Assessing Early Heterogeneity in Doubling Times of the COVID-19 Epidemic across Prefectures in Mainland China, January–February, 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographic Scope
2.2. COVID-19 Cumulative Incidence Data Sources
2.3. Epidemic Doubling Time
2.4. Regression
2.5. Spatial Clustering
2.6. Programming
2.7. Ethics
3. Results and Discussion
3.1. Sub-Provincial COVID-19 Reporting Units
3.2. Doubling Time
3.3. Spatial Clustering
3.4. Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimers
Appendix A
Appendix A.1. The Scope
Appendix A.2. Structure of Mainland China’s Local Administration
Appendix A.3. The Hu Line
Appendix A.4. The Power-Law Relationship between Cumulative Case Count and Population Size and Their Relationship with Per Capita Cumulative Case Count
Appendix A.5. Footnotes to Table 1
Appendix A.6. Footnotes to Table 2
References
- Tsang, T.K.; Wu, P.; Lin, Y.; Lau, E.H.Y.; Leung, K.S.M.; Cowling, B.J. Effect of changing case definitions for COVID-19 on the epidemic curve and transmission parameters in mainland China: A modelling study. Lancet Public Health 2020, 5, e289–e296. [Google Scholar] [CrossRef]
- Du, Z.; Wang, L.; Cauchemez, S.; Xu, X.; Wang, X.; Cowling, B.J.; Meyers, L.A. Risk for Transportation of Coronavirus Disease from Wuhan to Other Cities in China. Emerg. Infect. Dis. 2020, 26, 1049–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, J.S.; Lu, X.; Yuan, Y.; Xu, G.; Jia, J.; Christakis, N.A. Population flow drives spatio-temporal distribution of COVID-19 in China. Nature 2020, 582, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Vynnycky, E.; White, R.G. An Introduction to Infectious Disease Modelling; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Galvani, A.P.; Lei, X.; Jewell, N.P. Severe acute respiratory syndrome: Temporal stability and geographic variation in case-fatality rates and doubling times. Emerg. Infect. Dis. 2003, 9, 991–994. [Google Scholar] [CrossRef] [PubMed]
- Pellis, L.; Scarabel, F.; Stage, H.B.; Overton, C.E.; Chappell, L.H.K.; Lythgoe, K.A.; Fearon, E.; Bennett, E.; Curran-Sebastian, J.; Das, R.; et al. Challenges in control of Covid-19: Short doubling time and long delay to effect of interventions. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Muniz-Rodriguez, K.; Fung, I.C.-H.; Ferdosi, S.R.; Ofori, S.K.; Lee, Y.; Tariq, A.; Chowell, G. Severe Acute Respiratory Syndrome Coronavirus 2 Transmission Potential, Iran, 2020. Emerg. Infect. Dis. 2020, 26, 1915–1917. [Google Scholar] [CrossRef] [PubMed]
- Lurie, M.N.; Silva, J.; Yorlets, R.R.; Tao, J.; Chan, P.A. Coronavirus Disease 2019 Epidemic Doubling Time in the United States Before and During Stay-at-Home Restrictions. J. Infect. Dis. 2020, 222, 1601–1606. [Google Scholar] [CrossRef] [PubMed]
- Lurie, M.N.; Silva, J.; Yorlets, R.R.; Tao, J.; Chan, P.A. Corrigendum to: COVID-19 Epidemic Doubling Time in the United States Before and During Stay-at-Home Restrictions. J. Infect. Dis. 2020, 222, 1758. [Google Scholar] [CrossRef] [PubMed]
- Muniz-Rodriguez, K.; Chowell, G.; Cheung, C.-H.; Jia, D.; Lai, P.-Y.; Lee, Y.; Liu, M.; Ofori, S.K.; Roosa, K.M.; Simonsen, L.; et al. Doubling time of the COVID-19 epidemic by province, China. Emerg. Infect. Dis. 2020, 26, 1912–1914. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.H.; Lam, T. China’s Local Administration: Traditions and Changes in the Sub-National Hierarchy; Taylor & Francis: Abingdon-on-Thames, UK, 2009. [Google Scholar]
- DingXiangYuan. Available online: https://portal.dxy.cn/ (accessed on 9 March 2021).
- John Hopkins University Center for Systems Science and Engineering. COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. Available online: https://github.com/CSSEGISandData/COVID-19 (accessed on 17 May 2020).
- Lin, I. BlankerL: DXY-COVID-19-Crawler (COVID-19/2019-nCoV Realtime Infection Crawler and API). Available online: https://github.com/BlankerL/DXY-COVID-19-Crawler (accessed on 16 April 2020).
- Zhongguo Guo wu yuan Guo jia tong ji ju (China Bureau of Statistics). Zhongguo 2010 Nian Ren Kou Pu Cha Fen Xiang, Zhen, Jie Dao Zi Liao = Tabulation on the 2010 Population Census of the People’s Republic of China by Township; China Bureau of Statistics: Beijing, China, 2012. [Google Scholar]
- Chowell, G.; Bettencourt, L.M.; Johnson, N.; Alonso, W.J.; Viboud, C. The 1918-1919 influenza pandemic in England and Wales: Spatial patterns in transmissibility and mortality impact. Proc. Biol. Sci. 2008, 275, 501–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Bao, Y. The Xinjiang Production and Construction Corps: An Insider’s Perspective. Univ. Oxf. Blavatnik Sch. Gov. Bsg Work. Pap. Ser. 2018. Available online: https://www.bsg.ox.ac.uk/sites/default/files/2018-05/BSG-WP-2018-023.pdf (accessed on 9 March 2021).
- Hu, H.Y. The Distribution of Population in China, With Statistics and Maps. Acta Geogr. Sin. 1935, 2, 33–74. [Google Scholar]
- Chen, D.; Zhang, Y.; Yao, Y.; Hong, Y.; Guan, Q.; Tu, W. Exploring the spatial differentiation of urbanization on two sides of the Hu Huanyong Line—Based on nighttime light data and cellular automata. Appl. Geogr. 2019, 112, 102081. [Google Scholar] [CrossRef]
- Naughton, B. The Chinese Economy: Transitions and Growth/Barry Naughton; MIT Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Fang, G.; Li, S.; Liu, Y.; Xin, N.; Ma, K. People beyond the Statistics: Died of “Normal Pneumonia”? Available online: https://web.archive.org/web/20200213190623/http://www.sohu.com/a/370032279_120094087 (accessed on 13 February 2020).
- Lin, C.; Braund, W.E.; Auerbach, J.; Chou, J.-H.; Teng, J.-H.; Tu, P.; Mullen, J. Policy decisions and use of information technology to fight 2019 novel coronavirus disease, Taiwan. Emerg. Infect. Dis. J. 2020, 26, 1506–1512. [Google Scholar] [CrossRef] [PubMed]
Number and Types of Reporting Units 1 | DXY Data Entries (Excl. Duplicate Row) | Separate Data Entry for Non-Residents 2 | DXY Data Entries Used for Mapping after Data Merger | DXY Data Entries Included in Statistical Analysis | Geo-Graphical Reporting Units Without Cases 3 | |
---|---|---|---|---|---|---|
Mainland China TOTAL | 462 | 421 | Not applied | 408 | 400 | 39 |
Anhui 4 | 16 PLC | 17 | No | 16 | 16 | 0 |
Beijing 5 | 16 districts | 15 | Yes (+1) 2 | 15 | 15 | 1 |
Chongqing 6 | 41 = 26 districts + 12 counties + 3 “new areas” | 39 | No | 39 | 36 | 2 |
Fujian | 9 PLC | 9 | No | 9 | 9 | 0 |
Gansu 7 | 14 = 12 PLC + 2 AP | 11 | No | 11 | 11 | 3 |
Guangdong 8 | 21 PLC | 20 | No | 20 | 20 | 1 |
Guangxi 9 | 14 PLC | 13 | No | 13 | 13 | 1 |
Guizhou | 9 PLC | 9 | No | 9 | 9 | 0 |
Hainan 10 | 19 = 4 PLC + 5 CLC + 4 counties + 6 autonomous counties | 15 | No | 15 | 15 | 4 |
Hebei | 11 PLC | 11 | No | 11 | 11 | 0 |
Heilongjiang 11 | 13 = 12 PLC + 1 P | 13 | No | 13 | 13 | 0 |
Henan 12 | 18 = 17 PLC + 1 DA CLC | 23 | No | 18 | 18 | 0 |
Hubei | 17 = 12 PLC + 1 AP + 3 DA CLC and 1 DA county-level forestry area | 17 | No | 17 | 17 | 0 |
Hunan | 14 = 13 PLC + 1 AP | 14 | No | 14 | 14 | 0 |
Inner Mongolia 13 | 12 = 9 PLC + 3 leagues | 11 | No | 11 | 11 | 1 |
Jiangsu | 13 PLC | 13 | No | 13 | 13 | 0 |
Jiangxi 14 | 12 = 11 PLC and Ganjiang New District | 12 | No | 11 | 11 | 0 |
Jilin 15 | 11 = 9 PLC + 2 CLC | 10 | No | 10 | 8 | 1 |
Liaoning 16 | 14 PLC | 13 | No | 13 | 13 | 1 |
Ningxia 17 | 6 = 5 PLC + NECIBAC | 6 | No | 6 | 5 | 0 |
Qinghai 18 | 8 = 2 PLC + 6 AP | 2 | No | 2 | 2 | 6 |
Shaanxi 19 | 12 = 10 PLC + 1 CLC + YAHITZ | 12 | No | 12 | 10 | 0 |
Shandong 20 | 16 PLC | 15 | No | 15 | 15 | 1 |
Shanghai | 16 districts | 16 | Yes (+1) 2 | 16 | 16 | 0 |
Shanxi | 11 PLC | 11 | No | 11 | 11 | 0 |
Sichuan | 21 = 18 PLC + 3 AP | 21 | No | 21 | 21 | 0 |
Tianjin 21 | 16 PLC | 14 | Yes (+1) 2 | 14 | 14 | 2 |
Tibet 22 | 7 = 6 PLC + 1 P | 1 | No | 1 | 1 | 6 |
Xinjiang 23 | 14 = 4 PLC + 5 P + 5 AP | 7 | No | 7 | 7 | 7 |
XPCC 23 | 14 divisions | 6 | No | 0 | 0 | 0 |
Yunnan 24 | 16 = 8 PLC + 8 AP | 14 | No | 14 | 14 | 2 |
Zhejiang | 11 PLC | 11 | No | 11 | 11 | 0 |
Provincial-Level Units and Their Data Entries That Were Excluded (Listed in Footnotes) | Number of Entities or Data Entries Excluded 1 | Counted towards the 462 Reporting Units | Included in the 408 Reporting Units Contributed Cases to Maps | Included in the 439 Reporting Units in the Statistical Analysis |
---|---|---|---|---|
Geographical units excluded 1 | ||||
Chongqing 2 | 3 | Yes | Yes | No |
Jiangxi 3 | 1 | Yes | No | No |
Jilin 4 | 2 | Yes | Yes | No |
Ningxia 5 | 1 | Yes | Yes | No |
Shaanxi 6 | 2 | Yes | Yes | No |
Xinjiang 7 | 14 | Yes | No | No |
Non-geographical units excluded | ||||
Beijing 8 | 1 | No | No | No |
Shanghai 9 | 1 | No | No | No |
Tianjin 10 | 1 | No | No | No |
Cumulative Number of Reported Confirmed Cases as of 24 February 2020 | Number of Reporting Units | Total Population | Median Population | Population at 2.5 Percentile | Population at 97.5 Percentile |
---|---|---|---|---|---|
Mainland China | 439 | 1,332,039,983 | 2,462,583 | 230,959 | 9,124,731 |
0 | 39 | 31,848,609 | 525,570 | 90,714 | 2,447,762 |
1–9 | 140 | 238,294,009 | 1,363,741 | 247,335 | 4,341,021 |
10–99 | 216 | 804,313,575 | 3,400,676 | 606,085 | 9,036,573 |
100–999 | 36 | 219,989,569 | 6,038,972 | 1,114,799 | 12,870,158 |
1000–9999 | 7 | 27,808,833 | 4,814,542 | 1,215,701 | 6,091,515 |
10,000+ | 1 | 9,785,388 | 9,785,388 | 9,785,388 | 9,785,388 |
Hubei | 17 | 57,237,727 | 2,873,687 | 424,195 | 8,336,060 |
10–99 | 1 | 76,140 | 76,140 | 76,140 | 76,140 |
100–999 | 8 | 19,567,366 | 2,668,135 | 986,318 | 3,933,888 |
1000–9999 | 7 | 27,808,833 | 4,814,542 | 1,215,701 | 6,091,515 |
10,000+ | 1 | 9,785,388 | 9,785,388 | 9,785,388 | 9,785,388 |
Mainland China except Hubei | 422 | 1,274,802,256 | 2,437,097 | 231,607 | 9,103,275 |
0 | 39 | 31,848,609 | 525,570 | 90,714 | 2,447,762 |
1–9 | 140 | 238,294,009 | 1,363,741 | 247,335 | 4,341,021 |
10–99 | 215 | 804,237,435 | 3,416,196 | 620,985 | 9,039,884 |
100–999 | 28 | 200,422,203 | 7,151,485 | 1,425,193 | 13,139,293 |
Cumulative Number of Reported Confirmed Cases as of 24 February 2020 | Number of Reporting Units | Total Area (Square Kilometers) | Median Population Density (Number of Residents Per sq. km) | Population Density at 2.5 Percentile (Number of Residents Per sq. km) | Population Density at 97.5 Percentile (Number of Residents Per sq. km) |
---|---|---|---|---|---|
Mainland China | 439 | 9,562,140.57 | 301.31 | 5.03 | 22,057.47 |
0 | 39 | 3,183,409.11 | 28.92 | 0.84 | 514.02 |
1–9 | 140 | 3,154,046.56 | 175.98 | 9.61 | 25,006.65 |
10–99 | 216 | 2,628,555.06 | 466.80 | 59.38 | 22,887.07 |
100–999 | 36 | 511,626.98 | 475.62 | 135.55 | 2143.41 |
1000–9999 | 7 | 75,953.77 | 404.57 | 232.98 | 640.30 |
10,000+ | 1 | 8549.09 | 1144.61 | - | - |
Hubei | 17 | 185,824.93 | 353.20 | 68.74 | 950.00 |
10–99 | 1 | 3253 | 23.41 | - | - |
100–999 | 8 | 98,069.07 | 244.13 | 137.51 | 529.09 |
1000–9999 | 7 | 75,953.77 | 404.57 | 232.98 | 640.30 |
10,000+ | 1 | 8549.09 | 1144.61 | - | - |
Mainland China except Hubei | 422 | 9,376,315.64 | 300.38 | 4.64 | 22,705.88 |
0 | 39 | 3,183,409.11 | 28.92 | 0.84 | 514.02 |
1–9 | 140 | 3,154,046.56 | 175.98 | 9.61 | 25,006.65 |
10–99 | 215 | 2,625,302.06 | 468.23 | 61.88 | 22,972.87 |
100–999 | 28 | 413,557.91 | 550.51 | 175.46 | 2839.21 |
Arithmetic Mean of the Epidemic Doubling Time (Days) | Reporting Units (n) | % of all Geographical Reporting Units (N = 439) 1 |
---|---|---|
0 < x < 1 | 13 | 3.0 |
1 ≤ x < 2 | 63 | 14.4 |
2 ≤ x < 3 | 116 | 26.4 |
3 ≤ x < 4 | 95 | 21.6 |
4 ≤ x < 5 | 44 | 10.0 |
5 ≤ x < 6 | 22 | 5.0 |
6 ≤ x < 7 | 13 | 3.0 |
7 ≤ x < 20 | 18 | 4.1 |
Number of times the cumulative case count doubled | ||
1 | 33 | 7.5 |
2 | 64 | 14.6 |
3 | 84 | 19.1 |
4 | 75 | 17.1 |
5 | 67 | 15.3 |
6 | 25 | 5.7 |
7 | 17 | 3.9 |
8 | 7 | 1.6 |
9 | 6 | 1.4 |
10 | 4 | 0.9 |
11 | 2 | 0.5 |
Dependent Variable: Arithmetic Mean of the Doubling Times | Coefficient (95% CI) |
---|---|
Independent Variables | |
Model A (Adjusted R2 = 0.057) | |
Population size | −0.012 (−0.017, −0.006) * |
The date of the first reported case | −0.057 (−0.124, 0.010) |
Model B (Adjusted R2 <0.001) | |
Population density | −1.65 × 10−5 (−4.32 × 10−5, 1.01 × 10−5) |
The date of the first reported case | −1.42 × 10−2 (−8.13 × 10−2, 5.29 × 10−2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fung, I.C.-H.; Zhou, X.; Cheung, C.-N.; Ofori, S.K.; Muniz-Rodriguez, K.; Cheung, C.-H.; Lai, P.-Y.; Liu, M.; Chowell, G. Assessing Early Heterogeneity in Doubling Times of the COVID-19 Epidemic across Prefectures in Mainland China, January–February, 2020. Epidemiologia 2021, 2, 95-113. https://doi.org/10.3390/epidemiologia2010009
Fung IC-H, Zhou X, Cheung C-N, Ofori SK, Muniz-Rodriguez K, Cheung C-H, Lai P-Y, Liu M, Chowell G. Assessing Early Heterogeneity in Doubling Times of the COVID-19 Epidemic across Prefectures in Mainland China, January–February, 2020. Epidemiologia. 2021; 2(1):95-113. https://doi.org/10.3390/epidemiologia2010009
Chicago/Turabian StyleFung, Isaac Chun-Hai, Xiaolu Zhou, Chi-Ngai Cheung, Sylvia K. Ofori, Kamalich Muniz-Rodriguez, Chi-Hin Cheung, Po-Ying Lai, Manyun Liu, and Gerardo Chowell. 2021. "Assessing Early Heterogeneity in Doubling Times of the COVID-19 Epidemic across Prefectures in Mainland China, January–February, 2020" Epidemiologia 2, no. 1: 95-113. https://doi.org/10.3390/epidemiologia2010009
APA StyleFung, I. C. -H., Zhou, X., Cheung, C. -N., Ofori, S. K., Muniz-Rodriguez, K., Cheung, C. -H., Lai, P. -Y., Liu, M., & Chowell, G. (2021). Assessing Early Heterogeneity in Doubling Times of the COVID-19 Epidemic across Prefectures in Mainland China, January–February, 2020. Epidemiologia, 2(1), 95-113. https://doi.org/10.3390/epidemiologia2010009