Application of Ultrasonography in Stratifying Malignancy Risk for Indeterminate Thyroid Nodules as per TBSRTC 2023
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Measurements
3. Statistical Analysis
Ethical Statement
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Histopathological diagnoses of nodules: | |
Benign: | |
CLT | Chronic lymphocytic thyroiditis |
FA | Follicular adenoma |
PA | Papillary adenoma |
OA | Oncocytic adenoma |
Borderline: | |
NIFT-P | Non-invasive follicular tumour with papillary nucleus |
WDT-UMP | Well-differentiated tumour of uncertain malignant potential |
Malignant: | |
PTC | Papillary thyroid carcinoma |
Sub-cm | Subcentimeter Papillary thyroid carcinoma |
FTC | Follicular thyroid carcinoma |
MTC | Medullary thyroid carcinoma |
OCA | Oncocytic carcinoma |
Cytological categorization of nodules according to Bethesda: | |
ND | Non-diagnostic (Category 1) |
B | Benign (Category 2) |
AUS | Atypia of undetermined significance (Category 3) |
FN/SFN | Follicular neoplasm or Suspicious for follicular neoplasm (Category 4) |
SM | Suspicious for malignancy (Category 5) |
M | Malignant (Category 6) |
References
- Kuo, J.H.; McManus, C.; Graves, C.E.; Madani, A.; Khokhar, M.T.; Huang, B.; Lee, J.A. Updates in the management of thyroid nodules. Curr. Probl. Surg. 2019, 56, 103–127. [Google Scholar] [CrossRef] [PubMed]
- Durante, C.; Costante, G.; Lucisano, G.; Bruno, R.; Meringolo, D.; Paciaroni, A.; Puxeddu, E.; Torlontano, M.; Tumino, S.; Attard, M.; et al. The Natural History of Benign Thyroid Nodules. JAMA 2015, 313, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Popoveniuc, G.; Jonklaas, J. Thyroid Nodules. Med. Clin. N. Am. 2012, 96, 329–349. [Google Scholar] [CrossRef]
- Papini, E.; Guglielmi, R.; Bianchini, A.; Crescenzi, A.; Taccogna, S.; Nardi, F.; Panunzi, C.; Rinaldi, R.; Toscano, V.; Pacella, C.M. Risk of Malignancy in Nonpalpable Thyroid Nodules: Predictive Value of Ultrasound and Color-Doppler Features. J. Clin. Endocrinol. Metab. 2002, 87, 1941–1946. [Google Scholar] [CrossRef] [PubMed]
- Koike, E. Ultrasonographic Characteristics of Thyroid Nodules. Arch. Surg. 2001, 136, 334. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Cox, P.; Taylor, N.; LaPorte, S. Ultrasonography of thyroid nodules: A pictorial review. Insights Imaging 2015, 7, 77–86. [Google Scholar] [CrossRef]
- Durante, C.; Hegedüs, L.; Czarniecka, A.; Paschke, R.; Russ, G.; Schmitt, F.; Soares, P.; Solymosi, T.; Papini, E. 2023 European Thyroid Association clinical practice guidelines for thyroid nodule management. Eur. Thyroid J. 2023, 12, e230067. [Google Scholar] [CrossRef]
- Tessler, F.N.; Middleton, W.D.; Grant, E.G.; Hoang, J.K.; Berland, L.L.; Teefey, S.A.; Cronan, J.J.; Beland, M.D.; Desser, T.S.; Frates, M.C.; et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J. Am. Coll. Radiol. 2017, 14, 587–595. [Google Scholar] [CrossRef]
- Zhou, J.; Yin, L.; Wei, X.; Zhang, S.; Song, Y.; Luo, B.; Li, J.; Qian, L.; Cui, L.; Chen, W.; et al. 2020 Chinese guidelines for ultrasound malignancy risk stratification of thyroid nodules: The C-TIRADS. Endocrine 2020, 70, 256–279. [Google Scholar] [CrossRef]
- Ha, E.J.; Chung, S.R.; Na, D.G.; Ahn, H.S.; Chung, J.; Lee, J.Y.; Park, J.S.; Yoo, R.E.; Baek, J.H.; Baek, S.M.; et al. 2021 Korean Thyroid Imaging Reporting and Data System and Imaging-Based Management of Thyroid Nodules: Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean J. Radiol. 2021, 22, 2094. [Google Scholar] [CrossRef]
- Cibas, E.S.; Ali, S.Z. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid Off. J. Am. Thyroid Assoc. 2017, 27, 1341–1346. [Google Scholar] [CrossRef]
- Bongiovanni, M.; Spitale, A.; Faquin, W.C.; Mazzucchelli, L.; Baloch, Z.W. The Bethesda System for Reporting Thyroid Cytopathology: A Meta-Analysis. Acta Cytol. 2012, 56, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, R.M.; Haugen, B.; Perrier, N.D. Updated American Joint Committee on Cancer/Tumor-Node-Metastasis Staging System for Differentiated and Anaplastic Thyroid Cancer (Eighth Edition): What Changed and Why? Thyroid 2017, 27, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Tran, Q.L.; Davies, L. Thyroid cancer incidence differences between men and women. Curr. Opin. Endocr. Metab. Res. 2023, 31, 100472. [Google Scholar] [CrossRef]
- LeClair, K.; Bell, K.J.L.; Furuya-Kanamori, L.; Doi, S.A.; Francis, D.O.; Davies, L. Evaluation of Gender Inequity in Thyroid Cancer Diagnosis. JAMA Intern. Med. 2021, 181, 1351. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.K.; Hong, N.; Park, S.H.; Shin, D.Y.; Lee, C.R.; Kang, S.W.; Lee, J.; Jeong, J.J.; Nam, K.H.; Chung, W.Y.; et al. The relationship of comorbidities to mortality and cause of death in patients with differentiated thyroid carcinoma. Sci. Rep. 2019, 9, 11435. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Ding, Y.; Liu, M.; Wang, W.; Li, X. Sex disparities in thyroid cancer: A SEER population study. Gland Surg. 2021, 10, 3200–3210. [Google Scholar] [CrossRef]
- Rahbari, R.; Zhang, L.; Kebebew, E. Thyroid cancer gender disparity. Future Oncol. 2010, 6, 1771–1779. [Google Scholar] [CrossRef]
- Ljubic, B.; Pavlovski, M.; Roychoudhury, S.; Van Neste, C.; Salhi, A.; Essack, M.; Bajic, V.B.; Obradovic, Z. Genes and comorbidities of thyroid cancer. Inform. Med. Unlocked 2021, 25, 100680. [Google Scholar] [CrossRef]
- Kuijpens, J.L.P.; Janssen-Heijnen, M.L.G.; Lemmens, V.E.P.P.; Haak, H.R.; Heijckmann, A.C.; Coebergh, J.W.W. Comorbidity in newly diagnosed thyroid cancer patients: A population-based. study on prevalence and the impact on treatment and survival. Clin. Endocrinol. 2006, 64, 450–455. [Google Scholar] [CrossRef]
- Iglesias, M.L.; Schmidt, A.; Ghuzlan, A.A.; Lacroix, L.; Vathaire, F.D.; Chevillard, S.; Schlumberger, M. Radiation exposure and thyroid cancer: A review. Arch. Endocrinol. Metab. 2017, 61, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Moysich, K.B.; Menezes, R.J.; Michalek, A.M. Chernobyl-related ionising radiation exposure and cancer risk: An epidemiological review. Lancet Oncol. 2002, 3, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, S.; Tastekin, E.; Mourão, M.; Loureiro, I.; Eusebio, R.; Marques, H.P.; Oznur, M.; Caliskan, C.K.; Schmitt, F.C.; Bongiovanni, M.; et al. Impact of the 3rd edition of the Bethesda System for Reporting Thyroid Cytopathology on Grey Zone Categories. Acta Cytol. 2023, 67, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Russ, G.; Bonnema Steen, J.; Erdogan, M.; Durante, C.; Ngu, R.; Leenhardt, L. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur. Thyroid J. 2017, 6, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid Off. J. Am. Thyroid Assoc. 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Ali, S.Z.; Baloch, Z.W.; Beatrix Cochand-Priollet Schmitt, F.C.; Vielh, P.; VanderLaan, P.A. The 2023 Bethesda System for Reporting Thyroid Cytopathology. Thyroid 2023, 33, 1039–1044. [Google Scholar] [CrossRef]
- Alyusuf, E.Y.; Alhmayin, L.; Albasri, E.; Enani, J.; Altuwaijri, H.; Alsomali, N.; Arafah, M.A.; Alyusuf, Z.; Jammah, A.A.; Ekhzaimy, A.A.; et al. Ultrasonographic predictors of thyroid cancer in Bethesda III and IV thyroid nodules. Front. Endocrinol. 2024, 15, 1326134. [Google Scholar] [CrossRef]
- Li, F.; Pan, D.; Wu, Y.; Peng, J.; Li, Q.; Gui, X.; Ma, W.; Yang, H.; He, Y.; Chen, J. Ultrasound characteristics of thyroid nodules facilitate interpretation of the malignant risk of Bethesda system III/IV thyroid nodules and inform therapeutic schedule. Diagn. Cytopathol. 2019, 4, 881–889. [Google Scholar] [CrossRef]
- Moon, W.J.; Jung, S.L.; Lee, J.H.; Na, D.G.; Baek, J.H.; Lee, Y.H.; Kim, J.; Kim, H.S.; Byun, J.S.; Lee, D.H. Benign and Malignant Thyroid Nodules: US Differentiation—Multicenter Retrospective Study. Radiology 2008, 247, 762–770. [Google Scholar] [CrossRef]
- Kuma, K.; Matsuzuka, F.; Yokozawa, T.; Miyauchi, A.; Sugawara, M. Fate of untreated benign thyroid nodules: Results of long-term follow-up. World J. Surg. 1994, 18, 495–498. [Google Scholar] [CrossRef]
- Kim, K.M.; Park, J.B.; Kang, S.J.; Bae, K.S. Ultrasonographic guideline for thyroid nodules cytology: Single institute experience. J. Korean Surg. Soc. 2013, 84, 73. [Google Scholar] [CrossRef] [PubMed]
- Alexander, E.K.; Marqusee, E.; Orcutt, J.; Benson, C.B.; Frates, M.C.; Doubilet, P.M.; Cibas, E.S.; Atri, A. Thyroid Nodule Shape and Prediction of Malignancy. Thyroid 2004, 14, 953–958. [Google Scholar] [CrossRef] [PubMed]
- Remonti, L.R.; Kramer, C.K.; Leitão, C.B.; Pinto, L.C.F.; Gross, J.L. Thyroid Ultrasound Features and Risk of Carcinoma: A Systematic Review and Meta-Analysis of Observational Studies. Thyroid 2015, 25, 538–550. [Google Scholar] [CrossRef] [PubMed]
- Sgrò, D.; Brancatella, A.; Greco, G.; Torregrossa, L.; Piaggi, P.; Viola, N.; Rago, T.; Basolo, F.; Giannini, R.; Materazzi, G.; et al. Cytological and Ultrasound Features of Thyroid Nodules Correlate with Histotypes and Variants of Thyroid Carcinoma. J. Clin. Endocrinol. Metab. 2023, 108, e1186–e1192. [Google Scholar] [CrossRef] [PubMed]
- Smith-Bindman, R.; Lebda, P.; Feldstein, V.A.; Sellami, D.; Goldstein, R.B.; Brasic, N.; Jin, C.; Kornak, J. Risk of Thyroid Cancer Based on Thyroid Ultrasound Imaging Characteristics. JAMA Intern. Med. 2013, 173, 1788. [Google Scholar] [CrossRef] [PubMed]
- Stewardson, P.; Eszlinger, M.; Paschke, R. DIAGNOSIS OF ENDOCRINE DISEASE: Usefulness of genetic testing of fine-needle aspirations for diagnosis of thyroid cancer. Eur. J. Endocrinol. 2022, 187, R41–R52. [Google Scholar] [CrossRef]
- Ferrari, S.M.; Fallahi, P.; Ruffilli, I.; Elia, G.; Ragusa, F.; Paparo, S.R.; Ulisse, S.; Baldini, E.; Giannini, R.; Miccoli, P.; et al. Molecular testing in the diagnosis of differentiated thyroid carcinomas. Gland Surg. 2018, 7, S19–S29. [Google Scholar] [CrossRef]
Characteristics | n | % (n/360) | |
---|---|---|---|
Histopathological diagnoses | Benign histology/tumours | 155 | 43 |
Borderline tumours | 8 | 2 | |
NIFTP | 6 | 2 | |
WDT-UMP | 2 | 1 | |
Malignant tumours | 197 | 55 | |
Sub-cm | 10 | 3 | |
PTC | 180 | 50 | |
FTC | 2 | 1 | |
MTC | 1 | 0 | |
OCA | 4 | 1 | |
Cytological diagnoses | AUS * | 79 | 22 |
AUS-nuclear atypia | (11) | (3) | |
AUS-other | (68) | (19) | |
FN * | 173 | 48 | |
FN without oncocytic cells | (95) | (26) | |
FN with oncocytic cells | (78) | (22) | |
SM | 44 | 12 | |
M | 64 | 18 |
Benign Histology | Malignant (or Borderline) Histology | Total Number | Risk of Malignancy * (%) | |
---|---|---|---|---|
AUS | 44 | 35 | 79 | 44 |
AUS-nuclear atypia | (5) | (6) | (11) | (55) |
AUS-other | (39) | (29) | (68) | (43) |
FN | 99 | 74 | 173 | 43 |
FN without oncocytic cells | (45) | (50) | (95) | (53) |
FN with oncocytic cells | (54) | (24) | (78) | (31) |
SM | 10 | 34 | 44 | 77 |
M | 2 | 62 | 64 | 97 |
Ultrasonographic Characteristics | AUS n (%) | SFN n (%) | SM n (%) | M n (%) | p-Value (for Pearson Chi-Square Independence Test) |
---|---|---|---|---|---|
Echogenicity | <0.001 | ||||
Cystic | - | 2 (1.4) | - | 2 (3.8) | |
Hypoechoic | 16 (21.9) | 49 (33.8) | 14 (35) | 32 (61.5) | |
Isoechoic | 55 (75.3) | 94 (64.8) | 26 (65) | 18 (34.6) | |
Hyperechoic | 2 (2.7) | - | - | - | |
Calcification | <0.001 | ||||
No calcification | 52 (75.4) | 105(73.9) | 27 (73) | 19 (39.6) | |
Macrocalcification | 8 (11.6) | 14 (9.9) | 7 (18.9) | 13 (27.1) | |
Microcalcification | 9 (13) | 23 (16.2) | 3 (8.1) | 16 (33.3) | |
Margins | 0.001 | ||||
Regular | 54 (79.4) | 114(80.9) | 29 (74,4) | 23 (52.3) | |
Irregular | 14 (20.6) | 27 (19.1) | 10 (25.6) | 21 (47.7) | |
Shape | 0.036 | ||||
Wider-than-tall | 68 (94.4) | 137(91.3) | 34 (87.2) | 42 (79.2) | |
Taller-than-wide | 4 (5.6) | 13 (8.7) | 5 (12.8) | 11 (20.8) | |
Halo | 0.135 | ||||
No halo | 36 (49.3) | 88 (57.9) | 29 (69) | 41 (69.5) | |
Complete hypoechoic | 33 (45.2) | 56 (36.8) | 11 (26.2) | 12 (20.3) | |
Incomplete hypoechoic | 3 (4.1) | 7 (4.6) | 2 (4.8) | 4 (6.8) | |
Hyperechoic | 1 (1.4) | 1 (0.7) | - | 2 (3.4) | |
Adenopathy | 0.001 | ||||
Absent | 77 (97.5) | 169(97.7) | 43 (97.7) | 55 (85.9) | |
Present | 2 (2.5) | 4 (2.3) | 1 (2.3) | 9 (14.1) | |
TOTAL | 65 | 135 | 36 | 38 |
Ultrasonographic Characteristics: | Benign n (%) | Malignant n (%) | p-Value (for Pearson Chi-Square Independence Test) |
---|---|---|---|
Echogenicity | 0.093 | ||
Cystic | 1 (0.7) | 3 (1.8) | |
Hypoechoic | 40 (28.8) | 71 (41.5) | |
Isoechoic | 97 (69.8) | 96 (56.1) | |
Hyperechoic | 1 (0.7) | 1 (0.6) | |
Calcification | <0.001 | ||
No calcification | 112 (81.2) | 91 (57.6) | |
Macrocalcification | 13 (9.4) | 29 (18.4) | |
Microcalcification | 13 (9.4) | 38 (24.1) | |
Margins | 0.047 | ||
Regular | 109 (80.7) | 111 (70.7) | |
Irregular | 26 (19.3) | 46 (29.3) | |
Shape | 0.009 | ||
Wider-than-tall | 135 (94.4) | 146 (85.4) | |
Taller-than-wide | 8 (5.6) | 25 (14.6) | |
Halo | 0.142 | ||
No halo | 82 (56.2) | 112 (62.2) | |
Complete hypoechoic | 57 (39) | 55 (30.6) | |
Incomplete hypoechoic | 7 (4.8) | 9 (5) | |
Hyperechoic | - | 4 (2.2) | |
Adenopathies | 0.002 | ||
Absent | 154 (99.4) | 190 (92.7) | |
Present | 1 (0.6) | 15 (7.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerreiro, S.; Mourão, M.; Loureiro, I.; Eusébio, R.; Canberk, S.; Pinto Marques, H. Application of Ultrasonography in Stratifying Malignancy Risk for Indeterminate Thyroid Nodules as per TBSRTC 2023. Endocrines 2024, 5, 454-464. https://doi.org/10.3390/endocrines5030033
Guerreiro S, Mourão M, Loureiro I, Eusébio R, Canberk S, Pinto Marques H. Application of Ultrasonography in Stratifying Malignancy Risk for Indeterminate Thyroid Nodules as per TBSRTC 2023. Endocrines. 2024; 5(3):454-464. https://doi.org/10.3390/endocrines5030033
Chicago/Turabian StyleGuerreiro, Sofia, Mariana Mourão, Isabel Loureiro, Rosário Eusébio, Sule Canberk, and Hugo Pinto Marques. 2024. "Application of Ultrasonography in Stratifying Malignancy Risk for Indeterminate Thyroid Nodules as per TBSRTC 2023" Endocrines 5, no. 3: 454-464. https://doi.org/10.3390/endocrines5030033
APA StyleGuerreiro, S., Mourão, M., Loureiro, I., Eusébio, R., Canberk, S., & Pinto Marques, H. (2024). Application of Ultrasonography in Stratifying Malignancy Risk for Indeterminate Thyroid Nodules as per TBSRTC 2023. Endocrines, 5(3), 454-464. https://doi.org/10.3390/endocrines5030033