Epidemiology of COVID-19 in the State of Sergipe/Brazil and Its Relationship with Social Indicators
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat. Med. 2020, 26, 450–452. [Google Scholar] [CrossRef] [Green Version]
- Oliveira Andrade, E.D.; Gouveia, V.V.; D’Ávila, R.L.; Carneiro, M.B.; Massud, M.; Gallo, J.H. Índice de Desenvolvimento em Saúde: Conceituação e reflexões sobre sua necessidade. Rev. Assoc. Médica Bras. 2012, 58, 413–421. [Google Scholar] [CrossRef] [Green Version]
- Kolb, H.; Martin, S. Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Med. 2017, 15, 131. [Google Scholar] [CrossRef] [PubMed]
- Galgani, J.E.; Fernández-Verdejo, R. Pathophysiological role of metabolic flexibility on metabolic health. Obes. Rev. 2021, 22, e13131. [Google Scholar] [CrossRef]
- World Health Organization. Available online: https://www.who.int/ncds/prevention/physical-activity/inactivity-global-health-problem/en/ (accessed on 8 June 2021).
- Marinelli, N.P.; Albuquerque, L.P.d.A.; Sousa, I.D.B.d.; Batista, F.M.d.A.; Mascarenhas, M.D.M.; Rodrigues, M.T.P. Evolução de indicadores e capacidade de atendimento no início da epidemia de COVID-19 no Nordeste do Brasil, 2020. Epidemiol. Serviços Saúde 2020, 29. [Google Scholar] [CrossRef]
- de Souza, C.D.F.; Machado, M.F.; do Carmo, R.F. Human development, social vulnerability and COVID-19 in Brazil: A study of the social determinants of health. Infect. Dis. Poverty 2020, 9, 124. [Google Scholar] [CrossRef]
- Oprana, A.; Mihaui, D.M. Correlation analysis between the health system and Human Development Level within the European Union. Int. J. Trade Econ. Financ. 2011, 2, 99–102. [Google Scholar]
- Santos, J.P.C.d.; Siqueira, A.S.P.; Praça, H.L.F.; Albuquerque, H.G. Vulnerabilidade a formas graves de COVID-19: Uma análise intramunicipal na cidade do Rio de Janeiro, Brasil. Cad. Saúde Pública 2020, 36, e00075720. [Google Scholar] [CrossRef]
- Ahmed, F.; Ahmed, N.; Pissarides, C.; Stiglitz, J. Why inequality could spread COVID-19. Lancet Public Health 2020, 5, e240. [Google Scholar] [CrossRef]
- Garcia, P.J.; Alarcón, A.; Bayer, A.; Buss, P.; Guerra, G.; Ribeiro, H.; Rojas, K.; Saenz, R.; Salgado de Snyder, N.; Solimano, G.; et al. COVID-19 Response in Latin America. Am. J. Trop. Med. Hyg. 2020, 103, 1765–1772. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, S.; Sabouri, S.; Ewing, R. Does Density Aggravate the COVID-19 Pandemic? J. Am. Plan. Assoc. 2020, 86, 495–509. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Pesquisa. Projeto Levantamento e Classificação do Uso da Terra no Estado de Sergipe; Dados do Estado de Sergipe, Organização político administrativa: Rio de Janeiro, Brazil, 2011; p. 26.
- Sergipe, Secretaria de Estado do Planejamento, habitação e do desenvolvimento urbano. Estado de Sergipe. Sergipe em Dados; SEPLAN/SUPES: Aracaju, Brazil, 2009.
- Sergipe, Secretaria de Estado da Saúde Estado de Sergipe. Plano Estadual de Saúde, vigência 2016 a 2019. Aracaju. 2019. Available online: https://www.conass.org.br/pdf/planos-estaduais-de-saude/SE_Plano%20Estadual%20de%20Saude%202016%20-%202019%20SERGIPE.pdf (accessed on 17 November 2020).
- Silva, O.M.; Panhoca, L. A contribuição da vulnerabilidade na determinação do índice de desenvolvimento humano: Estudando o estado de Santa Catarina. Ciência Saúde Coletiva. 2007, 12, 1209–1219. [Google Scholar] [CrossRef] [Green Version]
- Payne, E.H.; Gebregziabher, M.; Hardin, J.W.; Ramakrishnan, V.; Egede, L.E. An empirical approach to determine a threshold for assessing overdispersion in Poisson and negative binomial models for count data. Commun. Stat. Simul. Comput. 2018, 47, 1722–1738. [Google Scholar] [CrossRef]
- Ferrari, S.; Cribari-Neto, F. Beta Regression for Modelling Rates and Proportions. J. Appl. Stat. 2004, 31, 799–815. [Google Scholar] [CrossRef]
- Brandi, M.L.; Giustina, A. Sexual Dimorphism of Coronavirus 19 Morbidity and Lethality. Trends Endocrinol. Metab. 2020, 31, 918–927. [Google Scholar] [CrossRef]
- Chang, W.-H. Understanding the COVID-19 pandemic from a gender perspective. Taiwan. J. Obstet. Gynecol. 2020, 59, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Posch, M.; Bauer, P.; Posch, A.; König, F. Analysis of Austrian COVID-19 deaths by age and sex. Wien. Klin. Wochenschr. 2020, 132, 685–689. [Google Scholar] [CrossRef] [PubMed]
- Ranzani, O.T.; Bastos, L.S.L.; Gelli, J.G.M.; Marchesi, J.F.; Baião, F.; Hamacher, S.; Bozza, F.A. Characterisation of the first 250 000 hospital admissions for COVID-19 in Brazil: A retrospective analysis of nationwide data. Lancet Respir. Med. 2021, 9, 407–418. [Google Scholar] [CrossRef]
- Kadi, N.; Khelfaoui, M. Population density, a factor in the spread of COVID-19 in Algeria: Statistic study. Bull. Natl. Res. Cent. 2020, 44, 138. [Google Scholar] [CrossRef]
- Romero, J.A.; da Silva, F.A. Relação entre as condições socioeconômicas e a incidência da pandemia da COVID-19 nos municípios do Ceará. Boletim de Conjuntura (BOCA). Bol. Conjunt. 2020, 3, 85–95. [Google Scholar] [CrossRef]
- Maciel, J.A.C.; Castro-Silva, I.I.; Farias, M.R.d. Análise inicial da correlação espacial entre a incidência de COVID-19 e o desenvolvimento humano nos municípios do estado do Ceará no Brasil. Rev. Bras. Epidemiol. 2020, 23, e200057. [Google Scholar] [CrossRef] [PubMed]
- Loaiza, J.R.; Rao, K.; Eskildsen, G.A.; Ortega-Barria, E.; Miller, M.J.; Gittens, R.A. COVID-19 pandemic in Panama: Lessons of the unique risks and research opportunities for Latin America. Rev. Panam. Salud Pública 2020, 44, e86. [Google Scholar] [CrossRef] [PubMed]
- Rex, F.E.; Borges, C.A.d.S.; Käfer, P.S. Spatial analysis of the COVID-19 distribution pattern in São Paulo State, Brazil. Ciência Saúde Coletiva 2020, 25, 3377–3384. [Google Scholar] [CrossRef]
Region | Demographic Density (hab/km2) | Number Cases by Region | IRR | IC95%− | IC95%+ | p-Value |
---|---|---|---|---|---|---|
Aracaju | 301,150 | 44,216 | 1.001 | 1.001 | 1.002 | <0.001 |
Itabaiana | 28,572 | 10,442 | 1.008 | 1.003 | 1.014 | <0.001 |
Socorro | 55,690 | 7738 | 1.002 | 1.001 | 1.004 | 0.001 |
Lagarto | 160,688 | 7232 | 1.016 | 0.992 | 1.042 | 0.239 |
Estância | 79,393 | 6758 | 1.002 | 0.991 | 1.016 | 0.668 |
Glória | 74,181 | 3297 | 1.126 | 1.051 | 1.213 | <0.001 |
Propriá | 79,765 | 2445 | 1.006 | 1.002 | 1.011 | 0.023 |
Region | Demographic Density (hab/km2) | Number of Deaths by Region | IRR | IC95%− | IC95%+ | p-Value |
---|---|---|---|---|---|---|
Aracaju | 301,150 | 989 | 1.001 | 1.001 | 1.002 | <0.001 |
Lagarto | 160,688 | 221 | 1.022 | 1.002 | 1.044 | 0.099 |
Itabaiana | 28,572 | 235 | 1.008 | 1.004 | 1.013 | 0.004 |
Socorro | 55,690 | 326 | 1.003 | 1.002 | 1.004 | <0.001 |
Estância | 79,393 | 213 | 1.000 | 0.987 | 1.010 | 0.952 |
Propriá | 79,765 | 143 | 1.007 | 1.003 | 1.010 | 0.002 |
Glória | 74,181 | 78 | 1.078 | 1.010 | 1.150 | 0.053 |
Region | P | C | I | HDI-M | OR | IC95%− | IC95%+ | p-Value |
---|---|---|---|---|---|---|---|---|
Aracaju | 860,938 | 44,216 | 51.36 | 0.637 | 1.241 | 0.742 | 2.073 | 0.410 |
Itabaiana | 252,805 | 10,442 | 41.30 | 0.592 | 1.588 | 0.618 | 4.078 | 0.337 |
Propriá | 152,916 | 4538 | 29.68 | 0.585 | 1.965 | 0.923 | 4.180 | 0.079 |
Lagarto | 260,614 | 7232 | 27.75 | 0.582 | 0.625 | 0.291 | 1.339 | 0.227 |
Estância | 246,282 | 6758 | 27.44 | 0.580 | 1.989 | 1.073 | 3.685 | 0.029 |
Socorro | 352,006 | 7843 | 22.28 | 0.624 | 1.405 | 0.514 | 3.845 | 0.508 |
Glória | 173,135 | 3297 | 19.04 | 0.570 | 1.888 | 0.343 | 10.399 | 0.465 |
Region | P | D | I | HDI-M | OR | IC95%+ | IC95%− | p-Value |
---|---|---|---|---|---|---|---|---|
Aracaju | 860,938 | 989 | 1.14 | 0.637 | 1.151 | 1.007 | 1.314 | 0.008 |
Propriá | 152,916 | 143 | 0.93 | 0.585 | 3.336 | 1.043 | 10.671 | 0.042 |
Itabaiana | 252,805 | 235 | 0.92 | 0.592 | 1.281 | 0.591 | 2.778 | 0.530 |
Socorro | 352,006 | 326 | 0.92 | 0.624 | 1.834 | 0.712 | 4.725 | 0.209 |
Estância | 246,282 | 213 | 0.86 | 0.580 | 1.509 | 0.725 | 3.137 | 0.271 |
Lagarto | 260,614 | 221 | 0.84 | 0.582 | 0.970 | 0.695 | 1.354 | 0.858 |
Glória | 173,135 | 78 | 0.45 | 0.570 | 0.101 | 0.010 | 1.006 | 0.051 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonseca, L.M.; Sousa, D.S.d.; Cardoso, J.C.; Severino, P.; Cano, A.; Souto, E.B.; Lima, S.O.; Oliveira, C.C.C.d.; Reis, F.P. Epidemiology of COVID-19 in the State of Sergipe/Brazil and Its Relationship with Social Indicators. Epidemiologia 2021, 2, 262-270. https://doi.org/10.3390/epidemiologia2030020
Fonseca LM, Sousa DSd, Cardoso JC, Severino P, Cano A, Souto EB, Lima SO, Oliveira CCCd, Reis FP. Epidemiology of COVID-19 in the State of Sergipe/Brazil and Its Relationship with Social Indicators. Epidemiologia. 2021; 2(3):262-270. https://doi.org/10.3390/epidemiologia2030020
Chicago/Turabian StyleFonseca, Larissa M., Derijuli S. de Sousa, Juliana C. Cardoso, Patricia Severino, Amanda Cano, Eliana B. Souto, Sônia O. Lima, Cristiane C. C. de Oliveira, and Francisco P. Reis. 2021. "Epidemiology of COVID-19 in the State of Sergipe/Brazil and Its Relationship with Social Indicators" Epidemiologia 2, no. 3: 262-270. https://doi.org/10.3390/epidemiologia2030020
APA StyleFonseca, L. M., Sousa, D. S. d., Cardoso, J. C., Severino, P., Cano, A., Souto, E. B., Lima, S. O., Oliveira, C. C. C. d., & Reis, F. P. (2021). Epidemiology of COVID-19 in the State of Sergipe/Brazil and Its Relationship with Social Indicators. Epidemiologia, 2(3), 262-270. https://doi.org/10.3390/epidemiologia2030020