Cellular Immunity of SARS-CoV-2 in the Borriana COVID-19 Cohort: A Nested Case–Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Statistical Methods
3. Results
Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- John Hopkins University. Coronavirus Resource Center. Available online: https://coronavirus.jhu.edu/map.html (accessed on 10 February 2024).
- Auerbach, J.D.; Forsyth, A.D.; Davey, C.; Hargreaves, J.R.; Group for Lessons from Pandemic HIV Prevention for the COVID-19 Response. Living with COVID-19 and preparing for future pandemics: Revisiting lessons from the HIV pandemic. Lancet HIV 2023, 10, e62–e68. [Google Scholar] [CrossRef] [PubMed]
- Faghy, M.A.; Arena, R.; Babu, A.S.; Christle, J.W.; Marzolini, S.; Popovic, D.; Vermeesch, A.; Pronk, N.P.; Stoner, L.; Smith, A.; et al. Post pandemic research priorities: A consensus statement from the HL-PIVOT. Prog. Cardiovasc. Dis. 2022, 73, 2–16. [Google Scholar] [CrossRef] [PubMed]
- Sette, A.; Crotty, S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 2021, 184, 861–880. [Google Scholar] [CrossRef] [PubMed]
- Rydyznski Moderbacher, C.; Ramirez, S.I.; Dan, J.M.; Grifoni, A.; Hastie, K.M.; Weiskopf, D.; Belanger, S.; Abbott, R.K.; Kim, C.; Choi, J.; et al. Antigen-Specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell 2020, 183, 996–1012.e19. [Google Scholar] [CrossRef] [PubMed]
- Moss, P. The T cell immune response against SARS-CoV-2. Nat. Immunol. 2022, 23, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wu, T.; Xie, H.; Li, Y.; Zhang, J.; Su, X.; Qi, H. The role of cellular immunity in the protective efficacy of the SARS-CoV-2 vaccines. Vaccines 2022, 10, 1103. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.J.A.; Ribeiro, L.R.; Lima, K.V.B.; Lima, L.N.G.C. Adaptive immunity to SARS-CoV-2 infection: A systematic review. Front. Immunol. 2022, 13, 1001198. [Google Scholar] [CrossRef]
- Sette, A.; Crotty, S. Immunological memory to SARS-CoV-2 infection and COVID-19 vaccines. Immunol. Rev. 2022, 310, 27–46. [Google Scholar] [CrossRef]
- Petrone, L.; Sette, A.; de Vries, R.D.; Goletti, D. The Importance of measuring SARS-CoV-2-specific T-Cell responses in an ongoing pandemic. Pathogens 2023, 12, 862. [Google Scholar] [CrossRef]
- Graça, D.; Brglez, V.; Allouche, J.; Zorzi, K.; Fernandez, C.; Teisseyre, M.; Cremoni, M.; Benzaken, S.; Pradier, C.; Seitz-Polski, B. Both humoral and cellular immune responses to SARS-CoV-2 are essential to prevent infection: A prospective study in a working vaccinated population from Southern France. J. Clin. Immunol. 2023, 43, 1724–1739. [Google Scholar] [CrossRef] [PubMed]
- Kent, S.J.; Khoury, D.S.; Reynaldi, A.; Juno, J.A.; Wheatley, A.K.; Stadler, E.; Wherry, E.J.; Triccas, J.; Sasson, S.C.; Cromer, D.; et al. Disentangling the relative importance of T cell responses in COVID-19: Leading actors or supporting cast? Nat. Rev. Immunol. 2022, 22, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Zens, K.D.; Llanas-Cornejo, D.; Menges, D.; Fehr, J.S.; Münz, C.; Puhan, M.A.; Frei, A. Longitudinal humoral and cell-mediated immune responses in a population-based cohort in Zurich, Switzerland between March and June 2022—Evidence for protection against Omicron SARS-CoV-2 infection by neutralizing antibodies and spike-specific T-cell responses. Int. J. Infect. Dis. 2023, 133, 18–26. [Google Scholar] [PubMed]
- Domènech-Montoliu, S.; Pac-Sa, M.R.; Vidal-Utrillas, P.; Latorre-Poveda, M.; Del Rio-González, A.; Ferrando-Rubert, S.; Ferrer-Abad, G.; Sánchez-Urbano, M.; Aparisi-Esteve, L.; Badenes-Marques, G.; et al. Mass gathering events and COVID-19 transmission in Borriana (Spain): A retrospective cohort study. PLoS ONE 2021, 16, e0256747. [Google Scholar] [CrossRef] [PubMed]
- Domènech-Montoliu, S.; Puig-Barberà, J.; Pac-Sa, M.R.; Vidal-Utrillas, P.; Latorre-Poveda, M.; Del Rio-González, A.; Ferrando-Rubert, S.; Ferrer-Abad, G.; Sánchez-Urbano, M.; Aparisi-Esteve, L.; et al. ABO blood groups and the incidence of complications in COVID-19 patients: A population-based prospective cohort study. Int. J. Environ. Res. Public Health 2021, 18, 10039. [Google Scholar] [CrossRef] [PubMed]
- Domènech-Montoliu, S.; Puig-Barberà, J.; Guerra-Murcia, O.; Pac-Sa, M.R.; Orrico-Sanchéz, A.; Sala-Trull, L.; Sala-Trull, D.; Domènech-Leon, C.; Del Rio-González, A.; Sánchez-Urbano, M.; et al. ABO blood groups and incidence of COVID-19 in the mass gathering events in Borriana (Spain), March 2020: A retrospective cohort study. Epidemiologia 2023, 4, 63–73. [Google Scholar] [CrossRef]
- Domènech-Montoliu, S.; Puig-Barberà, J.; Pac-Sa, M.R.; Vidal-Utrillas, P.; Latorre-Poveda, M.; Del Rio-González, A.; Ferrando-Rubert, S.; Ferrer-Abad, G.; Sánchez-Urbano, M.; Aparisi-Esteve, L.; et al. Persistence of Anti-SARS-CoV-2 antibodies six months after infection in an outbreak with five hundred COVID-19 cases in Borriana (Spain): A prospective cohort study. COVID 2021, 1, 71–82. [Google Scholar] [CrossRef]
- Domènech-Montoliu, S.; Puig-Barberà, J.; Badenes-Marques, G.; Gil-Fortuño, M.; Orrico-Sánchez, A.; Pac-Sa, M.R.; Perez-Olaso, O.; Sala-Trull, D.; Sánchez-Urbano, M.; Arnedo-Pena, A. Long COVID prevalence and the impact of the third SARS-CoV-2 vaccine dose: A cross-sectional analysis from the third follow-up of the Borriana Cohort, Valencia, Spain (2020–2022). Vaccines 2023, 11, 1590. [Google Scholar] [CrossRef] [PubMed]
- Goel, R.R.; Painter, M.M.; Apostolidis, S.A.; Mathew, D.; Meng, W.; Rosenfeld, A.M.; Lundgreen, K.A.; Reynaldi, A.; Khoury, D.S.; Pattekar, A.; et al. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science 2021, 374, abm0829. [Google Scholar] [CrossRef] [PubMed]
- Almendro-Vázquez, P.; Laguna-Goya, R.; Ruiz-Ruigomez, M.; Utrero-Rico, A.; Lalueza, A.; Maestro de la Calle, G.; Delgado, P.; Perez-Ordoño, L.; Muro, E.; Vila, J.; et al. Longitudinal dynamics of SARS-CoV-2-specific cellular and humoral immunity after natural infection or BNT162b2 vaccination. PLoS Pathog. 2021, 17, e1010211. [Google Scholar] [CrossRef]
- Tormo, N.; Giménez, E.; Martínez-Navarro, M.; Albert, E.; Navalpotro, D.; Torres, I.; Gimeno, C.; Navarro, D. Performance comparison of a flow cytometry immunoassay for intracellular cytokine staining and the QuantiFERON® SARS-CoV-2 test for detection and quantification of SARS-CoV-2-Spike-reactive-IFN-γ-producing T cells after COVID-19 vaccination. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Domènech-Montoliu, S.; Puig-Barberà, J.; Pac-Sa, M.R.; Vidal-Utrillas, P.; Latorre-Poveda, M.; Del Rio-González, A.; Ferrando-Rubert, S.; Ferrer-Abad, G.; Sánchez-Urbano, M.; Aparisi-Esteve, L.; et al. Complications post-COVID-19 and risk factors among patients after six months of a SARS-CoV-2 infection: A population-based prospective cohort study. Epidemiologia 2022, 3, 49–67. [Google Scholar] [CrossRef] [PubMed]
- Narasimhan, M.; Mahimainathan, L.; Araj, E.; Clark, A.E.; Markantonis, J.; Green, A.; Xu, J.; SoRelle, J.A.; Alexis, C.; Fankhauser, K.; et al. Clinical evaluation of the Abbott Alinity SARS-CoV-2 sike-specific quantitative IgG and IgM assays among infected, recovered, and vaccinated groups. J. Clin. Microbiol. 2021, 59, e0038821. [Google Scholar] [CrossRef] [PubMed]
- Giménez, E.; Albert, E.; Torres, I.; Remigia, M.J.; Alcaraz, M.J.; Galindo, M.J.; Blasco, M.L.; Solano, C.; Forner, M.J.; Redón, J.; et al. SARS-CoV-2-reactive interferon-γ-producing CD8+ T cells in patients hospitalized with coronavirus disease 2019. J. Med. Virol. 2021, 93, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Albert, E.; Burgos, J.S.; Peiró, S.; Salas, D.; Vanaclocha, H.; Giménez, E.; Limón, R.; Alcaraz, M.J.; Sánchez-Payá, J.; Díez-Domingo, J.; et al. Immunological response against SARS-CoV-2 following full-dose administration of Comirnaty® COVID-19 vaccine in nursing home residents. Clin. Microbiol. Infect. 2022, 28, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Torres, I.; Albert, E.; Giménez, E.; Alcaraz, M.J.; Botija, P.; Amat, P.; Remigia, M.J.; Beltrán, M.J.; Rodado, C.; Huntley, D.; et al. B- and T-cell immune responses elicited by the Comirnaty® COVID-19 vaccine in nursing-home residents. Clin. Microbiol. Infect. 2021, 27, 1672–1677. [Google Scholar] [CrossRef] [PubMed]
- Asif, M.; Groboske, S.E.; Leung, E.K.Y.; Yeo, K.J.; van Wijk, X.M.R. Evaluation of a new generation automated assay for 25-hydroxy vitamin D based on competitive protein binding. J. Appl. Lab. Med. 2019, 4, 247–253. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Reinfection with SARS-CoV-2: Implementation of a Surveillance Case Definition within the EU/EEA. 2021. Available online: https://www.ecdc.europa.eu/en/publications-data/reinfection-sars-cov-2-implementation-surveillance-case-definition-within-eueea (accessed on 20 June 2022).
- Textor, J.; van der Zander, B.; Gilthorpe, M.S.; Liskiewicz, M.; Ellison, G.T. Robust causal inference using directed acyclic graphs: The R package ‘dagitty’. Int. J. Epidemiol. 2016, 45, 1887–1894. [Google Scholar] [CrossRef] [PubMed]
- Camacho, J.; Giménez, E.; Albert, E.; Zulaica, J.; Álvarez-Rodríguez, B.; Torres, I.; Rusu, L.; Burgos, J.S.; Peiró, S.; Vanaclocha, H.; et al. Cumulative incidence of SARS-CoV-2 infection in the general population of the Valencian Community (Spain) after the surge of the Omicron BA. 1 variant. J. Med. Virol. 2023, 95, e28284. [Google Scholar] [CrossRef] [PubMed]
- Tani, Y.; Takita, M.; Kobashi, Y.; Wakui, M.; Zhao, T.; Yamamoto, C.; Saito, H.; Kawashima, M.; Sugiura, S.; Nishikawa, Y.; et al. Varying cellular immune response against SARS-CoV-2 after the booster vaccination: A cohort study from Fukushima Vaccination Community Survey, Japan. Vaccines 2023, 11, 920. [Google Scholar] [CrossRef] [PubMed]
- Havervall, S.; Ng, H.; Jernbom Falk, A.; Greilert-Norin, N.; Månberg, A.; Marking, U.; Laurén, I.; Gabrielsson, L.; Salomonsson, A.C.; Aguilera, K.; et al. Robust humoral and cellular immune responses and low risk for reinfection at least 8 months following asymptomatic to mild COVID-19. J. Intern. Med. 2022, 291, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lin, H.; Ye, B.; Zhao, M.; Zhan, J.; Dong, S.; Guo, Y.; Zhao, Y.; Li, M.; Liu, S.; et al. One-year sustained cellular and humoral immunities in coronavirus disease 2019 (COVID-19) convalescents. Clin. Infect. Dis. 2022, 75, e1072–e1081. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.C.; Kronsteiner, B.; Longet, S.; Adele, S.; Deeks, A.S.; Liu, C.; Dejnirattisai, W.; Reyes, L.S.; Meardon, N.; Faustini, S.; et al. Evolution of long-term vaccine-induced and hybrid immunity in healthcare workers after different COVID-19 vaccine regimens. Med 2023, 4, 191–215.e9. [Google Scholar] [CrossRef] [PubMed]
- Dietz, L.L.; Juhl, A.K.; Søgaard, O.S.; Reekie, J.; Nielsen, H.; Johansen, I.S.; Benfield, T.; Wiese, L.; Stærke, N.B.; Jensen, T.Ø.; et al. Impact of age and comorbidities on SARS-CoV-2 vaccine-induced T cell immunity. Commun. Med. 2023, 3, 58. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.; Scozzari, G.; Migliore, E.; Galassi, C.; Ciccone, G.; Ricciardelli, G.; Scarmozzino, A.; Angelone, L.; Cassoni, P.; Cavallo, R.; et al. Cellular immune response to BNT162b2 mRNA COVID-19 vaccine in a large cohort of healthcare workers in a tertiary care university hospital. Vaccines 2022, 10, 1031. [Google Scholar] [CrossRef] [PubMed]
- De Marco, L.; D’Orso, S.; Pirronello, M.; Verdiani, A.; Termine, A.; Fabrizio, C.; Capone, A.; Sabatini, A.; Guerrera, G.; Placido, R.; et al. Assessment of T-cell reactivity to the SARS-CoV-2 Omicron variant by immunized individuals. JAMA Netw. Open 2022, 5, e2210871. [Google Scholar] [CrossRef] [PubMed]
- Sahin, U.; Muik, A.; Derhovanessian, E.; Vogler, I.; Kranz, L.M.; Vormehr, M.; Baum, A.; Pascal, K.; Quandt, J.; Maurus, D.; et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 2020, 586, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Oberhardt, V.; Luxenburger, H.; Kemming, J.; Schulien, I.; Ciminski, K.; Giese, S.; Csernalabics, B.; Lang-Meli, J.; Janowska, I.; Staniek, J.; et al. Rapid and stable mobilization of CD8+ T cells by SARS-CoV-2 mRNA vaccine. Nature 2021, 597, 268–273. [Google Scholar] [CrossRef] [PubMed]
- GeurtsvanKessel, C.H.; Geers, D.; Schmitz, K.S.; Mykytyn, A.Z.; Lamers, M.M.; Bogers, S.; Scherbeijn, S.; Gommers, L.; Sablerolles, R.S.G.; Nieuwkoop, N.N.; et al. Divergent SARS-CoV-2 Omicron-reactive T and B cell responses in COVID-19 vaccine recipients. Sci. Immunol. 2022, 7, eabo2202. [Google Scholar] [CrossRef] [PubMed]
- Tarke, A.; Coelho, C.H.; Zhang, Z.; Dan, J.M.; Yu, E.D.; Methot, N.; Bloom, N.I.; Goodwin, B.; Phillips, E.; Mallal, S.; et al. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell 2022, 185, 847–859.e11. [Google Scholar] [CrossRef] [PubMed]
- Mateus, J.; Dan, J.M.; Zhang, Z.; Rydyznski Moderbacher, C.; Lammers, M.; Goodwin, B.; Sette, A.; Crotty, S.; Weiskopf, D. Low-dose mRNA-1273 COVID-19 vaccine generates durable memory enhanced by cross-reactive T cells. Science 2021, 374, eabj9853. [Google Scholar] [CrossRef]
- Cohen, K.W.; Linderman, S.L.; Moodie, Z.; Czartoski, J.; Lai, L.; Mantus, G.; Norwood, C.; Nyhoff, L.E.; Edara, V.V.; Floyd, K.; et al. Longitudinal analysis shows durable and broad immune memory after SARS-CoV-2 infection with persisting antibody responses and memory B and T cells. Cell Rep. Med. 2021, 2, 100354. [Google Scholar] [CrossRef] [PubMed]
- Dan, J.M.; Mateus, J.; Kato, Y.; Hastie, K.M.; Yu, E.D.; Faliti, C.E.; Grifoni, A.; Ramirez, S.I.; Haupt, S.; Frazier, A.; et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 2021, 371, eabf4063. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, E.R.; de Souza Apostolico, J.; Jacintho, L.C.; Carnevale Marin, M.L.; Vieira da Silva Júnior, R.C.; Rodrigues, H.; Santos, K.S.; Coelho, V.; Boscardin, S.B.; Kalil, J.; et al. Time-dependent contraction of the SARS-CoV-2-specific T-cell responses in convalescent individuals. J. Allergy Clin. Immunol. Glob. 2022, 1, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Giménez, E.; Albert, E.; Burgos, J.S.; Peiró, S.; Salas, D.; Vanaclocha, H.; Limón, R.; Alcaraz, M.J.; Sánchez-Payá, J.; Díez-Domingo, J.; et al. SARS-CoV-2 adaptive immunity in nursing home residents up to eight months after two doses of the Comirnaty® COVID-19 vaccine. J. Infect. 2022, 84, 834–872. [Google Scholar] [CrossRef] [PubMed]
- Grifoni, A.; Weiskopf, D.; Ramirez, S.I.; Mateus, J.; Dan, J.M.; Moderbacher, C.R.; Rawlings, S.A.; Sutherland, A.; Premkumar, L.; Jadi, R.S.; et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 2020, 181, 1489–1501.e15. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, Y.; Mandel, M.; Bar-On, Y.M.; Bodenheimer, O.; Freedman, L.S.; Ash, N.; Alroy-Preis, S.; Huppert, A.; Milo, R. Protection and waning of natural and hybrid immunity to SARS-CoV-2. N. Engl. J. Med. 2022, 386, 2201–2212. [Google Scholar] [CrossRef]
- Wang, Z.; Muecksch, F.; Schaefer-Babajew, D.; Finkin, S.; Viant, C.; Gaebler, C.; Hoffmann, H.H.; Barnes, C.O.; Cipolla, M.; Ramos, V.; et al. Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature 2021, 595, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Rodda, L.B.; Morawski, P.A.; Pruner, K.B.; Fahning, M.L.; Howard, C.A.; Franko, N.; Logue, J.; Eggenberger, J.; Stokes, C.; Golez, I.; et al. Imprinted SARS-CoV-2-specific memory lymphocytes define hybrid immunity. Cell 2022, 185, 1588–1601.e14. [Google Scholar] [CrossRef] [PubMed]
- Pitiriga, V.C.; Papamentzelopoulou, M.; Konstantinakou, K.E.; Theodoridou, K.; Vasileiou, I.V.; Tsakris, A. SARS-CoV-2 T cell immunity responses following natural infection and vaccination. Vaccines 2023, 11, 1186. [Google Scholar] [CrossRef] [PubMed]
- Primorac, D.; Brlek, P.; Pavelić, E.S.; Mešić, J.; Glavaš Weinberger, D.; Matišić, V.; Molnar, V.; Srića, S.; Zadro, R. Importance of cellular immunity and IFN-γ concentration in preventing SARS-CoV-2 infection and reinfection: A cohort study. Viruses 2023, 15, 792. [Google Scholar] [CrossRef] [PubMed]
- Seekircher, L.; Bánki, Z.; Kimpel, J.; Rössler, A.; Schäfer, H.; Falkensammer, B.; Bante, D.; Forer, L.; Schönherr, S.; Shieldvacc-2 Study Group; et al. Immune response after two doses of the BNT162b2 COVID-19 vaccine and risk of SARS-CoV-2 breakthrough infection in Tyrol, Austria: An open-label, observational phase 4 trial. Lancet Microbe 2023, 4, e612–e621. [Google Scholar] [CrossRef] [PubMed]
- Torres, I.; Giménez, E.; Albert, E.; Zulaica, J.; Álvarez-Rodríguez, B.; Burgos, J.S.; Peiró, S.; Limón, R.; Vanaclocha, H.; Rodado, C.; et al. SARS-CoV-2 Omicron BA.1 variant breakthrough infections in nursing home residents after a homologous third dose of the Comirnaty® COVID-19 vaccine: Looking for correlates of protection. J. Med. Virol. 2022, 94, 4216–4223. [Google Scholar] [CrossRef] [PubMed]
- Bertoletti, A.; Le Bert, N.; Tan, A.T. SARS-CoV-2-specific T cells in the changing landscape of the COVID-19 pandemic. Immunity 2022, 55, 1764–1778. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.J.; Pade, C.; Gibbons, J.M.; Otter, A.D.; Lin, K.M.; Muñoz Sandoval, D.; Pieper, F.P.; Butler, D.K.; Liu, S.; Joy, G.; et al. Immune boosting by B.1.1.529 (Omicron) depends on previous SARS-CoV-2 exposure. Science 2022, 377, eabq1841. [Google Scholar] [CrossRef] [PubMed]
- Frans, G.; Dillaerts, D.; Dehaemers, T.; Van Elslande, J.; De Leeuw, J.; Boon, L.; Maes, W.; Callewaert, N.; Calcoen, B.; Ancheva, L.; et al. Complementarity determining regions in SARS-CoV-2 hybrid immunity. Front. Immunol. 2023, 14, 1050037. [Google Scholar] [CrossRef] [PubMed]
- Mohn, K.G.; Bredholt, G.; Zhou, F.; Madsen, A.; Onyango, T.B.; Fjelltveit, E.B.; Jalloh, S.L.; Brokstad, K.A.; Cantoni, D.; Mayora-Neto, M.; et al. Durable T-cellular and humoral responses in SARS-CoV-2 hospitalized and community patients. PLoS ONE 2022, 17, e0261979. [Google Scholar] [CrossRef] [PubMed]
- Le Bert, N.; Clapham, H.E.; Tan, A.T.; Chia, W.N.; Tham, C.Y.L.; Lim, J.M.; Kunasegaran, K.; Tan, L.W.L.; Dutertre, C.A.; Shankar, N.; et al. Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection. J. Exp. Med. 2021, 218, e20202617. [Google Scholar] [CrossRef]
- Yang, J.; Zhong, M.; Hong, K.; Yang, Q.; Zhang, E.; Zhou, D.; Xia, J.; Chen, Y.Q.; Sun, M.; Zhao, B.; et al. Characteristics of T-cell responses in COVID-19 patients with prolonged SARS-CoV-2 positivity: A cohort study. Clin. Transl. Immunol. 2021, 10, e1259. [Google Scholar] [CrossRef] [PubMed]
- San Román, J.; Candel, F.J.; Sanz, J.C.; López, P.; Menéndez-Colino, R.; Barreiro, P.; Carretero, M.D.M.; Pérez-Abeledo, M.; Viñuela-Prieto, J.M.; Ramos, B.; et al. Humoral and cellular response after mRNA vaccination in nursing homes: Influence of age and of history of COVID-19. Vaccines 2022, 10, 383. [Google Scholar] [CrossRef] [PubMed]
- Dourdouna, M.M.; Tatsi, E.B.; Syriopoulou, V.; Michos, A. Evaluation of T cell responses with the QuantiFERON SARS-CoV-2 assay in individuals with 3 doses of BNT162b2 vaccine, SARS-CoV-2 infection, or hybrid immunity. Diagn. Microbiol. Infect. Dis. 2023, 106, 115948. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.A.; Phillips, E.; Adele, S.; Longet, S.; Malone, T.; Mason, C.; Stafford, L.; Jamsen, A.; Gardiner, S.; Deeks, A.; et al. Evaluation of QuantiFERON SARS-CoV-2 interferon-γ release assay following SARS-CoV-2 infection and vaccination. Clin. Exp. Immunol. 2023, 212, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Paniskaki, K.; Konik, M.J.; Anft, M.; Meister, T.L.; Marheinecke, C.; Pfaender, S.; Jäger, J.; Krawczyk, A.; Zettler, M.; Dolff, S.; et al. Superior humoral immunity in vaccinated SARS-CoV-2 convalescence as compared to SARS-CoV-2 infection or vaccination. Front. Immunol. 2022, 13, 1031254. [Google Scholar] [CrossRef]
- Gatti, A.; Zizzo, G.; De Paschale, M.; Tamburello, A.; Castelnovo, L.; Faggioli, P.M.; Clerici, P.; Brando, B.; Mazzone, A. Assessing SARS-CoV-2-specific T-cell reactivity in late convalescents and vaccinees: Comparison and combination of QuantiFERON and activation-induced marker assays, and relation with antibody status. PLoS ONE 2023, 18, e0285728. [Google Scholar] [CrossRef] [PubMed]
- Giménez, E.; Albert, E.; Zulaica, J.; Torres, I.; Rusu, L.; Moreno, A.R.; Burgos, J.S.; Peiró, S.; Salas, D.; Vanaclocha, H.; et al. Severe acute respiratory syndrome coronavirus 2 adaptive immunity in nursing home residents following a third dose of the Comirnaty coronavirus disease 2019 vaccine. Clin. Infect. Dis. 2022, 75, e865–e868. [Google Scholar] [CrossRef] [PubMed]
- Malipiero, G.; Moratto, A.; Infantino, M.; D’Agaro, P.; Piscianz, E.; Manfredi, M.; Grossi, V.; Benvenuti, E.; Bulgaresi, M.; Benucci, M.; et al. Assessment of humoral and cellular immunity induced by the BNT162b2 SARS-CoV-2 vaccine in healthcare workers, elderly people, and immunosuppressed patients with autoimmune disease. Immunol. Res. 2021, 69, 576–583. [Google Scholar] [CrossRef]
- Azamor, T.; Horbach, I.S.; Brito, E.; Cunha, D.; Melgaço, J.G.; Silva, A.M.V.D.; Tubarão, L.N.; Azevedo, A.S.; Santos, R.T.; Alves, N.D.S.; et al. Protective immunity of COVID-19 vaccination with ChAdOx1 nCoV-19 following previous SARS-CoV-2 infection: A humoral and cellular investigation. Viruses 2022, 14, 1916. [Google Scholar] [CrossRef] [PubMed]
- Suryawanshi, R.; Ott, M. SARS-CoV-2 hybrid immunity: Silver bullet or silver lining? Nat. Rev. Immunol. 2022, 22, 591–592. [Google Scholar] [CrossRef] [PubMed]
- Proal, A.D.; VanElzakker, M.B.; Aleman, S.; Bach, K.; Boribong, B.P.; Buggert, M.; Cherry, S.; Chertow, D.S.; Davies, H.E.; Dupont, C.L.; et al. SARS-CoV-2 reservoir in post-acute sequelae of COVID-19 (PASC). Nat. Immunol. 2023, 24, 1616–1627. [Google Scholar] [CrossRef] [PubMed]
- Augustin, M.; Heyn, F.; Ullrich, S.; Sandaradura de Silva, U.; Albert, M.C.; Linne, V.; Schlotz, M.; Schommers, P.; Pracht, E.; Horn, C.; et al. Immunological fingerprint in coronavirus disease-19 convalescents with and without post-COVID syndrome. Front. Med. 2023, 10, 1129288. [Google Scholar] [CrossRef] [PubMed]
- Cruz, T.; Mendoza, N.; Lledó, G.M.; Perea, L.; Albacar, N.; Agustí, A.; Sellares, J.; Sibila, O.; Faner, R. Persistence of a SARS-CoV-2 T-cell response in patients with long COVID and lung sequelae after COVID-19. ERJ Open Res. 2023, 9, 00020–02023. [Google Scholar] [CrossRef]
- Acosta-Ampudia, Y.; Monsalve, D.M.; Rojas, M.; Rodríguez, Y.; Zapata, E.; Ramírez-Santana, C.; Anaya, J.M. Persistent autoimmune activation and proinflammatory state in post-coronavirus disease 2019 Syndrome. J. Infect. Dis. 2022, 225, 2155–2162. [Google Scholar] [CrossRef]
- Paniskaki, K.; Konik, M.J.; Anft, M.; Heidecke, H.; Meister, T.L.; Pfaender, S.; Krawczyk, A.; Zettler, M.; Jäger, J.; Gaeckler, A.; et al. Low avidity circulating SARS-CoV-2 reactive CD8+ T cells with proinflammatory TEMRA phenotype are associated with post-acute sequelae of COVID-19. Front. Microbiol. 2023, 14, 1196721. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, E.; Biamonte, F.; Palmieri, C.; Battaglia, A.M.; Sacco, A.; Biamonte, E.; Neri, G.; Antico, G.C.; Mancuso, S.; Foti, G.; et al. Severe and mild-moderate SARS-CoV-2 vaccinated patients show different frequencies of IFNγ-releasing cells: An exploratory study. PLoS ONE 2023, 18, e0281444. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Tang, L.; Ma, Y.; Li, Y.; Zhang, D.; Li, Q.; Mei, H.; Hu, Y. Immunological profiling of COVID-19 patients with pulmonary sequelae. mBio 2021, 12, e0159921. [Google Scholar] [CrossRef] [PubMed]
- Santa Cruz, A.; Mendes-Frias, A.; Azarias-da-Silva, M.; André, S.; Oliveira, A.I.; Pires, O.; Mendes, M.; Oliveira, B.; Braga, M.; Lopes, J.R.; et al. Post-acute sequelae of COVID-19 is characterized by diminished peripheral CD8+β7 integrin+ T cells and anti-SARS-CoV-2 IgA response. Nat. Commun. 2023, 14, 1772. [Google Scholar] [CrossRef] [PubMed]
- Trøseid, M.; Dahl, T.B.; Holter, J.C.; Kildal, A.B.; Murphy, S.L.; Yang, K.; Quiles-Jiménez, A.; Heggelund, L.; Müller, K.E.; Tveita, A.; et al. Persistent T-cell exhaustion in relation to prolonged pulmonary pathology and death after severe COVID-19: Results from two Norwegian cohort studies. J. Intern. Med. 2022, 292, 816–828. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Jiang, X.; Yang, L.; Chen, L.; Zeng, X.; Liu, G.; Tang, Y.; Qian, C.; Wang, X.; Cheng, F.; et al. SARS-CoV-2-specific immune response in COVID-19 convalescent individuals. Signal Transduct. Target. Ther. 2021, 6, 256. [Google Scholar] [CrossRef] [PubMed]
- Jergović, M.; Coplen, C.P.; Uhrlaub, J.L.; Beitel, S.C.; Burgess, J.L.; Lutrick, K.; Ellingson, K.D.; Watanabe, M.; Nikolich-Žugich, J. Cutting edge: T cell responses to B.1.1.529 (Omicron) SARS-CoV-2 variant induced by COVID-19 infection and/or mRNA vaccination are largely preserved. J. Immunol. 2022, 208, 2461–2465. [Google Scholar] [CrossRef] [PubMed]
- Ravussin, A.; Robertson, A.H.; Wolf, A.S.; Blix, K.; Kjønstad, I.F.; Solum, G.; Feiring, B.; Strand, B.H.; Lund-Johansen, F.; Munthe, L.A.; et al. Determinants of humoral and cellular immune responses to three doses of mRNA SARS-CoV-2 vaccines in older adults: A longitudinal cohort study. Lancet Healthy Longev. 2023, 4, e188–e199. [Google Scholar] [CrossRef]
- Tut, G.; Lancaster, T.; Sylla, P.; Butler, M.S.; Kaur, N.; Spalkova, E.; Bentley, C.; Amin, U.; Jadir, A.; Hulme, S.; et al. Antibody and cellular immune responses following dual COVID-19 vaccination within infection-naive residents of long-term care facilities: An observational cohort study. Lancet Healthy Longev. 2022, 3, e461–e469. [Google Scholar] [CrossRef]
- Syrimi, N.; Sourri, F.; Giannakopoulou, M.C.; Karamanis, D.; Pantousas, A.; Georgota, P.; Rokka, E.; Vladeni, Z.; Tsiantoula, E.; Soukara, E.; et al. Humoral and cellular response and associated variables nine months following BNT162b2 vaccination in healthcare workers. J. Clin. Med. 2023, 12, 3172. [Google Scholar] [CrossRef] [PubMed]
- Townsend, L.; Dyer, A.H.; Naughton, A.; Kiersey, R.; Holden, D.; Gardiner, M.; Dowds, J.; O’Brien, K.; Bannan, C.; Nadarajan, P.; et al. Longitudinal analysis of COVID-19 patients shows age-associated T Cell changes independent of ongoing ill-health. Front. Immunol. 2021, 12, 676932. [Google Scholar] [CrossRef] [PubMed]
- Sabetta, E.; Noviello, M.; Sciorati, C.; Viganò, M.; De Lorenzo, R.; Beretta, V.; Valtolina, V.; Di Resta, C.; Banfi, G.; Ferrari, D.; et al. A longitudinal analysis of humoral, T cellular response and influencing factors in a cohort of healthcare workers: Implications for personalized SARS-CoV-2 vaccination strategies. Front. Immunol. 2023, 14, 1130802. [Google Scholar] [CrossRef] [PubMed]
- Gil-Manso, S.; Miguens Blanco, I.; Motyka, B.; Halpin, A.; López-Esteban, R.; Pérez-Fernández, V.A.; Carbonell, D.; López-Fernández, L.A.; West, L.; Correa-Rocha, R.; et al. ABO blood group is involved in the quality of the specific immune response anti-SARS-CoV-2. Virulence 2022, 13, 30–45. [Google Scholar] [CrossRef] [PubMed]
- Mihaylova, A.; Lesichkova, S.; Baleva, M.; Nikolova-Vlahova, M.; Kundurzhiev, T.; Kolevski, A.; Naumova, E. Durability of humoral and cell-mediated immune response after SARS-CoV-2 mRNA vaccine administration. J. Med. Virol. 2023, 95, e28360. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.J.; Angelo, A.L.; Netto, E.M.; Sampaio, G.P.; Souza, D.F.; Inocêncio, L.A.; Lemos, J.A.; Brites, C. Reference range for T lymphocytes populations in blood donors from two different regions in Brazil. Braz. J. Infect. Dis. 2009, 13, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.A.; Zúñiga, T.M.; Baker, F.L.; Batatinha, H.; Pedlar, C.R.; Burgess, S.C.; Gustafson, M.P.; Katsanis, E.; Simpson, R.J. COVID-19 vaccination produces exercise-responsive SARS-CoV-2-specific T-cells regardless of infection history. J. Sport Health Sci. 2023, 13, 99–107. [Google Scholar] [CrossRef]
- Barni, L.; Carrasco-Vega, E.; Olivieri, M.; Galán-Mercant, A.; Guiducci, S.; Picariello, F.; González-Sánchez, M. Does physical exercise enhance the immune response after vaccination? A systematic review for clinical indications of COVID-19 vaccine. Int. J. Environ. Res. Public Health 2023, 20, 5183. [Google Scholar] [CrossRef] [PubMed]
- Simpson, R.J.; Campbell, J.P.; Gleeson, M.; Krüger, K.; Nieman, D.C.; Pyne, D.B.; Turner, J.E.; Walsh, N.P. Can exercise affect immune function to increase susceptibility to infection? Exerc. Immunol. Rev. 2020, 26, 8–22. [Google Scholar] [PubMed]
- Wrigley Kelly, N.E.; Kenny, G.; Cassidy, F.C.; Garcia-Leon, A.A.; De Barra, C.; Mallon, P.W.G.; Hogan, A.E.; O’Shea, D. Individuals with obesity who survive SARS-CoV-2 infection have preserved antigen-specific T cell frequencies. Obesity 2022, 30, 1927–1931. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Yuan, X.; Gao, F.; Zhao, B.; Ding, L.; Huan, M.; Liu, C.; Jiang, L. High number and specific comorbidities could impact the immune response in COVID-19 patients. Front. Immunol. 2022, 13, 899930. [Google Scholar] [CrossRef] [PubMed]
- Aygun, H. Vitamin D can reduce severity in COVID-19 through regulation of PD-L1. Naunyn Schmiedebergs Arch. Pharmacol. 2022, 395, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Vo, H.T.M.; Maestri, A.; Auerswald, H.; Sorn, S.; Lay, S.; Seng, H.; Sann, S.; Ya, N.; Pean, P.; Dussart, P.; et al. Robust and functional immune memory up to 9 months after SARS-CoV-2 infection: A Southeast Asian longitudinal cohort. Front. Immunol. 2022, 13, 817905. [Google Scholar] [CrossRef] [PubMed]
- Briggs, J.; Takahashi, S.; Nayebare, P.; Cuu, G.; Rek, J.; Zedi, M.; Kizza, T.; Arinaitwe, E.; Nankabirwa, J.I.; Kamya, M.; et al. Seroprevalence of antibodies to SARS-CoV-2 in rural households in Eastern Uganda, 2020–2022. JAMA Netw Open. 2023, 6, e2255978. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, J.T.; Hirschhorn, L.R.; Gray, E.L.; Wallia, A.; Carnethon, M.; Zembower, T.R.; Ho, J.; DeYoung, B.J.; Zhu, A.; Rasmussen-Torvik, L.J.; et al. Serologic status and SARS-CoV-2 infection over 6 months of follow up in healthcare workers in Chicago: A cohort study. Infect. Control Hosp. Epidemiol. 2022, 43, 1207–1215. [Google Scholar] [CrossRef]
- Kelsey, J.L.; Whittemore, A.S.; Evans, A.S.; Douglas-Thompson, W. Methods in Observational Epidemiology, 2nd ed.; Oxford University Press, Inc.: New York, NY, USA, 1996; pp. 173–175. [Google Scholar]
- Shahbaz, S.; Xu, L.; Sligl, W.; Osman, M.; Bozorgmehr, N.; Mashhouri, S.; Redmond, D.; Perez Rosero, E.; Walker, J.; Elahi, S. The quality of SARS-CoV-2-Specific T Cell functions differs in patients with mild/moderate versus severe disease, and T Cells expressing coinhibitory receptors are highly activated. J. Immunol. 2021, 207, 1099–1111. [Google Scholar] [CrossRef] [PubMed]
- Terahara, K.; Sato, T.; Adachi, Y.; Tonouchi, K.; Onodera, T.; Moriyama, S.; Sun, L.; Takano, T.; Nishiyama, A.; Kawana-Tachikawa, A.; et al. SARS-CoV-2-specific CD4+ T cell longevity correlates with Th17-like phenotype. iScience 2022, 25, 104959. [Google Scholar] [CrossRef] [PubMed]
Groups | Naïve | SARS-CoV-2–Infected | Sequelae 1 | Reinfection 2 | ||
---|---|---|---|---|---|---|
Controls n = 36 | Cases n = 189 | Cases Sequelae n = 77 | Controls Non-Sequelae n = 103 | Cases Reinfection n = 78 | Controls No Reinfection n = 88 | |
Variables | ||||||
Age (years) Median (Range) 3 | 51 (1–82) ** | 44 (20–70) | 47 (19–71) ** | 42 (14–82) | 45 (18–69) | 44 (20–71) |
Male (%) | 16 (44.4) | 71 (37.6) | 27 (35.1) | 42 (40.8) | 30 (38.5) | 31 (35.2) |
Time (months) 3,4 | 11 (10–13) | 11 (1–28) | 11 (1–17) | 11 (4–28) | 11 (1–18) | 11 (4–28) |
Body mass index 3 (kg/m2) Median (Range) | 25.7 (17.5–44.4) | 26.2 (15–41.5) | 26.4 (16–41.5) | 26 (15.1–41.2) | 25.4 (16–40.6) | 26.4 (17.3–41.5) |
Smoking (%) | 16 (44.4) ** | 38 (28.2) | 19 (25.0) | 15 (14.6) | 13 (16.7) | 23 (26.4) |
Alcohol consumption (%) | 28 (77.8) | 139 (73.9) | 58 (75.3) | 75 (73.5) | 58 (75.3) | 67 (76.1) |
Physical exercise | 18 (50.0) | 112 (59.3) | 40 (52.0) | 66 (64.1) | 49 (62.8) | 50 (56.8) |
Chronic Disease (%) | 12 (33.3) | 73 (38.6) | 34 (44.2) | 35 (33.0) | 29 (37.2) | 37 (40.1) |
Vaccinated 5 (%) | 36 (100) | 183 (96.8) | 77 (100) | 97 (94.2) | 74 (94.9) | 87 (98.9) |
mRNA 6 only (%) | 25 (69.4) | 138 (75.4) | 57 (74.0) | 74 (76.3) | 54 (73.0) | 68 (78.2) |
mRNA+ others (%) | 11 (30.6) | 45 (24.6) | 20 (26.0) | 23 (23.7) | 20 (27.0) | 19 (21.8) |
3 doses (%) | 36 (100) ** | 126 (77.8) | 53 (68.8) * | 68 (66.0) | 44 (56.4) * | 63 (71.6) |
2 doses (%) | 0 | 53 (28.0) | 24 (31.2) | 25 (24.3) | 26 (33.3) | 24 (27.7) |
1 doses (%) | 0 | 4 (2.1) | 0 | 4 (3.9) | 4 (5.1) | 0 |
0 doses (%) | 0 | 6 (3.2) | 0 | 6 (5.3) | 4 (5.1) | 1 (1.1) |
Humoral immunity | ||||||
Anti-S IgG 3,7 AU/mL | 1512 (214–5681) | 1346 (115–5681) | 1410 (372–5681) | 1277 (115–5681) | 1132 (115–5681) ** | 1653 (189–5681) |
Anti-N IgG or IgM 8 | 0 (0) | 116 (61.4) | 44 (57.1) | 68 (66.0) | 56 (71.8) ** | 42 (47.7) |
Anti-N IgM | 0 | 25 (13.2) | 9 (11.7) | 16 (15.5) | 14 (18.0) | 8 (9.1) |
Anti-N IgG | 0 | 107 (56.6) | 41 (53.3) | 62 (60.2) | 52 (66.7) ** | 39 (44.3) |
Vit D 3,9 ng/mL | 28.1 (11.9–64.5) | 29.1 (12.5–70.8) | 30.3 (13.9–70.8) | 30.1 ± 9.4 | 30.2 ± 10.4 | 30.5 ± 9.3 |
Vit D 9 ≥30 ng/mL | 13 (36.1) | 86 (45.5) | 41 (53.3) | 43 (41.8) | 34 (43.6) | 44 (50.0) |
ABO blood groups | ||||||
O | 14 (58.9) | 80 (42.3) | 28 (36.4) | 47 (45.6) | 34 (43.6) | 35 (40.0) |
A | 18 (50.0) | 88 (46.6) | 37 (48.1) | 49 (47.6) | 36 (46.2) | 45 (51.1) |
B | 2 (5.6) | 17 (8.0) | 10 (13.0) | 5 (4.9) | 6 (7.7) | 8 (9.1) |
AB | 2 (5.6) | 2 (2.1) | 2 (2.6) | 2 (1.9) | 2 (2.6) | 0 |
Naïve Controls | Infected Patients Cases | Patients with Sequelae Cases | Patients with No Sequelae Controls | Patients with Reinfection Cases | Patients with No Reinfection Controls | |
---|---|---|---|---|---|---|
T-cell response | Frequency median and range (%) 1 | |||||
CD8+ for BA.2 1 | 0.11% (0–6.5%) | 0.08% (0–13.3%) | 0.09% (0–8.82%) | 0.07% (0–13.3%) | 0.08% (0–2.57%) | 0.10% (0–13.3%) |
CD4+ for BA.2 1 | 0.13% (0–0.85%) | 0.09% (0–2.37%) | 0.11% (0–2.37%) | 0.07% (0–1.67) | 0.09% (0–2.37%) | 0.10% (0–1.67%) |
CD8+ for Wuhan 1 | 0.10% (0–3.56%) | 0.09% (0–13.5%) | 0.10% (0–3.25%) | 0.08% (0–13.5%) | 0.07% (0–6.90%) | 0.11% (0–13.5%) |
CD4+ for Wuhan 1 | 0.10% (0–1.05%) | 0.08% (0–2.03%) | 0.08% (0–1.15%) | 0.08% (0–2.03%) | 0.07% (0–1.47%) | 0.09% (0–2.03%) |
Number of positives (%) | ||||||
CD8+ for BA.2 2 | 28 (77.8%) | 130 (68.8%) | 58 (75.3%) | 67 (65.0%) | 53 (68.0%) | 61 (69.3%) |
CD4+ for BA.2 2 | 31 (86.1%) | 144 (76.2%) | 67 (87.0%) | 69 (67.0%) | 60 (76.9%) | 67 (76.1%) |
CD8+ for Wuhan 2 | 29 (80.6%) | 136 (72.0%) | 61 (79.2%) | 68 (66.0%) | 52 (66.7%) | 66 (75.0%) |
CD4+ for Wuhan 2 | 32 (88.9%) | 146 (77.3%) | 69 (89.6%) | 72 (69.9%) | 59 (75.6%) | 70 (79.6%) |
CD8+ for BA.2 | CD4+ for BA.2 | CD8+ for Wuhan | CD4+ for Wuhan | |
---|---|---|---|---|
Groups | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) |
Infected patients Cases | 0.63 (0.77–1.46) | 0.52 (0.19–1.41) | 0.62 (0.25–1.50) | 0.42 (0.14–1.27) |
Naïve Controls | 1.00 | 1.00 | 1.00 | 1.00 |
Patients with sequelae Cases | 1.64 (0.85–3.17) | 3.20 (1.51–7.31) | 1.96 (0.99–3.89) | 3.71 (1.60–8.64) |
Patients without sequelae Controls | 1.00 | 1.00 | 1.00 | 1.00 |
Patients with reinfection Cases | 0.93 (0.49–1.81) | 1.01 (0.51–2.15) | 0.67 (0.34–1.31) | 0.80 (0.38–1.66) |
Patients with no reinfection Controls | 1.00 | 1.00 | 1.00 | 1.00 |
Groups | CD8+ for BA.2 | CD4+ for BA.2 | CD8+ for Wuhan | CD4+ for Wuhan |
---|---|---|---|---|
% positive | % positive | % positive | % positive | |
Infected Patients Cases | 68.8% | 76.2% | 72.0% | 77.3% |
Naïve Controls | 77.8% | 86.1% | 80.6% | 88.9% |
aOR 1 (96% CI) | 0.81 (0.32–2.08) | 0.39 (0.13–1.19) | 1.01 (0.37–2.77) | 0.45 (0.14–1.49) |
p-value | 0.668 | 0.097 | 0.982 | 0.191 |
Patients with sequelae Cases | 75.3% | 87.0% | 79.2% | 89.6% |
Patients without sequelae Controls | 65.1% | 67.0% | 66.0% | 69.9% |
aOR 1 (95% CI) | 1.24 (0.59–2.62) | 4.20 (1.76–10.0) | 2.33 (1.03–5.30) | 3.90 (1.50–9.52) |
p-value | 0.569 | 0.001 | 0.043 | 0.004 |
Patients with reinfection Cases | 67.0% | 76.0% | 66.7% | 75.6% |
Patients with no reinfection Controls | 69.3% | 76.1 | 75.0% | 79.6% |
aOR 1 (95% CI) | 0.94 (0.44–1.47) | 0.80 (0.36–1.78) | 0.84 (0.38–1.89) | 0.80 (0.35–1.85) |
p-value | 0.860 | 0.584 | 0.659 | 0.602 |
CD8+ for BA.2 | CD4+ for BA.2 | CD8+ for Wuhan | CD4+ for Wuhan | |
---|---|---|---|---|
Variables | OR 95% CI | OR 95% CI | OR 95% CI | OR 95% CI |
Age (years) | 1.03 (1.0–1.05) | 1.01 (0.93–1.03) | 1.01 (0.98–1.03) | 1.01 (0.98–1.03) |
Male | 1.09 (0.60–1.96) | 0.84 (0.44–1.58) | 1.24 (0.67–2.29) | 0.81 (0.42–1.57) |
Time (months) 1 | 0.89 (0.81–0.98) | 0.95 (0.86–1.05) | 1.05 (0.95–1.15) | 1.07 (0.97–1.18) |
Body mass index (kg/m2) | 1.02 (0.96–1.08) | 1.08 (1.01–1.15) | 1.04 (0.98–1.10) | 1.02 (0.95–1.09) |
Smoking | 0.81 (0.49–1.81) | 0.67 (0.33–1.36) | 0.83 (0.42–1.63) | 0.69 (0.34–1.41) |
Alcohol consumption | 0.99 (0.51–1.92) | 1.04 (0.57–2.13) | 1.98 (1.04–3.79) | 1.04 (0.50–2.19) |
Physical exercise | 0.72 (0.41–1.31) | 0.87 (0.45–1.65) | 0.78 (0.13–1.43) | 0.50 (0.25–0.99) |
Chronic Disease | 1.64 (0.89–3.02) | 1.23 (0.63–2.39) | 1.07 (0.57–1.97) | 1.78 (0.88–3.60) |
SARS-CoV-2 Vaccine | ||||
mRNA homologous vaccine | 1.39 (0.72–2.67) | 0.96 (0.46–2.01) | 1.05 (0.53–2.10) | 0.80 (0.36–1.73) |
3 doses versus 0, 1, or 2 doses | 1.88 (1.02–3.48) | 1.13 (0.57–2.26) | 1.42 (0.75–2.69) | 0.74 (0.35–1.57) |
Number of vaccine doses | 1.70 (1.12–2.60) | 1.15 (0.73–1.82) | 1.41 (0.92–2.15) | 1.10 (0.68–1.38) |
Humoral immunity | ||||
Anti-S IgG (AU/mL) | 1.00 (0.99–1.00) | 1.00 (0.94–1.10) | 1.00 (0.99–1.00) | 1.01 (0.94–1.10) |
Anti-N IgM or IgG | 1.04 (0.54–1.85) | 1.08 (0.58–2.03) | 1.19 (0.66–2.15) | 0.92 (0.48–1.75) |
Anti-N IgM | 5.54 (1.27–24.2) | 1.16 (0.41–3.27) | 2.04 (0.67–6.21) | 2.07 (0.59–7.22) |
Anti-N IgG | 0.83 (0.47–1.48) | 0.88 (0.47–1.65) | 1.05 (0.58–1.90) | 0.53 (0.44–1.59) |
Vitamin D ng/mL | 1.00 (0.97–1.03) | 0.99 (0.96–1.02) | 0.99 (0.96–1.03) | 0.94 (0.97–1.03) |
Vitamin D ≥30 ng/mL | 0.88 (0.49–1.56) | 0.90 (0.48–1.69) | 0.95 (0.62–1.71) | 1.20 (0.62–2.39) |
ABO blood groups | ||||
O | 0.65 (0.36–1.15) | 0.80 (0.43–1.51) | 0.63 (0.35–1.15) | 0.69 (0.36–1.32) |
A | 1.36 (0.76–2.42) | 1.05 (0.56–1.99) | 2.41 (1.29–4.49) | 1.26 (0.66–2.41) |
B | 1.21 (0.42–3.49) | 1.57 (0.44–5.64) | 0.37 (0.14–0.95) | 0.99 (0.31–3.13) |
AB | 2.16 (0.24–18.8) | 1.44 (0.16–12.6) | 0.72 (0.13–4.04) | NC 2 |
CD8+ for BA.2 | CD4+ for BA.2 | CD8 + for Wuhan | CD4 + for Wuhan | |
---|---|---|---|---|
Variables | aOR 95% CI | aOR 95% CI | aOR 95% CI | aOR 95% CI |
Age 1 (years) | 1.03 (1.01–1.05) | 1.01 (0.99–1.03) | 1.01 (0.99–1.03) | 1.01 (0.98–1.03) |
Male 2 | 1.01 (0.53–1.91) | 0.80 (0.41–1.56) | 1.13 (0.59–2.18) | 0.68 (0.26–2.86) |
Time 3 (months) | 0.89 (0.81–0.99) | 0.96 (0.87–1.06) | 1.07 (0.97–1.19) | 1.0 (0.98–1.21) |
Body mass index 4 (kg/m2) | 0.99 (0.94–1.05) | 1.07 (0.99–1.15) | 1.02 (0.96–1.09) | 1.01 (0.94–1.08) |
Smoking 5 | 0.76 (0.38–1.51) | 0.63 (0.31–1.30) | 0.82 (0.40–1.72) | 0.73 (0.34–1.57) |
Alcohol consumption 6 | 1.18 (0.59–2.36) | 1.15 (0.55–2.40) | 2.18 (1.20–4.33) | 1.03 (0.52–2.42) |
Physical exercise 7 | 0.66 (0.36–1.22) | 0.83 (0.44–1.60) | 0.77 (0.41–1.41) | 0.44 (0.21–0.99) |
Chronic Disease 8 | 1.03 (0.52–2.07) | 0.90 (0.43–1.90) | 0.87 (0.42–1.76) | 1.72 (0.78–3.79) |
SARS-CoV-2 Vaccine | ||||
mRNA homologous vaccine 9 | 1.55 (0.77–3.11) | 1.04 (0.48–2.26) | 0.92 (0.44–1.92) | 0.82 (0.36–1.87) |
3 doses versus 9 0, 1, or 2 doses | 1.24 (0.60–2.56) | 0.87 (0.39–1.93) | 1.93 (0.92–4.05) | 0.74 (0.35–1.69) |
Number of vaccine doses 9 | 1.34 (0.83–2.17) | 0.99 (0.58–1.68) | 1.85 (1.13–3.03) | 1.19 (0.68–1.38) |
Humoral immunity | ||||
Anti-S IgG 10 (AU/mL) | 1.00 (0.99–1.00) | 1.00 (0.99–1.00) | 1.00 (0.99–1.00) | 1.01 (0.99–1.00) |
Anti-N 10 | 1.42 (0.74–2.73) | 1.31 (0.57–2.21) | 1.06 (0.54–2.09) | 0.93 (0.46–1.89) |
Anti-N IgM 10 | 5.51 (1.92–25.5) | 1.01 (0.35–2.96) | 2.31 (0.71–7.48) | 1.98 (0.54–7.28) |
Anti-N IgG 10 | 1.13 (0.59–2.17) | 0.89 (0.44–1.80) | 0.92 (0.47–1.83) | 0.85 (0.42–1.73) |
Vitamin D 11 ng/mL | 1.01 (0.97–1.04) | 1.01 (0.97–1.04) | 1.01 (0.97–1.04) | 1.01 (0.98–1.05) |
Vitamin D >29 ng/mL 11 | 1.07 (0.56–2.04) | 1.20 (0.60–2.40) | 0.95 (0.43–1.86) | 1.30 (0.64–2.68) |
ABO blood groups | ||||
O 12 | 0.71 (0.39–1.24) | 0.83 (0.44–1.58) | 0.61 (0.33–1.12) | 0.65 (0.34–1.26) |
A 12 | 1.14 (0.68–2.25) | 1.01 (0.54–1.92) | 2.61 (1.37–4.96) | 1.36 (0.70–2.64) |
B 12 | 1.29 (0.43–3.84) | 1.64 (0.45–5.89) | 0.34 (0.13–0.89) | 0.92 (0.29–2.66) |
AB 12 | 1.72 (0.19–15.8) | 1.37 (0.15–12.2) | 0.68 (0.11–3.89) | NC 13 |
Group | CD8 + for BA.2 | CD4+ for BA.2 | CD8+ for Wuhan | CD4+ for Wuhan |
---|---|---|---|---|
rs p-value | rs p-value | rs p-value | rs p-value | |
Naïve group | −0.04 0.812 | 0.014 0.934 | −0.133 0.438 | 0.224 0.188 |
Infected patients | 0.14 0.055 | 0.134 0.065 | 0.138 0.059 | 0.198 0.006 |
Patients with sequelae | 0.182 0.112 | 0.116 0.317 | 0.233 0.042 | 0.184 0.108 |
Patients without sequelae | 0.143 0.151 | 0.068 0.493 | 0.093 0.348 | 0.214 0.030 |
Patients with reinfection | 0.121 0.293 | 0.142 0.216 | 0.129 0.280 | 0.218 0.055 |
Patients with no reinfection | 0.129 0.232 | 0.163 0.130 | 0.112 0.300 | 0.157 0.144 |
Total sample | 0.122 0.068 | 0.118 0.078 | 0.103 0.124 | 0.203 0.002 |
Groups | CD8+ for BA.2 | CD4+ for BA.2 | CD8+ for Wuhan | CD4+ for Wuhan |
---|---|---|---|---|
% positive | % positive | % positive | % positive | |
Infected Patients Cases | 46.6% | 48.7% | 49.1% | 45.5% |
Naïve Controls | 52.8% | 61.1% | 50.0% | 53.8% |
aOR 1 (96% CI) | 0.74 (0.34–1.43) | 0.55 (0.24–1.24) | 1.16 (0.53–2.55) | 0.73 (0.33–1.61) |
p-value | 0.438 | 0.150 | 0.717 | 0.436 |
Patients with sequelae Cases | 49.4% | 55.8% | 50.7% | 46.8.% |
Patients without sequelae Controls | 45.6% | 41.8% | 47.6% | 44.7% |
aOR (95% CI) | 0.99 (0.52–1.92) | 1.96 (1.00–3.85) | 1.05 (0.55–2.02) | 1.16 (0.60–2.26) |
p-value | 0.495 | 0.050 | 0.875 | 0.657 |
Patients with reinfection Cases | 44.9% | 47.4.0% | 43.6% | 43.6% |
Patients with no reinfection Controls | 51.1% | 50.0% | 51.1% | 50.0% |
aOR (95% CI) | 0.69 (0.35–1.38) | 0.81 (0.41–1.63) | 0.82 (0.42–1.61) | 0.78 (0.40–1.54) |
p-value | 0.292 | 0.565 | 0.568 | 0.471 |
CD8+ for BA.2 | CD4+ for BA.2 | CD8+ for Wuhan | CD4+ for Wuhan | |
---|---|---|---|---|
Variables | aOR (95% CI) | aOR (95% CI) | aOR (95% CI) | aOR (95% CI) |
Age 1 (years) | 1.01 (0.99–1.03) | 1.01 (0.99–1.03) | 0.99 (0.97–1.01) | 0.98 (0.97–1.01) |
Male 2 | 1.18 (0.67–2.08) | 1.14 (0.65–1.99) | 1.06 (0.11–1.86) | 1.02 (0.59–1.80) |
Time 3 (months) | 0.90 (0.83–0.99) | 1.01 (0.93–1.10) | 0.98 (0.91–1.07) | 1.06 (0.97–1.15) |
Body mass index 4 (kg/m2) | 0.99 (0.94–1.05) | 0.96 (0.91–1.01) | 0.99 (0.94–1.04) | 0.96 (0.91–1.01) |
Smoking 5 | 0.67 (0.35–1.26) | 0.53 (0.28–1.01) | 0.83 (0.45–1.57) | 0.94 (0.50–1.76) |
Alcohol consumption 6 | 1.06 (0.57–1.58) | 1.53 (0.82–2.85) | 1.60 (0.86–3.00) | 0.90 (0.42–1.68) |
Physical exercise 7 | 0.71 (0.41–1.23) | 0.83 (0.48–1.43) | 0.89 (0.42–1.53) | 0.84 (0.49–1.43) |
Chronic Disease 8 | 1.13 (0.62–2.07) | 0.90 (0.43–1.90) | 0.87 (0.42–1.76) | 1.72 (0.78–3.79) |
SARS-CoV-2 Vaccine | ||||
mRNA homologous vaccine 9 | 1.38 (0.73–2.61) | 1.33 (0.70–2.50) | 1.20 (0.64–2.25) | 0.87 (0.47–1.64) |
3 doses versus 9 0, 1, or 2 doses | 0.96 (0.50–1.85) | 0.74 (0.38–1.92) | 1.75 (0.91–3.38) | 0.87 (0.46–1.67) |
Number of vaccine doses 9 | 1.16 (0.73–1.83) | 1.11 (0.71–1.73) | 1.72 (1.05–2.82) | 1.18 (0.76–1.86) |
Humoral immunity | ||||
Anti-S IgG 10 (AU/mL) | 1.01 (0.99–1.01) | 1.01 (1.00–1.01) | 1.00 (0.99–1.00) | 1.01 (1.0–1.01) |
Anti-N 10 | 1.16 (0.66–2.06) | 1.63 (0.91–2.89) | 0.92 (0.52–1.62) | 1.15 (0.65–2.04) |
Anti-N IgM 10 | 2.88 (1.11–7.43) | 2.10 (0.84–5.27) | 2.31 (0.85–5.31) | 2.27 (0.93–5.57) |
Anti-N IgG 10 | 0.88 (0.50–1.57) | 1,24 (0.70–2.19) | 0.83 (0.47–1.98) | 1.08 (0.61–1.91) |
Vitamin D 11 (ng/mL) | 1.02 (0.99–1.06) | 0.99 (0.96–1.02) | 1.01 (0.97–1.04) | 1.01 (0.98–1.05) |
Vitamin D >29 11 (ng/mL) | 1.19 (0.67–2.12) | 0.73 (0.41–1.30) | 0.74 (0.42–1.86) | 0.87 (0.49–1.55) |
ABO blood groups | ||||
O 12 | 0.76 (0.44–1.31) | 0.77 (0.45–1.32) | 0.90 (0.53–1.54) | 0.76 (0.44–1.31) |
A 12 | 1.62 (0.94–2.77) | 1.37 (0.81–2.34) | 1.50 (0.88–2.56) | 1.72 (1.00–2.95) |
B 12 | 0.66 (0.25–2.76) | 1.64 (0.25–1.74) | 0.45 (0.16–1.23) | 0.26 (0.08–0.82) |
AB 12 | 0.43 (0.07–2.52) | 1.37 (0.32–10.26) | 0.50 (0.09–2.83) | 2.66 (0.46–15.21) |
Variables | Positive Cellular Immune Response > 0.0% | Positive Cellular Immune Response ≥ 0.10% |
---|---|---|
aOR 95% CI | aOR 95% CI | |
Age (years) | 1.03 (1.01–1.05) CD8+ BA.2 | NS 1 |
Time (months) | 0.89 (0.81–0.99) CD8 + BA.2 | 0.90 (0.83–0.99) CD8 + BA.2 |
Alcohol consumption | 2.18 (1.20–4.33) CD8+ Wuhan | NS 1 |
Physical exercise | 0.44 (0.21–0.99) CD4 + Wuhan | NS 1 |
Number of vaccine doses | 1.85 (1.13–3.03) CD8 + Wuhan | 1.72 (1.05–2.82) CD8+ Wuhan |
Anti-S IgG (AU/mL) | NS 1 | 1.01 (1.00–1.01) CD4 + BA.2; CD4 + Wuhan |
Anti-N IgM | 5.51 (1.92–25.5) CD8 + BA.2 | 2.88 (1.11–7.43) CD8 + BA.2 |
A blood group | 2.41 (1.29–4.49) CD8 + Wuhan | 1.72 (1.00–2.95) CD4 + Wuhan |
B blood group | 0.37 (0.14–0.95) CD8 + Wuhan | 0.26 (0.08–0.82) CD4 + Wuhan |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domènech-Montoliu, S.; Puig-Barberà, J.; Pac-Sa, M.R.; Orrico-Sanchéz, A.; Gómez-Lanas, L.; Sala-Trull, D.; Domènech-Leon, C.; Del Rio-González, A.; Sánchez-Urbano, M.; Satorres-Martinez, P.; et al. Cellular Immunity of SARS-CoV-2 in the Borriana COVID-19 Cohort: A Nested Case–Control Study. Epidemiologia 2024, 5, 167-186. https://doi.org/10.3390/epidemiologia5020012
Domènech-Montoliu S, Puig-Barberà J, Pac-Sa MR, Orrico-Sanchéz A, Gómez-Lanas L, Sala-Trull D, Domènech-Leon C, Del Rio-González A, Sánchez-Urbano M, Satorres-Martinez P, et al. Cellular Immunity of SARS-CoV-2 in the Borriana COVID-19 Cohort: A Nested Case–Control Study. Epidemiologia. 2024; 5(2):167-186. https://doi.org/10.3390/epidemiologia5020012
Chicago/Turabian StyleDomènech-Montoliu, Salvador, Joan Puig-Barberà, María Rosario Pac-Sa, Alejandro Orrico-Sanchéz, Lorna Gómez-Lanas, Diego Sala-Trull, Carmen Domènech-Leon, Alba Del Rio-González, Manuel Sánchez-Urbano, Paloma Satorres-Martinez, and et al. 2024. "Cellular Immunity of SARS-CoV-2 in the Borriana COVID-19 Cohort: A Nested Case–Control Study" Epidemiologia 5, no. 2: 167-186. https://doi.org/10.3390/epidemiologia5020012
APA StyleDomènech-Montoliu, S., Puig-Barberà, J., Pac-Sa, M. R., Orrico-Sanchéz, A., Gómez-Lanas, L., Sala-Trull, D., Domènech-Leon, C., Del Rio-González, A., Sánchez-Urbano, M., Satorres-Martinez, P., Aparisi-Esteve, L., Badenes-Marques, G., Blasco-Gari, R., Casanova-Suarez, J., Gil-Fortuño, M., Hernández-Pérez, N., Jovani-Sales, D., López-Diago, L., Notari-Rodríguez, C., ... Arnedo-Pena, A. (2024). Cellular Immunity of SARS-CoV-2 in the Borriana COVID-19 Cohort: A Nested Case–Control Study. Epidemiologia, 5(2), 167-186. https://doi.org/10.3390/epidemiologia5020012