Prothymosin-Alpha, a Novel and Sensitive Biomarker of the Inflammatory and Insulin-Resistant Statuses of Obese Individuals: A Pilot Study Involving Humans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Laboratory Assessments
2.3. Statistical Analysis
3. Results
3.1. Clinical and Biochemical Features of the Study Participants
3.2. Cytokines, Growth Factors, and ProT-α as Markers of Inflammation and Insulin Resistance in Obese Individuals
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef]
- Malnick, S.D.H.; Knobler, H. The medical complications of obesity. Qjm Int. J. Med. 2006, 99, 565–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kershaw, E.E.; Flier, J.K. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 2004, 89, 2548–2556. [Google Scholar] [CrossRef]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.; Pessin, J.E. Adipokines mediate inflammation and insulin resistance. Front. Endocrinol. 2013, 4, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henning, R.J. Obesity and obesity-induced inflammatory disease contribute to atherosclerosis: A review of the pathophysiology and treatment of obesity. Am. J. Cardiovasc. Dis. 2021, 11, 504–529. [Google Scholar]
- Trayhurn, P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiol. Rev. 2013, 93, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Foti, D.P.; Brunetti, A. Editorial: “Linking hypoxia to obesity”. Front. Endocrinol. 2017, 8, 34. [Google Scholar] [CrossRef]
- Messineo, S.; Laria, A.E.; Arcidiacono, B.; Chiefari, E.; Luque Huertas, R.M.; Foti, D.P.; Brunetti, A. Cooperation between HMGA1 And HIF-1 contributes to hypoxia-induced VEGF and visfatin gene espression in 3T3-L1 adipocytes. Front. Endocrinol. 2016, 7, 73. [Google Scholar] [CrossRef] [Green Version]
- Arcidiacono, B.; Chiefari, E.; Foryst-Ludwig, A.; Currò, G.; Navarra, G.; Brunetti, F.S.; Mirabelli, M.; Corigliano, D.M.; Kintscher, U.; Britti, D.; et al. Obesity-related hypoxia via miR-128 decreases insulin-receptor expression in human and mouse adipose tissue promoting systemic insulin resistance. EBioMedicine 2020, 59, 102912. [Google Scholar] [CrossRef]
- Eltzschig, H.K.; Carmeliet, P. Hypoxia and inflammation. N. Engl. J. Med. 2011, 364, 656–665. [Google Scholar] [CrossRef] [Green Version]
- Laria, A.E.; Messineo, S.; Arcidiacono, B.; Varano, M.; Chiefari, E.; Semple, R.K.; Rocha, N.; Russo, D.; Cuda, G.; Gaspari, M.; et al. Secretome analysis of hypoxia-induced 3T3-L1 adipcytes uncovers proteins potentially involved in obesity. Proteomics 2018, 18, e1700260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segade, F.; Gómez-Márquez, J. Prothymosin alpha. Int. J. Biochem. Cell. Biol. 1999, 31, 1243–1248. [Google Scholar] [CrossRef] [PubMed]
- Eschenfeldt, W.H.; Berger, S.L. The human prothymosin α gene is polymorphic and induced upon growth stimulation: Evidence using a cloned cDNA. Proc. Natl. Acad. Sci. USA 1986, 83, 9403–9407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freire, M.; Barbeito, P.; Sarandeses, C.S.; Díaz-Jullien, C.; Muras, J.; Covelo, G.; Moreira, D.; Freire-Cobo, C. Prothymosin α, a protein implicated in the proliferation and survival of lymphocytes. J. Immunol. Sci. 2018, 2, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Karapetian, R.N.; Evstafieva, A.G.; Abaeva, I.S.; Chichkova, N.V.; Filonov, G.S.; Rubtsov, Y.P.; Suchacheva, E.A.; Melnikov, S.V.; Schneider, U.; Wanker, E.E.; et al. Nuclear oncoprotein prothymosin alpha is a partner of Keap1: Implications for expression of oxidative stress-protecting genes. Mol. Cell. Biol. 2005, 25, 1089–1099. [Google Scholar] [CrossRef] [Green Version]
- Samara, P.; Karachaliou, C.E.; Ioannou, K.; Papaioannou, N.E.; Voutsas, I.F.; Zikos, C.; Pirmettis, I.; Papadopoulos, M.; Kalbacher, H.; Livaniou, E.; et al. Prothymosin alpha: An alarmin and more. Curr. Med. Chem. 2017, 24, 1747–1760. [Google Scholar] [CrossRef]
- Mosoian, A.; Teixeira, A.; Burns, C.S.; Klotman, M.E. Prothymosin-α inhibitsHIV-1 via Toll-like receptor 4-mediated type I interferon induction. Proc. Natl. Acad. Sci. USA 2010, 107, 10178–10183. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association Professional Practice Committee. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022, 45 (Suppl. S1), S17–S38. [Google Scholar] [CrossRef]
- Mirabelli, M.; Chiefari, E.; Puccio, L.; Foti, D.P.; Brunetti, A. Potential Benefits and Harms of Novel Antidiabetic Drugs During COVID-19 Crisis. Int. J. Environ. Res. Public Health 2020, 17, 3664. [Google Scholar] [CrossRef]
- Murgia, F.; Giagnoni, F.; Lorefice, L.; Caria, P.; Dettori, T.; D’Alterio, M.N.; Angioni, S.; Hendren, A.J.; Caboni, P.; Pibiri, M.; et al. Sex Hormones as Key Modulators of the Immune Response in Multiple Sclerosis: A Review. Biomedicines 2022, 10, 3107. [Google Scholar] [CrossRef]
- Passos, L.S.A.; Jha, P.K.; Becker-Greene, D.; Blaser, M.C.; Romero, D.; Lupieri, A.; Sukhova, G.K.; Libby, P.; Singh, S.A.; Dutra, W.O.; et al. Prothymosin Alpha: A Novel Contributor to Estradiol Receptor Alpha-Mediated CD8+ T-Cell Pathogenic Responses and Recognition of Type 1 Collagen in Rheumatic Heart Valve Disease. Circulation 2022, 145, 531–548. [Google Scholar] [CrossRef] [PubMed]
- Caroleo, M.; Carbone, E.A.; Greco, M.; Corigliano, D.M.; Arcidiacono, B.; Fazia, G.; Rania, M.; Aloi, M.; Gallelli, L.; Segura-Garcia, C.; et al. Brain-behavior-immune interaction: Serum cytokines and growth factors in patients with eating disorders at extremes of the body mass index (BMI) spectrum. Nutrients 2019, 11, 1995. [Google Scholar] [CrossRef] [Green Version]
- Ter Horst, K.W.; Gilijamse, P.W.; Koopman, K.E.; de Weijer, B.A.; Brands, M.; Kootte, R.S.; Romijn, J.A.; Ackermans, M.T.; Nieuwdorp, M.; Soeters, M.R.; et al. Insulin resistance in obesity can be reliably identified from fasting plasma insulin. Int. J. Obes. 2015, 39, 1703–1709. [Google Scholar] [CrossRef] [PubMed]
- Karne, R.J.; Chen, H.; Quon, M.J. Diagnosing insulin resistance by simple quantitative methods in subjects with normal glucose metabolism. Diabetes Care 2004, 27, 1247–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, M.; Mulvagh, S.L.; Merz, C.N.; Buring, J.E.; Manson, J.E. Cardiovascular Disease in Women: Clinical Perspectives. Circ. Res. 2016, 118, 1273–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillis, E.E.; Sullivan, J.C. Sex Differences in Hypertension: Recent Advances. Hypertension 2016, 68, 1322–1327. [Google Scholar] [CrossRef] [Green Version]
- Chiefari, E.; Mirabelli, M.; La Vignera, S.; Tanyolaç, S.; Foti, D.P.; Aversa, A.; Brunetti, A. Insulin Resistance and Cancer: In Search for a Causal Link. Int. J. Mol. Sci. 2021, 22, 11137. [Google Scholar] [CrossRef]
- Califf, R.M. Biomarker definitions and their applications. Exp. Biol. Med. 2018, 243, 213–221. [Google Scholar] [CrossRef]
- Giltnane, J.M.; Rimm, D.L. Technology Insight: Identification of biomarkers with tissue microarray technology. Nat. Clin. Pract. Oncol. 2004, 1, 104–111. [Google Scholar] [CrossRef]
- Ueda, H.; Matsunaga, H.; Halder, S.K. Prothymosin alpha plays multifunctional cell robustness roles in genomic, epigenetic, and nongenomic mechanisms. Ann. N. Y. Acad. Sci. 2012, 1269, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Skopeliti, M.; Iconomidou, V.A.; Derhovanessian, E.; Pawelec, G.; Voelter, W.; Kalbacher, H.; Hamodrakas, S.J.; Tsitsilonis, O.E. Prothymosin alpha immunoactive carboxyl-terminal peptide TKKQKTDEDD stimulates lymphocyte reactions, induces dendritic cell maturation and adopts a beta-sheet conformation in a sequence-specific manner. Mol. Immunol. 2009, 46, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Ueda, H. Prothymosin α plays a role as a brain guardian through Ecto-F1 ATPase-P2Y12 complex and TLR4/MD2. Cells 2023, 12, 496. [Google Scholar] [CrossRef]
- Ha, S.Y.; Song, D.H.; Hwang, S.H.; Cho, S.Y.; Park, C.K. Expression of prothymosin alpha predicts early recurrence and poor prognosis of hepatocellular carcinoma. Hepatobiliary Pancreat. Dis. Int. 2015, 14, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Karetsou, Z.; Kretsovali, A.; Murphy, C.; Tsolas, O.; Papamarcaki, T. Prothymosin α interacts with the CREB-binding protein and potentiates transcription. EMBO Rep. 2002, 3, 361–366. [Google Scholar] [CrossRef] [Green Version]
- Su, B.H.; Tseng, Y.L.; Shieh, G.S.; Chen, Y.C.; Shiang, Y.C.; Wu, P.; Li, K.J.; Yen, T.H.; Shiau, A.L.; Wu, C.L. Prothymosin alpha overexpression contributes to the development of pulmonary emphysema. Nat. Commun. 2013, 4, 1906. [Google Scholar] [CrossRef] [Green Version]
- Li, K.J.; Shiau, A.L.; Chiou, Y.Y.; Yo, Y.T.; Wu, C.L. Transgenic overexpression of prothymosin α induces development of polycystic kidney disease. Kidney Int. 2005, 67, 1710–1722. [Google Scholar] [CrossRef] [Green Version]
- Halder, S.K.; Matsunaga, H.; Ueda, H. Prothymosin alpha and its mimetic hexapeptide improve delayed tissue plasminogen activator-induced brain damage follwing cerebral ischemia. J. Neurochem. 2020, 153, 772–789. [Google Scholar] [CrossRef]
- Su, Y.C.; Ou, H.Y.; Wu, H.T.; Wu, P.; Chen, Y.C.; Su, B.H.; Shiau, A.L.; Chang, C.J.; Wu, C.L. Prothymosin-α overexpression contributes to the development of insulin resistance. J. Clin. Endocrinol. Metab. 2015, 100, 4114–4123. [Google Scholar] [CrossRef] [Green Version]
- Cooper, A.J.; Gupta, S.R.; Moustafa, A.F.; Chao, A.M. Sex/Gender Differences in Obesity Prevalence, Comorbidities, and Treatment. Curr. Obes. Rep. 2021, 10, 458–466. [Google Scholar] [CrossRef]
- Shi, H.; Kokoeva, M.V.; Inouye, K.; Tzameli, I.; Yin, H.; Flier, J.S. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Investig. 2006, 116, 3015–3025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, M.J.; Kim, K.H.; Yoon, J.M.; Kim, J.B. Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochem. Biophys. Res. Commun. 2006, 346, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.K.; O’Brien, M.; Mau, T.; Yung, R. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging. Aging 2017, 9, 1971–1982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roland, I.; Minet, E.; Ernest, I.; Pascal, P.; Michel, G.; Remacle, R.; Michiels, C. Identification of hypoxia-responsive messengers expressed in human microvascular endothelial cells using differential display RT-PCR. Eur. J. Biochem. 2000, 267, 356–3574. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Zhao, J.; Meng, H.; Zhang, X. Adipose tissue-resident immune cells in obesity and type 2 diabetes. Front. Immunol. 2019, 10, 1173. [Google Scholar] [CrossRef]
- Ioannou, K.; Derhovanessian, E.; Tsakiri, E.; Samara, P.; Kalbacher, H.; Voelter, W.; Trougakos, I.P.; Pawelec, G.; Tsitsilonis, O.E. Prothymosin α and a prothymosin α-derived peptide enhance T(H)1-type immune responses against defined HER-2/neu epitopes. BMC Immunol. 2013, 14, 43. [Google Scholar] [CrossRef] [Green Version]
- Murray, P.J. Macrophage Polarization. Annu. Rev. Physiol. 2017, 79, 541–566. [Google Scholar] [CrossRef]
- Greco, M.; Chiefari, E.; Montalcini, T.; Accattato, F.; Costanzo, F.S.; Pujia, A.; Foti, D.; Brunetti, A.; Gulletta, E. Early effects of a hypocaloric, mediterranean diet on laboratory parameters in obese individuals. Mediat. Inflamm. 2014, 2014, 750660. [Google Scholar] [CrossRef] [Green Version]
- Caroleo, M.; Carbone, E.A.; Arcidiacono, B.; Greco, M.; Primerano, A.; Mirabelli, M.; Fazia, G.; Rania, M.; Hribal, M.L.; Gallelli, L.; et al. Does NUCB/Nesfatin-1 influence eating behavior in obese patients with binge eating disorders? Toward a neurobiological pathway. Nutrients 2023, 15, 348. [Google Scholar] [CrossRef]
- Cohen, E.; Margalit, I.; Shochat, T.; Goldberg, E.; Krause, I. Markers of Chronic Inflammation in Overweight and Obese Individuals and the Role of Gender: A Cross-Sectional Study of a Large Cohort. J. Inflamm. Res. 2021, 14, 567–573. [Google Scholar] [CrossRef]
- George, M.D.; Giles, J.T.; Katz, P.P.; England, B.R.; Mikuls, T.R.; Michaud, K.; Ogdie-Beatty, A.R.; Ibrahim, S.; Cannon, G.W.; Caplan, L.; et al. Impact of Obesity and Adiposity on Inflammatory Markers in Patients With Rheumatoid Arthritis. Arthritis Care Res. 2017, 69, 1789–1798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Lean Controls (n = 51) | Obese Patients (n = 61) | p Value | |
---|---|---|---|
Female gender, N | 27 (52.9%) | 45 (75.0%) | 0.015 |
Age, years | 33 (30–40) | 33 (28–41) | 0.690 |
Weight, Kg | 60.0 (53.0–67.5) | 99.0 (89.3–117.8) | <0.001 |
BMI, Kg/m2 | 21.9 (20.0–23.3) | 37.5 (33.3–42.0) | <0.001 |
Systolic pressure, mmHg | 110 (110–122) | 128 (120–134) | 0.016 |
Diastolic pressure, mmHg | 80 (75–80) | 80 (80–88) | 0.080 |
Glucose, mg/dL | 88.0 (82.5–91.0) | 90.0 (85.5–98.0) | 0.087 |
Insulin, µU/mL | 8.0 (5.3–10.0) | 20.0 (12.0–26.0) | <0.001 |
HOMA-IR | 1.6 (1.0–2.2) | 4.5 (2.7–6.5) | <0.001 |
HbA1c, % | 5.3 (5.2–5.4) | 5.3 (5.1–5.5) | 0.684 |
AST, U/L | 15 (15–16) | 17 (14–23) | 0.455 |
ALT, U/L | 19 (17–20) | 19 (14–27) | 0.949 |
γGT, U/L | 29 (22–35) | 18 (13–29) | 0.486 |
Total Cholesterol, mg/dL | 184.0 (153.7–215.3) | 166.0 (152.0–186.0) | 0.692 |
HDL Cholesterol, mg/dL | 59.0 (52.0–68.0) | 45.0 (38.0–49.0) | 0.072 |
Triglycerides, mg/dL | 81.0 (67.8–98.8) | 106.0 (82.0–145.0) | 0.210 |
Creatinine, mg/dL | 0.74 (0.63–0.82) | 0.69 (0.61–0.77) | 0.761 |
WBC, 106/mL | 5.5 (4.6–7.0) | 5.1 (4.1–5.8) | 0.133 |
ESR, mm/h | 2 (2–5) | 8 (5–16) | <0.001 |
Lean Controls (n = 51) | Obese Patients (n = 61) | p Value | |
---|---|---|---|
IL-1α, pg/mL | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.828 |
IL-1β, pg/mL | 0.0 (0.0–0.9) | 0.0 (0.0–0.0) | 0.433 |
IL-2, pg/mL | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.457 |
IL-4, pg/mL | 0.0 (0.0–1.5) | 1.4 (0.3–1.7) | 0.269 |
IL-6, pg/mL | 1.3 (1.1–1.9) | 3.1 (2.3–4.5) | 0.004 |
IL-8, pg/mL | 19.6 (6.4–38.1) | 18.8 (10.0–55.9) | 0.565 |
IL-10, pg/mL | 0.0 (0.0–1.2) | 0.0 (0.0–1.2) | 0.906 |
MCP-1, pg/mL | 263.8 (228.1–290.1) | 259.0 (199.5–303.5) | 0.838 |
TNF-α, pg/mL | 8.0 (0.0–11.9) | 3.7 (3.0–5.4) | 0.239 |
EGF, pg/mL | 172.7 (94.3–179.4) | 140.7 (103.3–151.5) | 0.838 |
VEGF, pg/mL | 101.1 (69.1–193.9) | 203.9 (166.9–305.0) | 0.061 |
ProT-α, pg/mL | 411.5 (267.3–663.0) | 600.0 (395.8–915.8) | 0.004 |
BMI | Age | Insulin | IL-1α | IL-1β | IL-2 | IL-4 | IL-6 | IL-8 | IL-10 | MCP-1 | TNF-α | EGF | VEGF | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ProT-α | 0.214 | −0.327 ** | 0.351 ** | 0.208 | −0.137 | 0.171 | −0.268 | −0.090 | 0.492 ** | 0.149 | 0.010 | 0.561 ** | 0.240 | 0.259 |
ProT-α § | 0.340 * | −0.220 | 0.285 * | 0.199 | −0.173 | 0.159 | −0.385 | −0.153 | 0.513 * | 0.340 * | 0.124 | 0.603 ** | 0.303 | 0.184 |
Standardized β | t Value | p Value | |
---|---|---|---|
ProT-α | 0.407 | 3.650 | <0.001 |
ProT-α * | 0.443 | 3.263 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greco, M.; Mirabelli, M.; Tocci, V.; Mamula, Y.; Salatino, A.; Brunetti, F.S.; Dragone, F.; Sicilia, L.; Tripolino, O.; Chiefari, E.; et al. Prothymosin-Alpha, a Novel and Sensitive Biomarker of the Inflammatory and Insulin-Resistant Statuses of Obese Individuals: A Pilot Study Involving Humans. Endocrines 2023, 4, 427-436. https://doi.org/10.3390/endocrines4020032
Greco M, Mirabelli M, Tocci V, Mamula Y, Salatino A, Brunetti FS, Dragone F, Sicilia L, Tripolino O, Chiefari E, et al. Prothymosin-Alpha, a Novel and Sensitive Biomarker of the Inflammatory and Insulin-Resistant Statuses of Obese Individuals: A Pilot Study Involving Humans. Endocrines. 2023; 4(2):427-436. https://doi.org/10.3390/endocrines4020032
Chicago/Turabian StyleGreco, Marta, Maria Mirabelli, Vera Tocci, Yelyzaveta Mamula, Alessandro Salatino, Francesco S. Brunetti, Francesco Dragone, Luciana Sicilia, Omar Tripolino, Eusebio Chiefari, and et al. 2023. "Prothymosin-Alpha, a Novel and Sensitive Biomarker of the Inflammatory and Insulin-Resistant Statuses of Obese Individuals: A Pilot Study Involving Humans" Endocrines 4, no. 2: 427-436. https://doi.org/10.3390/endocrines4020032
APA StyleGreco, M., Mirabelli, M., Tocci, V., Mamula, Y., Salatino, A., Brunetti, F. S., Dragone, F., Sicilia, L., Tripolino, O., Chiefari, E., Foti, D. P., & Brunetti, A. (2023). Prothymosin-Alpha, a Novel and Sensitive Biomarker of the Inflammatory and Insulin-Resistant Statuses of Obese Individuals: A Pilot Study Involving Humans. Endocrines, 4(2), 427-436. https://doi.org/10.3390/endocrines4020032