A Novel Method to Significantly Improve the Mechanical Properties of n-Type Bi(1−x)Sbx Thermoelectrics Due to Plastic Deformation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growth of Single Crystals
2.2. Extrusion of Single Crystals
2.3. Study of the Crystal Structure of Single Crystals and Extruded Specimens
2.4. Three-Point Bending Test of Bi0.91Sb0.09 Alloy
3. Results
3.1. Crystal Structure of Bi0.91Sb0.09 Single and Polycrystalline Crystals
3.2. Mechanical Properties of Bi0.91Sb0.09 Single Crystals and Polycrystalline Material
4. Discussion
5. Conclusions
- (1)
- A new method was developed to significantly improve the mechanical properties of such effective thermoelectric (TE) materials as Bi(1−x)Sbx single crystals due to their plastic deformation by extrusion under all-round hydrostatic compression at room temperature in a liquid medium.
- (2)
- A detailed study of n-type Bi–Sb solid solutions in a wide temperature range shows a significant increase in the mechanical strength of Bi–Sb crystals after extrusion in comparison with high-quality Bi–Sb single crystals. The increase in the strength of the Bi–Sb single crystals after plastic deformation is associated with the development of numerous grains with a high boundary surface as well as structural defects, such as dislocations that accumulate at grain boundaries.
- (3)
- The significant stability of the structure of the extruded samples can be explained by the uniformity of the plastic deformation of the crystal under all-round hydrostatic compression, which leads to the formation of a more stable polycrystalline structure of the thermoelectrics, consisting of blocks with the orientation of the main crystallographic directions close to the original single crystal.
- (4)
- Strengthening of Bi–Sb crystals after plastic deformation under all-round compression, as reported earlier, makes it possible to develop a unique thermoelectric solid-state multistage cooler for operating temperatures up to T~140 K for the first time.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goldsmid, H.J. Introduction to Thermoelectricity, 2nd ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 2016; Volume 121. [Google Scholar] [CrossRef]
- Lenoir, B.; Scherrer, H. An Overview of Recent Developments for Bi-Sb Alloys. Semicond. Semimet. 2001, 69, 101–137. [Google Scholar] [CrossRef]
- Yim, W.M.; Amith, A. Bi-Sb Alloys for Magneto-Thermoelectric and Thermomagnetic Cooling. Solid-State Electron. 1972, 15, 1141–1165. [Google Scholar] [CrossRef]
- Zemskov, V.S.; Belaya, A.D.; Beluy, U.S.; Kozhemyakin, G.N. Growth and Investigation of Thermoelectric Properties of Bi-Sb Alloy Single Crystals. J. Cryst. Growth 2000, 212, 161–166. [Google Scholar] [CrossRef]
- Sidorenko, N.A.; Ivanova, L.D. Bi-Sb Solid Solutions: Potential Materials for High-Efficiency Thermoelectric Cooling to below 180 K. Inorg. Mater. 2001, 37, 331–335. [Google Scholar] [CrossRef]
- Smith, G.E.; Wolfe, R. Thermoelectric Properties of Bismuth-Antimony Alloys. J. Appl. Phys. 1962, 33, 841–846. [Google Scholar] [CrossRef]
- Belaya, A.D.; Zayakin, S.A.; Zemskov, V.S.; Kopiev, I.M. Ultimate Bending Strength of Single Crystals of Bi-Sb Solid Solutions. Izv. Acad. Sci. USSR Met. 1990, 4, 166–169. [Google Scholar]
- Sidorenko, N.A. Thermoelectric Materials for Peltier Cryogenic Coolers. Cryogenics 1992, 32, 40–43. [Google Scholar] [CrossRef]
- Sidorenko, N.; Parashchuk, T.; Maksymuk, M.; Dashevsky, Z. Development of Cryogenic Cooler Based on n-Type Bi-Sb Thermoelectric and HTSC. Cryogenics 2020, 112, 103197. [Google Scholar] [CrossRef]
- Martin-Lopez, R.; Zayakin, Z.; Lenoir, B.; Brochin, F.; Dauscher, A.; Scherrer, H. Mechanical Properties of Extruded Bi85Sb15 Alloy Prepared by Mechanical Alloying. Philos. Mag. Lett. 1998, 78, 283–287. [Google Scholar] [CrossRef]
- Ivanova, L.D.; Petrova, L.I.; Granatkina, Y.V.; Zemskov, V.S.; Sokolov, O.B.; Skipidarov, S.Y.; Duvankov, N.I. Extruded Materials for Thermoelectric Coolers. Inorg. Mater. 2008, 44, 687–691. [Google Scholar] [CrossRef]
- Czochralski, J. Ein Neues Verfahren zur Messung der Kristallisation-Sgeschwindigkeit der Metalle. Z. Physikal. Chem. 1918, 92, 219–221. [Google Scholar] [CrossRef]
- Mayanov, E.P.; Gasanov, A.A.; Naumov, A.V. The Czochralski Method (cz): History and Development. Mater. Electron. Eng. 2018, 19, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Zemskov, V.S.; Belaya, A.D.; Kozhemyakin, G.N.; Lyuttsaw, V.G.; Kostyukova, Y.P. Growth of Single Crystals of Bismuth-Antimony Alloys by Chochralski Method. J. Cryst. Growth 1985, 71, 243–245. [Google Scholar] [CrossRef]
- Schulz, L.G. A Direct Method of Determining Preferred Orientation of a Flat Reflection Sample Using a Geiger Counter X-ray Spectrometer. J. Appl. Phys. 1949, 20, 1030–1033. [Google Scholar] [CrossRef]
- Raghothamachar, B.; Dhanaraj, G.; Bai, J.; Dudley, M. Defect Analysis in Crystals Using X-ray Topography. Microsc. Res. Tech. 2006, 69, 343–358. [Google Scholar] [CrossRef]
- Weissmann, S.; Lee, L.H. Applications of the Divergent Beam X-ray Technique. Prog. Cryst. Growth Charact. 1989, 18, 205–226. [Google Scholar] [CrossRef]
- Sidorenko, N.A.; Tsvetkova, N.A.; Dashevskii, Z.M. A Method for Preferential Structural Orientation Measurement in Thermoelectric Materials. Supercond. Sci. Technol. 1993, 6, 62–66. [Google Scholar] [CrossRef]
- Callister, W.D., Jr. Materials Science and Engineering, 6th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Lorrek, W.; Pawelski, O. The Influence of Hydrostatic Pressure on the Plastic Deformation of Metallic Materials. In Proceedings of the Fifteenth International Machine Tool Design and Research Conference; Palgrave: London, UK, 1975; pp. 703–712. [Google Scholar]
- Tadano, Y.; Hagihara, S. Hydrostatic Pressure Dependent Crystal Plasticity by Homogenization-based Finite Element Method. ISIJ Int. 2016, 56, 700–707. [Google Scholar] [CrossRef] [Green Version]
- Spitzig, W.A.; Sober, R.J.; Richmond, O. Pressure Dependence of Yielding and Associated Volume Expansion in Tempered Martensite. Acta Metall. 1975, 23, 885–893. [Google Scholar] [CrossRef]
- Gopinathan, K.K.; Padmini, A.R.K.L. Ultrasonic Studies on Bismuth-Antimony Alloys. J. Phys. D Appl. Phys. 1974, 7, 32–40. [Google Scholar] [CrossRef]
- Woodcox, M.; Young, J.; Smeu, M. Ab Initio Investigation of the Elastic Properties of Bismuth-Based Alloys. Phys. Rev. B 2019, 100, 104105. [Google Scholar] [CrossRef]
- Klassen-Neklyudova, M.V. Mechanical Twinning of Crystals; Springer: Berlin/Heidelberg, Germany, 1964; p. 213. [Google Scholar]
- Slonaker, R.E.; Smutz, M. Factors Affecting the Growth and the Mechanical and Physical Properties of Bismuth Single Crystals. J. Less Common Met. 1965, 8, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Steegmuller, C.; Daniel, J.S. Slip in Bismuth. J. Less Common Met. 1972, 27, 81–85. [Google Scholar] [CrossRef]
- Yanaka, Y.; Kariya, Y.; Watanabe, H.; Hokazono, H. Plastic Deformation Behavior and Mechanism of Bismuth Single Crystals in Principal Axes. Mater. Trans. 2016, 57, 819–823. [Google Scholar] [CrossRef] [Green Version]
- Motohashi, I.; Otake, S. Plastic Deformation and Dislocation Etch-Pit Distribution Duel the (001) <110> Glide System for Bismuth Single Crystals. J. Jpn. Inst. Met. 1973, 37, 978–985. [Google Scholar] [CrossRef] [Green Version]
- Otake, S.; Namazuea, H.; Matsuno, N. Critical Resolved Shear Stresses of Two Slip Systems in Bismuth Single Crystals. Jpn. J. Appl. Phys. 1980, 19, 433–437. [Google Scholar] [CrossRef]
- ASTM International. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials; ASTM International: West Conshohocken, PA, USA, 2003. [Google Scholar]
- Rose, G. Über die im Kalkspat Vorkommenden Hohlen Canäle; Akademie Der Wissenschaften: Berling, Germany, 1868; Volume 23, pp. 57–79. [Google Scholar]
- Priestner, R. The Relationship between Brittle Cleavage and Deformation Twinning in BCC Metals. In Deformation Twinning; Reed-Hill, R.E., Hirth, J.P., Rogers, H.C., Eds.; Grodon and Breach Science: New York, NY, USA, 1964; pp. 321–355. [Google Scholar]
- Sleeswyk, A.W. Emissary Dislocations: Theory and Experiments on the Propagation of Deformation Twins in a-Iron. Acta Metall. 1962, 10, 705–725. [Google Scholar] [CrossRef]
- Parashchuk, T.; Sidorenko, N.; Ivantsov, L.; Sorokin, A.; Maksymuk, M.B.; Dzundza, B.; Dashevsky, Z. Development of Solid-State Multi-Stage Thermoelectric Cooler. J. Power Sources 2021, 496, 229821. [Google Scholar] [CrossRef]
Ke | No Annealing | Annealing | ||
---|---|---|---|---|
150 °C | 180 °C | 210 °C | ||
1.2 | 88 ± 4 | 83 ± 5 | 80 ± 5 | 72 ± 5 |
3 | 72 ± 5 | 62 ± 5 | 55 ± 5 | 38 ± 4 |
5 | 60 ± 5 | 48 ± 4 | 41 ± 4 | 23 ± 3 |
10 | 50 ± 4 | 33 ± 4 | 26 ± 4 | 14 ± 2 |
Ke | As Extruded | After Annealing | ||||||
---|---|---|---|---|---|---|---|---|
1.2 | 3 | 5 | 10 | 1.2 | 3 | 5 | 10 | |
P003 | 29 | 21 | 15.2 | 10.1 | 25 | 16 | 9 | 5 |
P102 | 0.1 | 0.3 | 0.4 | 0.5 | 0.2 | 0.4 | 0.2 | 0.4 |
P104 | 0.1 | 0.2 | 0.4 | 0.6 | 0.2 | 0.2 | 0.4 | 0.3 |
P105 | 0.3 | 0.6 | 0.7 | 0.8 | 0.5 | 0.4 | 0.9 | 1.3 |
P022 | 1.4 | 1.6 | 1.3 | 1.2 | 1.7 | 1.9 | 1.1 | 1.6 |
P107 | 0.3 | 0.6 | 0.5 | 0.7 | 0.4 | 0.7 | 1.0 | 1.1 |
P116 | 0.2 | 0.3 | 0.3 | 0.5 | 0.2 | 0.3 | 0.6 | 0.4 |
P212 | 0.1 | 0.5 | 0.6 | 0.8 | 0.3 | 0.4 | 0.9 | 1.4 |
P108 | 0.8 | 1.0 | 0.9 | 0.8 | 1.2 | 1.3 | 1.2 | 1.0 |
P214 | 0.1 | 0.4 | 0.4 | 0.3 | 0.2 | 0.6 | 0.5 | 0.5 |
Ke | σb, MPa | |||
---|---|---|---|---|
300 K | 200 K | 150 K | 80 K | |
1.2 | 27 ± 3 | 27 ± 3 | 29 ± 3 | 31 ± 3 |
3 | 35 ± 3 | 36 ± 3 | 38 ± 3 | 42 ± 3 |
5 | 48 ± 4 | 52 ± 4 | 55 ± 4 | 57 ± 4 |
10 | 65 ± 4 | 68 ± 4 | 70 ± 4 | 72 ± 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidorenko, N.; Unigovski, Y.; Dashevsky, Z.; Shneck, R. A Novel Method to Significantly Improve the Mechanical Properties of n-Type Bi(1−x)Sbx Thermoelectrics Due to Plastic Deformation. Electron. Mater. 2021, 2, 511-526. https://doi.org/10.3390/electronicmat2040036
Sidorenko N, Unigovski Y, Dashevsky Z, Shneck R. A Novel Method to Significantly Improve the Mechanical Properties of n-Type Bi(1−x)Sbx Thermoelectrics Due to Plastic Deformation. Electronic Materials. 2021; 2(4):511-526. https://doi.org/10.3390/electronicmat2040036
Chicago/Turabian StyleSidorenko, Nikolay, Yaakov Unigovski, Zinovi Dashevsky, and Roni Shneck. 2021. "A Novel Method to Significantly Improve the Mechanical Properties of n-Type Bi(1−x)Sbx Thermoelectrics Due to Plastic Deformation" Electronic Materials 2, no. 4: 511-526. https://doi.org/10.3390/electronicmat2040036
APA StyleSidorenko, N., Unigovski, Y., Dashevsky, Z., & Shneck, R. (2021). A Novel Method to Significantly Improve the Mechanical Properties of n-Type Bi(1−x)Sbx Thermoelectrics Due to Plastic Deformation. Electronic Materials, 2(4), 511-526. https://doi.org/10.3390/electronicmat2040036