Analysing the Impact of 3D-Printed Perforated Panels and Polyurethane Foam on Sound Absorption Coefficients
Abstract
:1. Introduction
Effect of Cavity Depth on Sound Absorption Coefficient
2. Materials and Methods
2.1. Materials
Natural Materials
2.2. Morphological Analysis of Polyurethane (Pu) Foam
2.3. Methods
2.3.1. Contribution of Current Work
2.3.2. Acoustic Structure
3. Computational Model
3.1. Description of the Computational Model
3.2. Presentation of Simulated Results
3.3. Frequency-Dependent Sound Absorption Characteristics of Various Cases
4. Experimental Validation
4.1. 3D-Printing of the Samples
4.2. Test Setup for Acoustic Measurements
5. Interpretation of Computational and Experimental Results
5.1. Comparative Analysis of Sound Absorption Coefficients from FEA and Experimental Data for Case 1 in the Forward Scenario
5.2. Sound Absorption Coefficient for Forward Case
5.3. Sound Absorption Coefficient for the Reverse Case
6. Discussion
6.1. Implications of Varying Hole Geometries on Acoustic Performance
6.2. Comparisons with Prior Research
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dah-You, M. Theory and Design of Microperforated Panel Sound-Absorbing Constructions. Sci. Sin. 1975, 18, 55–71. [Google Scholar]
- Maa, D.-Y. Microperforated-Panel Wideband Absorbers. Noise Control Eng. J. 1987, 29, 77–84. [Google Scholar] [CrossRef]
- Meng, H.; Galland, M.A.; Ichchou, M.; Bareille, O.; Xin, F.X.; Lu, T.J. Small Perforations in Corrugated Sandwich Panel Significantly Enhance Low Frequency Sound Absorption and Transmission Loss. Compos. Struct. 2017, 182, 1–11. [Google Scholar] [CrossRef]
- Li, X.; Liu, B.; Wu, Q. Enhanced Low-Frequency Sound Absorption of a Porous Layer Mosaicked with Perforated Resonator. Polymers 2022, 14, 223. [Google Scholar] [CrossRef]
- Sakagami, K.; Morimoto, M.; Koike, W. A Numerical Study of Double-Leaf Microperforated Panel Absorbers. Appl. Acoust. 2006, 67, 609–619. [Google Scholar] [CrossRef]
- Magliacano, D.; Catapane, G.; Petrone, G.; Verdière, K.; Robin, O. Sound Transmission Properties of a Porous Meta-Material with Periodically Embedded Helmholtz Resonators. Mech. Adv. Mater. Struct. 2023, 1–9. [Google Scholar] [CrossRef]
- Lee, F.C.; Chen, W.H. Acoustic Transmission Analysis of Multi-Layer Absorbers. J. Sound Vib. 2001, 248, 621–634. [Google Scholar] [CrossRef]
- Bravo, T.; Maury, C.; Pinhède, C. Enhancing Sound Absorption and Transmission through Flexible Multi-Layer Micro-Perforated Structures. J. Acoust. Soc. Am. 2013, 134, 3663–3673. [Google Scholar] [CrossRef] [PubMed]
- Cobo, P.; Simón, F. Multiple-Layer Microperforated Panels as Sound Absorbers in Buildings: A Review. Buildings 2019, 9, 53. [Google Scholar] [CrossRef]
- Lee, D.H.; Kwon, Y.P. Estimation of the Absorption Performance of Multiple Layer Perforated Panel Systems by Transfer Matrix Method. J. Sound Vib. 2004, 278, 847–860. [Google Scholar] [CrossRef]
- Bolton, J.S.; Green, E.R. Normal Incidence Sound Transmission through Double-Panel Systems Lined with Relatively Stiff, Partially Reticulated Polyurethane Foam. Appl. Acoust. 1993, 39, 23–51. [Google Scholar] [CrossRef]
- Asdrubali, F.; Pispola, G. Properties of Transparent Sound-Absorbing Panels for Use in Noise Barriers. J. Acoust. Soc. Am. 2007, 121, 214–221. [Google Scholar] [CrossRef]
- Mosa, A.I.; Putra, A.; Ramlan, R.; Esraa, A.-A. Absorption Coefficient of a Double-Layer Inhomogeneous Micro-Perforated Panel Backed with Multiple Cavity Depths. Acoust. Aust. 2020, 48, 69–78. [Google Scholar] [CrossRef]
- Chiang, Y.K.; Choy, Y.S. Acoustic Behaviors of the Microperforated Panel Absorber Array in Nonlinear Regime under Moderate Acoustic Pressure Excitation. J. Acoust. Soc. Am. 2018, 143, 538–549. [Google Scholar] [CrossRef]
- Lin, J.H.; Chuang, Y.C.; Li, T.T.; Huang, C.H.; Huang, C.L.; Chen, Y.S.; Lou, C.W. Effects of Perforation on Rigid PU Foam Plates: Acoustic and Mechanical Properties. Materials 2016, 9, 1000. [Google Scholar] [CrossRef]
- Min, H.; Guo, W. Sound Absorbers with a Micro-Perforated Panel Backed by an Array of Parallel-Arranged Sub-Cavities at Different Depths. Appl. Acoust. 2019, 149, 123–128. [Google Scholar] [CrossRef]
- Caniato, M.; Kyaw Oo D’Amore, G.; Kaspar, J.; Gasparella, A. Sound Absorption Performance of Sustainable Foam Materials: Application of Analytical and Numerical Tools for the Optimization of Forecasting Models. Appl. Acoust. 2020, 161, 107166. [Google Scholar] [CrossRef]
- Yuvaraj, L.; Jeyanthi, S.; Mailan Chinnapandi, L.B.; Pitchaimani, J. Experimental and Numerical Investigation on Sound Absorption Characteristics of 3D Printed Coupled-Cavity Integrated Passive Element Systems. J. Low Freq. Noise Vib. Act. Control 2022, 41, 60–73. [Google Scholar] [CrossRef]
- Kim, B.-S.; Cho, S.-J.; Min, D.; Park, J. Experimental Study for Improving Sound Absorption of a Composite Helical-Shaped Porous Structure Using Carbon Fiber. Compos. Struct. 2016, 145, 242–247. [Google Scholar] [CrossRef]
- Yuvaraj, L.; Jeyanthi, S. Acoustic Performance of Countersunk Micro-Perforated Panel in Multilayer Porous Material. Build. Acoust. 2020, 27, 3–20. [Google Scholar] [CrossRef]
- Liu, Z.; Zhan, J.; Fard, M.; Davy, J.L. Acoustic Properties of Multilayer Sound Absorbers with a 3D Printed Micro-Perforated Panel. Appl. Acoust. 2017, 121, 25–32. [Google Scholar] [CrossRef]
- Hong, T.W.; Wahab, F.; Jian, L.J.; Ishak, S.H. Sound Absorption Coefficient Measurement and Analysis of Bio-Composite Micro Perforated Panel (BC-MPP). J. Mech. Sci. Technol. 2023, 37, 3327–3334. [Google Scholar] [CrossRef]
- Cao, L.; Fu, Q.; Si, Y.; Ding, B.; Yu, J. Porous Materials for Sound Absorption. Compos. Commun. 2018, 10, 25–35. [Google Scholar] [CrossRef]
- Taban, E.; Tajpoor, A.; Faridan, M.; Samaei, S.E.; Beheshti, M.H. Acoustic Absorption Characterization and Prediction of Natural Coir Fibers. Acoust. Aust. 2019, 47, 67–77. [Google Scholar] [CrossRef]
- Opiela, K.C.; Zieliński, T.G.; Dvorák, T.; Kúdela, S., Jr. Perforated Closed-Cell Aluminium Foam for Acoustic Absorption. Appl. Acoust. 2021, 174, 107706. [Google Scholar] [CrossRef]
- Yang, X.; Shen, X.; Duan, H.; Yang, F.; Zhang, X.; Pan, M.; Yin, Q. Improving and Optimizing Sound Absorption Performance of Polyurethane Foam by Prepositive Microperforated Polymethyl Methacrylate Panel. Appl. Sci. 2020, 10, 2103. [Google Scholar] [CrossRef]
- Zhai, W.; Yu, X.; Song, X.; Ang, L.Y.L.; Cui, F.; Lee, H.P.; Li, T. Microstructure-Based Experimental and Numerical Investigations on the Sound Absorption Property of Open-Cell Metallic Foams Manufactured by a Template Replication Technique. Mater. Des. 2018, 137, 108–116. [Google Scholar] [CrossRef]
- Ruiz, H.; Cobo, P.; Dupont, T.; Martin, B.; Leclaire, P. Acoustic Properties of Plates with Unevenly Distributed Macroperforations Backed by Woven Meshes. J. Acoust. Soc. Am. 2012, 132, 3138–3147. [Google Scholar] [CrossRef]
- Xu, Z.; He, W.; Peng, X.; Xin, F.; Lu, T.J. Sound Absorption Theory for Micro-Perforated Panel with Petal-Shaped Perforations. J. Acoust. Soc. Am. 2020, 148, 18–24. [Google Scholar] [CrossRef]
- Pereira, A.; Gaspar, A.; Godinho, L.; Mendes, P.A.; Mateus, D.; Carbajo, J.; Ramis, J.; Poveda, P. On the Use of Perforated Sound Absorption Systems for Variable Acoustics Room Design. Buildings 2021, 11, 543. [Google Scholar] [CrossRef]
- ISO 10534-2:2023; Acoustics—Determination of Acoustic Properties in Impedance Tubes. ISO: Geneva, Switzerland, 2023.
- Won, K.S.; Choe, J. Transmission Loss Analysis in a Partitioned Duct with Porous Boundaries Based on Combination of FEM and Measurement of Sound Absorption Coefficients. Appl. Acoust. 2020, 165, 107291. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X. Investigation of the Acoustic Properties of Corrugated Micro-Perforated Panel Backed by a Rigid Wall. Mech. Syst. Signal Process. 2020, 140, 106699. [Google Scholar] [CrossRef]
- Patil, C.; Ghorpade, R.; Askhedkar, R. Effect of Air Gap, Thickness of Polyurethane (PU) Foam, and Perforated Panel on Sound Absorption Coefficient for Acoustic Structures. In Proceedings of the Volume 1: Acoustics, Vibration, and Phononics, Columbus, OH, USA, 30 October 2022; American Society of Mechanical Engineers: New York, NY, USA, 2022. [Google Scholar]
- Patil, C.; Ghorpade, R.; Askhedkar, R. Impact of Structural Parameters on the Acoustic Performance of 3D-Printed Perforated Panels Combined with Polyurethane Foam. Int. J. Interact. Des. Manuf. 2024, 1–22. [Google Scholar] [CrossRef]
- DIN EN 29053:1993; Acoustic—Materials for Acoustical Applications; Determination of Airflow Resistance. German Institute for Standardisation (Deutsches Institut für Normung): Berlin, Germany, 1993.
Frequency (Hz) | Sound Absorption Coefficient | |||||
---|---|---|---|---|---|---|
Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | |
100 | 0.007 | 0.007 | 0.005 | 0.007 | 0.007 | 0.005 |
125 | 0.022 | 0.021 | 0.014 | 0.021 | 0.021 | 0.014 |
160 | 0.051 | 0.050 | 0.032 | 0.049 | 0.049 | 0.032 |
200 | 0.097 | 0.096 | 0.059 | 0.095 | 0.095 | 0.060 |
250 | 0.175 | 0.177 | 0.110 | 0.175 | 0.174 | 0.112 |
315 | 0.309 | 0.319 | 0.207 | 0.315 | 0.314 | 0.211 |
400 | 0.512 | 0.543 | 0.389 | 0.537 | 0.535 | 0.395 |
500 | 0.737 | 0.787 | 0.675 | 0.782 | 0.778 | 0.682 |
630 | 0.886 | 0.900 | 0.966 | 0.903 | 0.902 | 0.967 |
800 | 0.824 | 0.760 | 0.870 | 0.769 | 0.775 | 0.866 |
1000 | 0.639 | 0.543 | 0.568 | 0.553 | 0.560 | 0.566 |
1250 | 0.455 | 0.366 | 0.343 | 0.373 | 0.380 | 0.343 |
1600 | 0.305 | 0.237 | 0.203 | 0.242 | 0.247 | 0.203 |
2000 | 0.212 | 0.162 | 0.131 | 0.165 | 0.169 | 0.132 |
2500 | 0.151 | 0.115 | 0.091 | 0.117 | 0.120 | 0.092 |
3150 | 0.108 | 0.081 | 0.064 | 0.083 | 0.084 | 0.064 |
4000 | 0.091 | 0.069 | 0.056 | 0.071 | 0.070 | 0.060 |
NRC | 0.441 | 0.417 | 0.371 | 0.419 | 0.420 | 0.373 |
Frequency (Hz) | Sound Absorption Coefficient | |||||
---|---|---|---|---|---|---|
Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | |
100 | 0.005 | 0.005 | 0.007 | 0.005 | 0.005 | 0.007 |
125 | 0.015 | 0.014 | 0.021 | 0.014 | 0.014 | 0.021 |
160 | 0.033 | 0.032 | 0.049 | 0.032 | 0.032 | 0.049 |
200 | 0.061 | 0.061 | 0.095 | 0.060 | 0.060 | 0.095 |
250 | 0.111 | 0.115 | 0.174 | 0.112 | 0.111 | 0.174 |
315 | 0.204 | 0.218 | 0.314 | 0.211 | 0.209 | 0.314 |
400 | 0.370 | 0.413 | 0.535 | 0.398 | 0.391 | 0.535 |
500 | 0.622 | 0.709 | 0.778 | 0.689 | 0.677 | 0.779 |
630 | 0.918 | 0.974 | 0.902 | 0.971 | 0.966 | 0.902 |
800 | 0.942 | 0.838 | 0.775 | 0.855 | 0.869 | 0.774 |
1000 | 0.686 | 0.542 | 0.561 | 0.555 | 0.567 | 0.559 |
1250 | 0.435 | 0.330 | 0.381 | 0.335 | 0.342 | 0.379 |
1600 | 0.262 | 0.198 | 0.248 | 0.199 | 0.203 | 0.246 |
2000 | 0.170 | 0.129 | 0.169 | 0.129 | 0.131 | 0.168 |
2500 | 0.117 | 0.090 | 0.121 | 0.090 | 0.091 | 0.119 |
3150 | 0.082 | 0.063 | 0.085 | 0.064 | 0.064 | 0.085 |
4000 | 0.072 | 0.057 | 0.074 | 0.059 | 0.059 | 0.074 |
NRC | 0.397 | 0.374 | 0.421 | 0.371 | 0.371 | 0.420 |
Frequency (Hz) | Sound Absorption Coefficient | |||||
---|---|---|---|---|---|---|
Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | |
100 | 0.006 | 0.006 | 0.004 | 0.006 | 0.006 | 0.004 |
125 | 0.020 | 0.020 | 0.013 | 0.019 | 0.019 | 0.013 |
160 | 0.048 | 0.046 | 0.030 | 0.046 | 0.046 | 0.029 |
200 | 0.092 | 0.090 | 0.056 | 0.089 | 0.088 | 0.056 |
250 | 0.167 | 0.169 | 0.105 | 0.166 | 0.166 | 0.105 |
315 | 0.295 | 0.307 | 0.203 | 0.300 | 0.299 | 0.201 |
400 | 0.496 | 0.526 | 0.381 | 0.517 | 0.515 | 0.380 |
500 | 0.715 | 0.766 | 0.662 | 0.760 | 0.763 | 0.663 |
630 | 0.866 | 0.877 | 0.953 | 0.890 | 0.891 | 0.945 |
800 | 0.810 | 0.746 | 0.864 | 0.765 | 0.766 | 0.856 |
1000 | 0.665 | 0.570 | 0.575 | 0.575 | 0.575 | 0.580 |
1250 | 0.477 | 0.389 | 0.356 | 0.395 | 0.394 | 0.360 |
1600 | 0.325 | 0.254 | 0.212 | 0.259 | 0.262 | 0.218 |
2000 | 0.229 | 0.175 | 0.138 | 0.178 | 0.181 | 0.142 |
2500 | 0.165 | 0.125 | 0.097 | 0.129 | 0.130 | 0.099 |
3150 | 0.118 | 0.090 | 0.070 | 0.092 | 0.092 | 0.070 |
4000 | 0.101 | 0.077 | 0.062 | 0.079 | 0.077 | 0.066 |
NRC | 0.444 | 0.420 | 0.370 | 0.420 | 0.421 | 0.373 |
Frequency (Hz) | Sound Absorption Coefficient | |||||
---|---|---|---|---|---|---|
Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | |
100 | 0.005 | 0.004 | 0.006 | 0.004 | 0.004 | 0.006 |
125 | 0.014 | 0.013 | 0.019 | 0.013 | 0.013 | 0.019 |
160 | 0.030 | 0.030 | 0.046 | 0.030 | 0.030 | 0.046 |
200 | 0.056 | 0.057 | 0.089 | 0.057 | 0.056 | 0.089 |
250 | 0.104 | 0.110 | 0.166 | 0.106 | 0.107 | 0.167 |
315 | 0.192 | 0.210 | 0.301 | 0.203 | 0.202 | 0.302 |
400 | 0.349 | 0.399 | 0.519 | 0.385 | 0.383 | 0.515 |
500 | 0.595 | 0.694 | 0.761 | 0.669 | 0.665 | 0.756 |
630 | 0.895 | 0.961 | 0.884 | 0.955 | 0.951 | 0.890 |
800 | 0.936 | 0.830 | 0.769 | 0.849 | 0.849 | 0.771 |
1000 | 0.709 | 0.552 | 0.572 | 0.559 | 0.579 | 0.576 |
1250 | 0.455 | 0.345 | 0.395 | 0.345 | 0.356 | 0.391 |
1600 | 0.278 | 0.208 | 0.259 | 0.209 | 0.212 | 0.261 |
2000 | 0.182 | 0.138 | 0.180 | 0.137 | 0.139 | 0.179 |
2500 | 0.127 | 0.097 | 0.130 | 0.098 | 0.097 | 0.129 |
3150 | 0.089 | 0.069 | 0.092 | 0.070 | 0.071 | 0.093 |
4000 | 0.080 | 0.063 | 0.081 | 0.065 | 0.065 | 0.082 |
NRC | 0.397 | 0.373 | 0.420 | 0.368 | 0.373 | 0.420 |
Frequency (Hz) | Existing Conditions [20] | Modified Conditions | ||
---|---|---|---|---|
Hole Spacing b = 5 | Hole Spacing b = 10 | Hole Spacing b = 15 | Hole Spacing b = 18 | |
125 | 0.00 | 0.20 | 0.01 | 0.02 |
250 | 0.03 | 0.11 | 0.06 | 0.18 |
375 | 0.00 | 0.04 | 0.09 | 0.45 |
500 | 0.01 | 0.10 | 0.28 | 0.74 |
625 | 0.06 | 0.28 | 0.68 | 0.88 |
750 | 0.11 | 0.42 | 0.70 | 0.86 |
875 | 0.09 | 0.60 | 0.78 | 0.76 |
1000 | 0.12 | 0.58 | 0.59 | 0.64 |
1125 | 0.22 | 0.52 | 0.34 | 0.54 |
1250 | 0.20 | 0.38 | 0.29 | 0.46 |
1375 | 0.16 | 0.40 | 0.32 | 0.39 |
1500 | 0.26 | 0.41 | 0.28 | 0.34 |
1600 | 0.32 | 0.30 | 0.20 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, C.; Ghorpade, R.; Askhedkar, R. Analysing the Impact of 3D-Printed Perforated Panels and Polyurethane Foam on Sound Absorption Coefficients. Modelling 2024, 5, 969-989. https://doi.org/10.3390/modelling5030051
Patil C, Ghorpade R, Askhedkar R. Analysing the Impact of 3D-Printed Perforated Panels and Polyurethane Foam on Sound Absorption Coefficients. Modelling. 2024; 5(3):969-989. https://doi.org/10.3390/modelling5030051
Chicago/Turabian StylePatil, Chetan, Ratnakar Ghorpade, and Rajesh Askhedkar. 2024. "Analysing the Impact of 3D-Printed Perforated Panels and Polyurethane Foam on Sound Absorption Coefficients" Modelling 5, no. 3: 969-989. https://doi.org/10.3390/modelling5030051
APA StylePatil, C., Ghorpade, R., & Askhedkar, R. (2024). Analysing the Impact of 3D-Printed Perforated Panels and Polyurethane Foam on Sound Absorption Coefficients. Modelling, 5(3), 969-989. https://doi.org/10.3390/modelling5030051