The Impact of the Polymer Layer Thickness in the Foundation Shim on the Stiffness of the Multi-Bolted Foundation Connection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fundamentals of Analysis
- FEM-S—model with steel shim;
- FEM-P—model with polymer shim;
- FEM-PSn—model with polymer–steel shim with polymer layer thickness equal to n (for n = 1, 2, 3, 4, 5).
2.2. FEM-Based Models
- Normal stiffness scaling factor—10;
- Tangential stiffness scaling factor—1;
- Coefficient of static friction—0.6.
3. Results and Discussion
- Significant improvement in the stiffness of the multi-bolted foundation connection in comparison to the connection with a polymer shim;
- The achievement of a multi-bolted foundation connection with a stiffness close to that of the connection with a steel shim (at a sufficiently low polymer layer thickness).
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grzejda, R. FE-modelling of a contact layer between elements joined in preloaded bolted connections for the operational condition. Adv. Sci. Technol. Res. J. 2014, 8, 19–23. [Google Scholar] [CrossRef]
- Palenica, P.; Powałka, B.; Grzejda, R. Assessment of modal parameters of a building structure model. Springer Proc. Math. Stat. 2016, 181, 319–325. [Google Scholar]
- Diakun, J. Recycling product model and its application for quantitative assessment of product recycling properties. Sustainability 2024, 16, 2880. [Google Scholar] [CrossRef]
- Krajewski, S.J.; Grochała, D.; Tomków, J.; Grzejda, R. Analysis of the surface stereometry of alloyed austenitic steel after fibre laser cutting using confocal microscopy. Coatings 2023, 13, 15. [Google Scholar] [CrossRef]
- Grochała, D.; Grzejda, R.; Parus, A.; Berczyński, S. The wavelet transform for feature extraction and surface roughness evaluation after micromachining. Coatings 2024, 14, 210. [Google Scholar] [CrossRef]
- Nozdrzykowski, K.; Chybowski, L.; Dorobczyński, L. Model-based estimation of the reaction forces in an elastic system supporting large-size crankshafts during measurements of their geometric quantities. Measurement 2020, 155, 107543. [Google Scholar] [CrossRef]
- Chybowski, L.; Nozdrzykowski, K.; Grządziel, Z.; Dorobczyński, L. Evaluation of model-based control of reaction forces at the supports of large-size crankshafts. Sensors 2020, 20, 2654. [Google Scholar] [CrossRef]
- Nozdrzykowski, K.; Grządziel, Z.; Dunaj, P. Determining geometrical deviations of crankshafts with limited detection possibilities due to support conditions. Measurement 2022, 189, 110430. [Google Scholar] [CrossRef]
- Piaseczny, L. New types of washers and foundation bolts for seating marine diesel engines. Combust. Engines 2009, 48, 23–27. [Google Scholar] [CrossRef]
- Grudziński, P.; Konowalski, K. Experimental investigations of normal deformation characteristics of foundation chocks used in the seating of heavy machines and devices, Part I. Theoretical fundamentals and investigations of a steel chock. Adv. Manuf. Sci. Technol. 2014, 38, 63–76. [Google Scholar] [CrossRef]
- Grudziński, P.; Konowalski, K. Experimental investigations of normal deformation characteristics of foundation chocks used in the seating of heavy machines and devices, Part II. Experimental investigations of a chock cast of EPY resin. Adv. Manuf. Sci. Technol. 2014, 38, 51–61. [Google Scholar]
- Grudziński, K.; Grudziński, P.; Jaroszewicz, W.; Ratajczak, J. Assembling of bearing sleeve on ship propulsion shaft by using EPY resin compound. Pol. Marit. Res. 2012, 19, 49–55. [Google Scholar] [CrossRef]
- Urbaniak, M.; Ratajczak, J. Modernization of foundations for industrial and ship’s machines and devices with use of the EPY compound, Part 1. Practical applications of the EPY compound. Inż. Mater. Mater. Eng. 2015, 36, 532–536. (In Polish) [Google Scholar]
- Comer, A.J.; Dhôte, J.X.; Stanley, W.F.; Young, T.M. Thermo-mechanical fatigue analysis of liquid shim in mechanically fastened hybrid joints for aerospace applications. Compos. Struct. 2012, 94, 2181–2187. [Google Scholar] [CrossRef]
- Dhôte, J.X.; Comer, A.J.; Stanley, W.F.; Young, T.M. Study of the effect of liquid shim on single-lap joint using 3D Digital Image Correlation. Compos. Struct. 2013, 96, 216–225. [Google Scholar] [CrossRef]
- Liu, L. The influence of the substrate’s stiffness on the liquid shim effect in composite-to-titanium hybrid bolted joints. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2014, 228, 470–479. [Google Scholar] [CrossRef]
- Dhôte, J.X.; Comer, A.J.; Stanley, W.F.; Young, T.M. Investigation into compressive properties of liquid shim for aerospace bolted joints. Compos. Struct. 2014, 109, 224–230. [Google Scholar] [CrossRef]
- Yue, X.; An, L.; Chen, Z.; Wang, C.; Cai, Y.; Xiao, R. Influence of gap filling on mechanical properties of composite-aluminum single-lap single-bolt hybrid joints. Adv. Mech. Eng. 2021, 13, 16878132241254181. [Google Scholar] [CrossRef]
- Yue, X.; An, L.; Chen, Z.; Cai, Y.; Wang, C. Effect of preload and shim types on the mechanical properties of composite-aluminium bolted joints. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 1099–1118. [Google Scholar] [CrossRef]
- Okorn, I.; Nagode, M.; Klemenc, J.; Oman, S. Influence of geometric imperfections of flange joints on the fatigue load of preloaded bolts. Int. J. Press. Vessel. Pip. 2024, 210, 105237. [Google Scholar] [CrossRef]
- Wysmulski, P. The effect of load eccentricity on the compressed CFRP Z-shaped columns in the weak post-critical state. Compos. Struct. 2022, 301, 116184. [Google Scholar] [CrossRef]
- Wysmulski, P. Numerical and experimental study of crack propagation in the tensile composite plate with the open hole. Adv. Sci. Technol. Res. J. 2023, 17, 249–261. [Google Scholar] [CrossRef]
- Wysmulski, P. Analysis of the effect of an open hole on the buckling of a compressed composite plate. Materials 2024, 17, 1081. [Google Scholar] [CrossRef] [PubMed]
- Wysmulski, P.; Mieczkowski, G. Influence of size of open hole on stability of compressed plate made of carbon fiber reinforced polymer. Adv. Sci. Technol. Res. J. 2024, 18, 238–247. [Google Scholar] [CrossRef]
- Nesbitt, B. How to support your pump and associated equipment. World Pumps 2002, 2002, 26–29. [Google Scholar] [CrossRef]
- Geitner, F.K.; Bloch, H.P. Machinery Component Maintenance and Repair, 4th ed.; Gulf Professional Publishing: Houston, TX, USA, 2019. [Google Scholar]
- Piaseczny, L. Designing of power plant rechocking using a pourable polymer on example of ship’s power plant. Eksploat. Niezawodn. Maint. Reliab. 2002, 4, 26–38. [Google Scholar]
- Żach, P. Composite materials in special machine applications. Tworz. Sztucz. Chem. 2005, 5, 16–19. (In Polish) [Google Scholar]
- Kawiak, M.; Kawiak, R. Material selection for foundation chocks of machines. Inż. Mater. Mater. Eng. 2015, 36, 528–531. (In Polish) [Google Scholar]
- Grudziński, P.; Konowalski, K. Studies of flexibility of a steel adjustable foundation chock. Adv. Manuf. Sci. Technol. 2012, 36, 79–90. [Google Scholar]
- Yongsheng, Z.; Nana, N.; Hongyan, C.; Ying, L.; Kai, J.; Lingjun, M. Calculation method of the contact stiffness of bed-foundation interfaces considering foundation creep. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 427. [Google Scholar] [CrossRef]
- Piaseczny, L. Marine engine seating on polymer-metal chocking. Combust. Engines 2008, 47, 3–13. [Google Scholar] [CrossRef]
- Wald, F.; Vild, M.; Kuříková, M.; Kabeláč, J.; Sekal, D.; Maier, N.; Da Silva Seco, L.; Couchaux, M. Component based finite element design of steel joints. Civ. Eng. Des. 2020, 2, 78–89. [Google Scholar] [CrossRef]
- Nawar, M.T.; Matar, E.B.; Maaly, H.M.; Alaaser, A.G.; El-Zohairy, A. Assessment of rotational stiffness for metallic hinged base plates under axial loads and moments. Buildings 2021, 11, 368. [Google Scholar] [CrossRef]
- Saleem, S.; Hejazi, F.; Ostovar, N. Health monitoring of ultra high fiber performance reinforced concrete communication tower using machine learning algorithms. J. Civ. Struct. Health Monit. 2023, 13, 1105–1130. [Google Scholar] [CrossRef]
- Tanlak, N.; Sonmez, F.; Talay, E. Detailed and simplified models of bolted joints under impact loading. J. Strain Anal. Eng. Des. 2011, 46, 213–225. [Google Scholar] [CrossRef]
- Díaz, C.; Martí, P.; Victoria, M.; Querin, O.M. Review on the modelling of joint behaviour in steel frames. J. Constr. Steel Res. 2011, 67, 741–758. [Google Scholar] [CrossRef]
- Grzejda, R. New method of modelling nonlinear multi-bolted systems. In Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues, 1st ed.; Kleiber, M., Burczyński, T., Wilde, K., Gorski, J., Winkelmann, K., Smakosz, Ł., Eds.; CRC Press: Leiden, The Netherlands, 2016; pp. 213–216. [Google Scholar]
- Kim, J.; Yoon, J.-C.; Kang, B.-S. Finite element analysis and modeling of structure with bolted joints. Appl. Math. Model. 2007, 31, 895–911. [Google Scholar] [CrossRef]
- Shan, M.; Zhao, L.; Huang, W.; Liu, F.; Zhang, J. Effect mechanisms of hygrothermal environments on failure of single-lap and double-lap CFRP-aluminum bolted joints. Comput. Model. Eng. Sci. 2020, 123, 101–127. [Google Scholar]
- Tartaglia, R.; D’Aniello, M.; Zimbru, M. Experimental and numerical study on the T-Stub behaviour with preloaded bolts under large deformations. Structures 2020, 27, 2137–2155. [Google Scholar] [CrossRef]
- Mahaarachchi, D.; Mahendran, M. Finite element analysis and design of crest-fixed trapezoidal steel claddings with wide pans subject to pull-through failures. Eng. Struct. 2004, 26, 1547–1559. [Google Scholar] [CrossRef]
- Oskouei, R.H.; Keikhosravy, M.; Soutis, C. Estimating clamping pressure distribution and stiffness in aircraft bolted joints by finite-element analysis. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2009, 223, 863–871. [Google Scholar] [CrossRef]
- Razavi, H.; Abolmaali, A.; Ghassemieh, M. Invisible elastic bolt model concept for finite element analysis of bolted connections. J. Constr. Steel Res. 2007, 63, 647–657. [Google Scholar] [CrossRef]
- Schaumann, P.; Kleineidam, P.; Seidel, M. FE-modelling of connections with bolts in tension. Stahlbau 2001, 70, 73–84. (In German) [Google Scholar] [CrossRef]
- Bouzid, A.-H.; Beghoul, H. The Design of Flanges Based on Flexibility and Tightness. In Analysis of Bolted Joints, Proceedings of the 2003 ASME Pressure Vessels and Piping Conference, Cleveland, OH, USA, 20–24 July 2003; ASME: New York City, NY, USA, 2003; pp. 31–38. [Google Scholar]
- Grudziński, P. Deformation and stress analysis of foundation bolted joints, Part 2: A foundation bolted joint with a chock made of plastic. Model. Inż. 2014, 21, 72–79. (In Polish) [Google Scholar]
- Grudziński, K.; Jaroszewicz, W.; Grudziński, P.; Ratajczak, J. 40 years in application of Polish resins in the seating of machines and devices on foundations. Prz. Mech. 2015, 74, 26–35. (In Polish) [Google Scholar]
- Midas NFX, Analysis Manual. Available online: https://www.dropbox.com/s/10g192o8chk0plq/midas%20NFX%20Analysis%20Manual.pdf?dl=1 (accessed on 29 August 2024).
- Grzejda, R. Designation of a normal stiffness characteristic for a contact joint between elements fastened in a multi-bolted connection. Diagnostyka 2014, 15, 61–64. [Google Scholar]
Material | E, GPa | ν |
---|---|---|
Steel | 210 | 0.3 |
EPY | 7.5 | 0.376 |
Model | Number of Finite Elements | Number of Nodes |
---|---|---|
FEM-S | 43,432 | 44,625 |
FEM-PS1 | 580,992 | 838,248 |
FEM-PS2 | 173,296 | 235,457 |
FEM-PS3 | 239,160 | 301,041 |
FEM-PS4 | 66,808 | 84,701 |
FEM-PS5 | 124,120 | 154,159 |
FEM-P | 43,272 | 44,539 |
Model | FEM-S | FEM-PS1 | FEM-PS2 | FEM-PS3 | FEM-PS4 | FEM-PS5 | FEM-P |
---|---|---|---|---|---|---|---|
k, kN/μm | 3.60 | 3.15 | 2.96 | 2.80 | 2.66 | 2.53 | 1.67 |
Model | FEM-PS1 | FEM-PS2 | FEM-PS3 | FEM-PS4 | FEM-PS5 |
---|---|---|---|---|---|
ε, % | 12.5 | 17.8 | 22.2 | 26.1 | 29.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzejda, R. The Impact of the Polymer Layer Thickness in the Foundation Shim on the Stiffness of the Multi-Bolted Foundation Connection. Modelling 2024, 5, 1365-1374. https://doi.org/10.3390/modelling5040070
Grzejda R. The Impact of the Polymer Layer Thickness in the Foundation Shim on the Stiffness of the Multi-Bolted Foundation Connection. Modelling. 2024; 5(4):1365-1374. https://doi.org/10.3390/modelling5040070
Chicago/Turabian StyleGrzejda, Rafał. 2024. "The Impact of the Polymer Layer Thickness in the Foundation Shim on the Stiffness of the Multi-Bolted Foundation Connection" Modelling 5, no. 4: 1365-1374. https://doi.org/10.3390/modelling5040070
APA StyleGrzejda, R. (2024). The Impact of the Polymer Layer Thickness in the Foundation Shim on the Stiffness of the Multi-Bolted Foundation Connection. Modelling, 5(4), 1365-1374. https://doi.org/10.3390/modelling5040070