.; Dally, B.B.; Hansen, K.L. The effect of undulating leading-edge modifications on NACA 0021 airfoil characteristics. Phys. Fluids 2013, 25, 117101. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, M.M.; Xu, J.Z. Flow physics behind the effects of leading-edge protuberances on the airfoil aerodynamic performance. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2018; pp. 22–35. [Google Scholar]
- Pérez-Torró, R.; Kim, J.W. A large-eddy simulation on a deep-stalled aerofoil with a wavy leading edge. J. Fluid Mech. 2017, 813, 23–52. [Google Scholar] [CrossRef]
- Morelli, M.; Beretta, L.; Guardone, A.; Quaranta, G. Numerical Investigation of Ice Formation on a Wing with Leading-Edge Tubercles. J. Aircr. 2023, 60, 190–204. [Google Scholar] [CrossRef]
- de Paula, A.A. The Airfoil Thickness Effects on Wavy Leading Edge Phenomena at Low Reynolds Number Regime. Doctoral Dissertation, Universidade de São Paulo, São Paulo, Brazil, 2016. [Google Scholar] [CrossRef]
- Zhao, M.; Xu, L.; Li, X.; Zhao, Y.; Liu, Z. Dynamic stall of pitching tubercled wings in vortical wake flowfield. Phys. Fluids 2023, 35, 015122. [Google Scholar] [CrossRef]
- Gonçalves, A.N.; Pereira, J.M.; Sousa, J.M. Passive control of dynamic stall in a H-Darrieus Vertical Axis Wind Turbine using blade leading-edge protuberances. Appl. Energy 2022, 324, 119700. [Google Scholar] [CrossRef]
- Hrynuk, J.T.; Bohl, D.G. The effects of leading-edge tubercles on dynamic stall. J. Fluid Mech. 2020, 893, A5. [Google Scholar] [CrossRef]
- Ng, B.; New, T.; Palacios, R. Effects of leading-edge tubercles on wing flutter speeds. Bioinspiration Biomim. 2016, 11, 36003. [Google Scholar] [CrossRef]
- New, D.T.H.; Ng, B.F. (Eds.) Flow Control through Bio-Inspired Leading-Edge Tubercles; Springer International Publishing: Cham, The Netherlands, 2020; ISBN 9783030237912. [Google Scholar]
- Butt, F.R.; Talha, T. Numerical Investigation of the Effect of Leading-Edge Tubercles on Propeller Performance. J. Aircr. 2019, 56, 1014–1028. [Google Scholar] [CrossRef]
- Miklosovic, D.S.; Murray, M.M.; Howle, L.E. Experimental Evaluation of Sinusoidal Leading Edges. J. Aircr. 2007, 44, 1404–1408. [Google Scholar] [CrossRef]
- Rohmawati, I.; Arai, H.; Nurjannah, I. Wavy Leading Edge (WLE) Influence on a Rectangular Wing Using an Unsteady Analysis Approach. J. Mech. Eng. Sci. Innov. 2023, 3, 43–56. [Google Scholar] [CrossRef]
- Fan, M.; Sun, Z.; Dong, X.; Li, Z. Numerical and experimental investigation of bionic airfoils with leading-edge tubercles at a low-Re in considering stall delay. Renew. Energy 2022, 200, 154–168. [Google Scholar] [CrossRef]
- Rohmawati, I.; Arai, H.; Nakashima, T.; Mutsuda, H.; Doi, Y. Effect of Wavy Leading Edge on Pitching Rectangular Wing. J. Aero Aqua Bio-Mech. 2020, 9, 1–7. [Google Scholar] [CrossRef]
- Ke, W.; Hashem, I.; Zhang, W.; Zhu, B. Influence of leading-edge tubercles on the aerodynamic performance of a horizontal-axis wind turbine: A numerical study. Energy 2021, 239, 122186. [Google Scholar] [CrossRef]
- Du, L.; Dominy, R.G.; Ingram, G. Experimental Investigation of the Performance of H-Darrieus Wind Turbines with Tubercle Leading Edge Blades. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2020; Volume 12. [Google Scholar] [CrossRef]
- Joseph, J.; Sathyabhama, A. Leading edge tubercle on wind turbine blade to mitigate problems of stall, hysteresis, and laminar separation bubble. Energy Convers. Manag. 2022, 255, 115337. [Google Scholar] [CrossRef]
- Sudhakar, S.; Karthikeyan, N.; Suriyanarayanan, P. Experimental Studies on the Effect of Leading-Edge Tubercles on Laminar Separation Bubble. AIAA J. 2019, 57, 5197–5207. [Google Scholar] [CrossRef]
- Natarajan, K.; Sudhakar, S.; Paulpandian, S. Experimental Studies On The Effect Of Leading Edge Tubercles On Laminar Separation Bubble. In Proceedings of the 52nd Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, Reston, VA, USA, 13–17 January 2014. [Google Scholar] [CrossRef]
- Jabbari, H.; Djavareshkian, M.H.; Esmaeili, A. Static roughness element effects on protuberance full-span wing at micro aerial vehicle application. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2021, 236, 2074–2091. [Google Scholar] [CrossRef]
- Wei, Z.; Toh, J.; Ibrahim, I.; Zhang, Y. Aerodynamic characteristics and surface flow structures of moderate aspect-ratio leading-edge tubercled wings. Eur. J. Mech.-B/Fluids 2019, 75, 143–152. [Google Scholar] [CrossRef]
- Tunio, I.A.; Kumar, D.; Hussain, T.; Jatoi, M. Safiullah Investigation of Variable Spanwise Waviness Wavelength Effect on Wing Aerodynamic Performance. Fluid Dyn. 2020, 55, 657–669. [Google Scholar] [CrossRef]
- Fan, M.; Dong, X.; Li, Z.; Sun, Z.; Feng, L. Numerical and experimental study on flow separation control of airfoils with various leading-edge tubercles. Ocean Eng. 2022, 252, 111046. [Google Scholar] [CrossRef]
- Lin, Y.-T.; Chiu, P.-H. Influence of leading-edge protuberances of fx63 airfoil for horizontal-axis wind turbine on power performance. Sustain. Energy Technol. Assess. 2020, 38, 100675. [Google Scholar] [CrossRef]
- Shi, W.; Rosli, R.; Atlar, M.; Norman, R.; Wang, D.; Yang, W. Hydrodynamic performance evaluation of a tidal turbine with leading-edge tubercles. Ocean Eng. 2016, 117, 246–253. [Google Scholar] [CrossRef]
- Fan, M.; Sun, Z.; Yu, R.; Dong, X.; Li, Z.; Bai, Y. Effect of leading-edge tubercles on the hydrodynamic characteristics and wake development of tidal turbines. J. Fluids Struct. 2023, 119, 103873. [Google Scholar] [CrossRef]
- Kant, R.; Bhattacharyya, A. A bio-inspired twin-protuberance hydrofoil design. Ocean Eng. 2020, 218, 108209. [Google Scholar] [CrossRef]
- McGhee, R.J.; Beasley, W.D.; Somers, D.M. Low-Speed Aerodynamics Characteristics of a 17-Percent-Thick Airfoil Section Designed for General Aviation Applications; [for sale by the National Technical Information Service], Washington D.C.; National Aeronautics and Space Administration: Washington, DC, USA; Springfield, VA, USA, 1973. [Google Scholar]
- Johari, H.; Henoch, C.; Custodio, D.; Levshin, A. Effects of Leading-Edge Protuberances on Airfoil Performance. AIAA J. 2007, 45, 2634–2642. [Google Scholar] [CrossRef]
- Guerreiro, J.L.E.; Sousa, J.M.M. Low-Reynolds-Number Effects in Passive Stall Control Using Sinusoidal Leading Edges. AIAA J. 2012, 50, 461–469. [Google Scholar] [CrossRef]
- Tezel, T.; Kovan, V. Determination of optimum production parameters for 3D printers based on nozzle diameter. Rapid Prototyp. J. 2021, 28, 185–194. [Google Scholar] [CrossRef]
- Azadi, M.; Dadashi, A.; Sadegh, M.; Parast, A.; Dezianian, S. A Comparative Study for High-Cycle Bending Fatigue Lifetime and Fracture Behavior of Extruded and Additive-Manufactured 3D-Printed Acrylonitrile Butadiene Styrene Polymers. Int. J. Addit.-Manuf. Struct. 2022, 12, 1–10. [Google Scholar] [CrossRef]
Poisson Ratio | Young Modulus (Pa) | |
---|---|---|
1020 | 0.394 |
Model | AR | Centerline | A/c | λ/c |
---|---|---|---|---|
B | 1.5 | - | - | - |
S3 | 1 | valley | 0.12c | 0.5c |
S4 | 1.5 | peak | 0.12c | 0.5c |
Weight (g) | Strain (Micron) () | Stress () |
---|---|---|
584 | 65 | 57.954 |
712 | 75 | 66.87 |
828 | 89 | 79.3524 |
1168 | 130 | 115.908 |
1344 | 149 | 132.8484 |
1528 | 177 | 157.8132 |
1692 | 202 | 180.1032 |
1916 | 231 | 205.9596 |
2122 | 249 | 222.0084 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esmaeili, A.; Jabbari, H.; Zehtabzadeh, H.; Zamiri, M. Investigating Mechanical Response and Structural Integrity of Tubercle Leading Edge under Static Loads. Modelling 2024, 5, 569-584. https://doi.org/10.3390/modelling5020030
Esmaeili A, Jabbari H, Zehtabzadeh H, Zamiri M. Investigating Mechanical Response and Structural Integrity of Tubercle Leading Edge under Static Loads. Modelling. 2024; 5(2):569-584. https://doi.org/10.3390/modelling5020030
Chicago/Turabian StyleEsmaeili, Ali, Hossein Jabbari, Hadis Zehtabzadeh, and Majid Zamiri. 2024. "Investigating Mechanical Response and Structural Integrity of Tubercle Leading Edge under Static Loads" Modelling 5, no. 2: 569-584. https://doi.org/10.3390/modelling5020030
APA StyleEsmaeili, A., Jabbari, H., Zehtabzadeh, H., & Zamiri, M. (2024). Investigating Mechanical Response and Structural Integrity of Tubercle Leading Edge under Static Loads. Modelling, 5(2), 569-584. https://doi.org/10.3390/modelling5020030