Optimising Clinical Epidemiology in Disease Outbreaks: Analysis of ISARIC-WHO COVID-19 Case Report Form Utilisation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Description of CRF Sections and Fields
2.3. Evaluation of Field Inclusion and Completion
2.4. Data Utilisation
3. Results
3.1. Field Group Inclusion
3.2. Field Group Completion
3.3. Field Group Utilisation
3.4. Individual Field Utilisation
4. Discussion
4.1. Field Inclusion
4.2. Field Completion
4.3. Adjusting for Severity
4.4. Limitations
4.5. Towards Optimising Clinical Epidemiology in Disease Outbreaks
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. ISARIC-WHO Clinical Characterisation Protocol: Sampling Strategies to Reduce Bias
Type of Sampling | Explanation |
Census | Enrol all potential participants who present to your setting. |
Sequential/systematic sampling | Enrol patients based on their time of presentation, e.g., every 3rd patient who presents to the hospital, or all patients who present on even calendar days (2nd, 4th, 6th). |
Simple random sampling | Use a tool to randomly determine if each patient is enrolled, e.g., use an online tool to generate a random list of Yes/No variables in the desired proportion and apply them sequentially as patients present (note: this should be conducted so that no one knows the next variable). |
Defined population census, e.g., ICU patients | Enrol all patients admitted to the ICU. |
Appendix B. ISARIC Clinical Characterisation Group
References
- Rojek, A.M.; Moran, J.; Horby, P.W. Core Minimal Datasets to Advance Clinical Research for Priority Epidemic Diseases. Clin. Infect. Dis. 2020, 70, 696–697. [Google Scholar] [CrossRef]
- Woldemariam, M.T.; Jimma, W. Adoption of Electronic Health Record Systems to Enhance the Quality of Healthcare in Low-Income Countries: A Systematic Review. BMJ Health Care Inf. 2023, 30, e100704. [Google Scholar] [CrossRef] [PubMed]
- Disease Outbreak News. Available online: https://www.who.int/emergencies/disease-outbreak-news (accessed on 14 April 2024).
- Neupane, M.; De Jonge, N.; Angelo, S.; Sarzynski, S.; Sun, J.; Rochwerg, B.; Hick, J.; Mitchell, S.H.; Warner, S.; Mancera, A.; et al. Measures and Impact of Caseload Surge During the COVID-19 Pandemic: A Systematic Review. Crit. Care Med. 2024, 52, 1097–1112. [Google Scholar] [CrossRef] [PubMed]
- Filip, R.; Gheorghita Puscaselu, R.; Anchidin-Norocel, L.; Dimian, M.; Savage, W.K. Global Challenges to Public Health Care Systems during the COVID-19 Pandemic: A Review of Pandemic Measures and Problems. J. Pers. Med. 2022, 12, 1295. [Google Scholar] [CrossRef]
- Dunning, J.W.; Merson, L.; Rohde, G.G.U.; Gao, Z.; Semple, M.G.; Tran, D.; Gordon, A.; Olliaro, P.L.; Khoo, S.H.; Bruzzone, R.; et al. Open Source Clinical Science for Emerging Infections. Lancet Infect. Dis. 2014, 14, 8–9. [Google Scholar] [CrossRef] [PubMed]
- Arabi, Y.M.; Al-Omari, A.; Mandourah, Y.; Al-Hameed, F.; Sindi, A.A.; Alraddadi, B.; Shalhoub, S.; Almotairi, A.; Al Khatib, K. Critically Ill Patients with the Middle East Respiratory Syndrome: A Multicenter Retrospective Cohort Study. Crit. Care Med. 2017, 45, 1683–1695. [Google Scholar] [CrossRef]
- Dunning, J.; Kennedy, S.B.; Antierens, A.; Whitehead, J.; Ciglenecki, I.; Carson, G.; Kanapathipillai, R.; Castle, L.; Howell-Jones, R.; Pardinaz-Solis, R.; et al. Experimental Treatment of Ebola Virus Disease with Brincidofovir. PLoS ONE 2016, 11, e0162199. [Google Scholar] [CrossRef]
- Sigfrid, L.; Reusken, C.; Carson, G.; Koopmans, M. Zika: Structuring the European Research Response. ERJ Open Res. 2016, 2, 00025-2016. [Google Scholar] [CrossRef]
- SPRINT-SARI Investigators. Using Research to Prepare for Outbreaks of Severe Acute Respiratory Infection. BMJ Glob. Health 2019, 4, e001061. [Google Scholar] [CrossRef]
- Kali, S.; Bourner, J.; Calmy, A.; Laouénan, C.; Merson, L.; Cervantes-Gonzalez, M.; Rojek, A.; Pesonel, E.; Guiraud, L.; Tardivon, C.; et al. MOSAIC: A European cohort study of human Mpox—The challenges of clinical research in outbreaks. Virologie 2023, 27, 23–26. [Google Scholar] [CrossRef]
- Ho, A.; Orton, R.; Tayler, R.; Asamaphan, P.; Herder, V.; Davis, C.; Tong, L.; Smollett, K.; Manali, M.; Allan, J.; et al. Adeno-Associated Virus 2 Infection in Children with Non-A–E Hepatitis. Nature 2023, 617, 555–563. [Google Scholar] [CrossRef]
- ISARIC Clinical Characterisation Group. COVID-19 CRF. Available online: https://isaric.org/research/covid-19-clinical-research-resources/covid-19-crf/ (accessed on 13 April 2024).
- ISARIC Clinical Characterisation Group. The Value of Open-Source Clinical Science in Pandemic Response: Lessons from ISARIC. Lancet Infect. Dis. 2021, 21, 1623–1634. [Google Scholar] [CrossRef]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; et al. Clinical Course and Outcomes of Critically Ill Patients with SARS-CoV-2 Pneumonia in Wuhan, China: A Single-Centered, Retrospective, Observational Study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Cummings, M.J.; Baldwin, M.R.; Abrams, D.; Jacobson, S.D.; Meyer, B.J.; Balough, E.M.; Aaron, J.G.; Claassen, J.; Rabbani, L.E.; Hastie, J.; et al. Epidemiology, Clinical Course, and Outcomes of Critically Ill Adults with COVID-19 in New York City: A Prospective Cohort Study. Lancet 2020, 395, 1763–1770. [Google Scholar] [CrossRef]
- Docherty, A.B.; Harrison, E.M.; Green, C.A.; Hardwick, H.E.; Pius, R.; Norman, L.; Holden, K.A.; Read, J.M.; Dondelinger, F.; Carson, G.; et al. Features of 20 133 UK Patients in Hospital with COVID-19 Using the ISARIC WHO Clinical Characterisation Protocol: Prospective Observational Cohort Study. BMJ 2020, 369, m1985. [Google Scholar] [CrossRef] [PubMed]
- Lescure, F.-X.; Bouadma, L.; Nguyen, D.; Parisey, M.; Wicky, P.-H.; Behillil, S.; Gaymard, A.; Bouscambert-Duchamp, M.; Donati, F.; Hingrat, Q.L.; et al. Clinical and Virological Data of the First Cases of COVID-19 in Europe: A Case Series. Lancet Infect. Dis. 2020, 20, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Jassat, W.; Karim, S.S.A.; Mudara, C.; Welch, R.; Ozougwu, L.; Groome, M.J.; Govender, N.; von Gottberg, A.; Wolter, N.; Wolmarans, M.; et al. Clinical Severity of COVID-19 in Patients Admitted to Hospital during the Omicron Wave in South Africa: A Retrospective Observational Study. Lancet Glob. Health 2022, 10, e961–e969. [Google Scholar] [CrossRef]
- Sass, J.; Bartschke, A.; Lehne, M.; Essenwanger, A.; Rinaldi, E.; Rudolph, S.; Heitmann, K.U.; Vehreschild, J.J.; von Kalle, C.; Thun, S. The German Corona Consensus Dataset (GECCO): A Standardized Dataset for COVID-19 Research in University Medicine and Beyond. BMC Med. Inf. Decis. Mak. 2020, 20, 341. [Google Scholar] [CrossRef]
- Somers, E.C.; Eschenauer, G.A.; Troost, J.P.; Golob, J.L.; Gandhi, T.N.; Wang, L.; Zhou, N.; Petty, L.A.; Baang, J.H.; Dillman, N.O.; et al. Tocilizumab for Treatment of Mechanically Ventilated Patients With COVID-19. Clin. Infect. Dis. 2021, 73, e445–e454. [Google Scholar] [CrossRef]
- Garcia-Gallo, E.; Merson, L.; Kennon, K.; Kelly, S.; Citarella, B.W.; Fryer, D.V.; Shrapnel, S.; Lee, J.; Duque, S.; Fuentes, Y.V.; et al. ISARIC-COVID-19 Dataset: A Prospective, Standardized, Global Dataset of Patients Hospitalized with COVID-19. Sci. Data 2022, 9, 454. [Google Scholar] [CrossRef]
- Camirand-Lemyre, F.; Merson, L.; Tirupakuzhi Vijayaraghavan, B.K.; Burrell, A.J.C.; Citarella, B.W.; Domingue, M.-P.; Lévesque, S.; Usuf, E.; Wils, E.-J.; Ohshimo, S.; et al. Implementation of Recommendations on the Use of Corticosteroids in Severe COVID-19. JAMA Netw. Open 2023, 6, e2346502. [Google Scholar] [CrossRef]
- Cho, S.-M.; White, N.; Premraj, L.; Battaglini, D.; Fanning, J.; Suen, J.; Bassi, G.L.; Fraser, J.; Robba, C.; Griffee, M.; et al. Neurological Manifestations of COVID-19 in Adults and Children. Brain 2023, 146, 1648–1661. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, B.P.; Jassat, W.; Baruch, J.; Hashmi, M.; Rojek, A.; Dasgupta, A.; Martin-Loeches, I.; Reyes, L.F.; Piubelli, C.; Citarella, B.W.; et al. A Multi-Country Analysis of COVID-19 Hospitalizations by Vaccination Status. Med 2023, 4, 797–812.e2. [Google Scholar] [CrossRef]
- Reyes, L.F.; Murthy, S.; Garcia-Gallo, E.; Irvine, M.; Merson, L.; Martin-Loeches, I.; Rello, J.; Taccone, F.S.; Fowler, R.A.; Docherty, A.B.; et al. Clinical Characteristics, Risk Factors and Outcomes in Patients with Severe COVID-19 Registered in the International Severe Acute Respiratory and Emerging Infection Consortium WHO Clinical Characterisation Protocol: A Prospective, Multinational, Multicentre, Observational Study. ERJ Open Res. 2022, 8, 00552-2021. [Google Scholar] [CrossRef]
- Kartsonaki, C.; Baillie, J.K.; Barrio, N.G.; Baruch, J.; Beane, A.; Blumberg, L.; Bozza, F.; Broadley, T.; Burrell, A.; Carson, G.; et al. Characteristics and Outcomes of an International Cohort of 600 000 Hospitalized Patients with COVID-19. Int. J. Epidemiol. 2023, 52, 355–376. [Google Scholar] [CrossRef] [PubMed]
- Marwali, E.M.; Kekalih, A.; Yuliarto, S.; Wati, D.K.; Rayhan, M.; Valerie, I.C.; Cho, H.J.; Jassat, W.; Blumberg, L.; Masha, M.; et al. Paediatric COVID-19 Mortality: A Database Analysis of the Impact of Health Resource Disparity. BMJ Paediatr. Open 2022, 6, e001657. [Google Scholar] [CrossRef]
- The WHO Global. Clinical Platform for COVID-19. Available online: https://www.who.int/teams/health-care-readiness/covid-19/data-platform (accessed on 14 April 2024).
- Zarei, J.; Badavi, M.; Karandish, M.; Haddadzadeh Shoushtari, M.; Dastoorpoor, M.; Yousefi, F.; Raji, H.; Cheraghi, M. A Study to Design Minimum Data Set of COVID-19 Registry System. BMC Infect. Dis. 2021, 21, 773. [Google Scholar] [CrossRef]
- Turek, J.R.; Bansal, V.; Tekin, A.; Singh, S.; Deo, N.; Sharma, M.; Bogojevic, M.; Qamar, S.; Singh, R.; Kumar, V.; et al. Lessons from a Rapid Project Management Exercise in the Time of Pandemic: Methodology for a Global COVID-19 VIRUS Registry Database. JMIR Res. Protoc. 2022, 11, e27921. [Google Scholar] [CrossRef]
- Perrocheau, A.; Brindle, H.; Roberts, C.; Murthy, S.; Shetty, S.; Martin, A.I.C.; Marks, M.; Schenkel, K.; Perrocheau, A.; Murthy, S.; et al. Data Collection for Outbreak Investigations: Process for Defining a Minimal Data Set Using a Delphi Approach. BMC Public Health 2021, 21, 2269. [Google Scholar] [CrossRef]
- Marshall, J.C.; Murthy, S.; Diaz, J.; Adhikari, N.; Angus, D.C.; Arabi, Y.M.; Baillie, K.; Bauer, M.; Berry, S.; Blackwood, B.; et al. A Minimal Common Outcome Measure Set for COVID-19 Clinical Research. Lancet Infect. Dis. 2020, 20, e192–e197. [Google Scholar] [CrossRef]
- Covid-19 Research Resources. Available online: https://isaric.org/research/covid-19-clinical-research-resources/ (accessed on 13 April 2024).
- Van Rossum, G. The Python Library Reference, Release 3.8; Python Software Foundation: Wilmington, DE, USA, 2020. [Google Scholar]
- Reback, J.; Jbrockmendel; McKinney, W.; Van Den Bossche, J.; Augspurger, T.; Roeschke, M.; Hawkins, S.; Cloud, P.; Gfyoung; Sinhrks; et al. pandas-dev/pandas: Pandas 1.4.2. Zenodo. 2022. Available online: https://zenodo.org/record/6408044 (accessed on 1 July 2024).
- Timeline: WHO’s COVID-19 Response. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline (accessed on 8 June 2024).
- Morton, B.; Banda, N.P.; Nsomba, E.; Ngoliwa, C.; Antoine, S.; Gondwe, J.; Limbani, F.; Henrion, M.Y.R.; Chirombo, J.; Baker, T.; et al. Establishment of a High-Dependency Unit in Malawi. BMJ Glob. Health 2020, 5, e004041. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Clinical Management of COVID-19. Available online: https://www.who.int/teams/health-care-readiness/covid-19 (accessed on 8 June 2024).
- Pedrera-Jimenez, M.; Garcia-Barrio, N.; Rubio-Mayo, P.; Maestro, G.; Lalueza, A.; Garcia-Reyne, A.; Zamorro, M.J.; Pons, A.; Sanchez-Martin, M.J.; Cruz-Rojo, J.; et al. Making EHRs Trustable: A Quality Analysis of EHR-Derived Datasets for COVID-19 Research. Stud. Health Technol. Inf. 2022, 294, 164–168. [Google Scholar] [CrossRef]
- Peltan, I.D.; Caldwell, E.; Admon, A.J.; Attia, E.F.; Gundel, S.J.; Mathews, K.S.; Nagrebetsky, A.; Sahetya, S.K.; Ulysse, C.; Brown, S.M.; et al. Characteristics and Outcomes of US Patients Hospitalized With COVID-19. Am. J. Crit. Care 2022, 31, 146–157. [Google Scholar] [CrossRef]
- Vasconcelos, M.K.; Epalza, C.; Renk, H.; Tagarro, A.; Bielicki, J.A. Harmonisation Preserves Research Resources. Lancet Infect. Dis. 2021, 21, e71. [Google Scholar] [CrossRef] [PubMed]
- ISARIC4C. Available online: https://isaric4c.net (accessed on 8 June 2024).
- Weekly Hospital Surveillance (DATCOV) Update. Available online: https://www.nicd.ac.za/diseases-a-z-index/disease-index-covid-19/surveillance-reports/daily-hospital-surveillance-datcov-report/ (accessed on 8 June 2024).
- Harris, C.; Carson, G.; Baillie, J.K.; Horby, P.; Nair, H. An Evidence-Based Framework for Priority Clinical Research Questions for COVID-19. J. Glob. Health 2020, 10, 011001. [Google Scholar] [CrossRef]
- World Health Organization. Strategic Preparedness and Response Plan for the Novel Coronavirus, Draft as of 3 February 2020. Available online: https://www.who.int/docs/default-source/coronaviruse/srp-04022020.pdf (accessed on 1 July 2024).
Hospitals | Countries | All Patients | Severe Patients * | Data Collection Start Date | Months of Data Collection | |
---|---|---|---|---|---|---|
Total | 1886 | 82 | 950,064 | 256,529 | 725.7 | |
Range | 1–627 | 1–44 | 30–494,547 | 0–122,754 | 24/01/2020–17/03/2021 | 1.0–38.0 |
Median | 1 | 1 | 1014.5 | 107 | 17/02/2020 | 16.8 |
IQR | 1.0–28.0 | 1.0–1.0 | 182.8–4485.5 | 22.5–1147.8 | 7.6–28.1 |
Collection Time | Field Group | All Patient Data | Severe Patient Data | Difference | ||||
---|---|---|---|---|---|---|---|---|
Utilisation Distance Mean (SD) | Completion % Mean (SD) | Inclusion % Mean (SD) | Utilisation Distance Mean (SD) | Completion % Mean (SD) | Inclusion % Mean (SD) | Utilisation Distance Delta (SD) | ||
Outcome | Outcome status | 8.0 (3.3) | 89.8 (3.5) | 95.2 (3.4) | 3.7 (2.4) | 95.7 (2.1) | 97.5 (3.5) | 4.3 (0.8) |
Admission | Demographics | 16.3 (14.0) | 91.6 (8.2) | 79.1 (18.7) | 16.3 (14.0) | 91.6 (8.2) | 79.1 (18.7) | 0.0 (0.0) |
Admission | Comorbidities | 22.9 (13.8) | 79.0 (16.1) | 77.9 (15.8) | 22.9 (13.7) | 83.2 (15.8) | 74.1 (15.1) | 0.0 (0.1) |
Admission | Signs and symptoms | 27.2 (14.4) | 78.4 (10.7) | 68.9 (18.6) | 27.1 (13.3) | 82.3 (7.5) | 66.7 (18.6) | 0.0 (1.1) |
Admission | Vital signs | 30.6 (10.8) | 69.1 (13.5) | 70.3 (9.3) | 28.5 (11.4) | 75.0 (14.5) | 69.0 (10.0) | 2.0 (−0.7) |
Summary | Complications | 41.8 (12.5) | 65.5 (12.9) | 52.8 (14.9) | 37.5 (13.4) | 78.1 (14.6) | 52.4 (14.9) | 4.3 (−0.9) |
Admission | Pre-admission medication | 47.3 (3.8) | 70.5 (12.2) | 40.5 (0.0) | 46.5 (0.6) | 79.8 (12.7) | 38.1 (3.4) | 0.8 (3.3) |
Daily | Vitals and assessments | 51.6 (12.3) | 64.5 (23.0) | 39.6 (13.9) | 47.5 (11.3) | 76.3 (18.3) | 39.2 (14.2) | 4.0 (1.0) |
Summary | Diagnostics | 52.8 (25.0) | 54.0 (24.8) | 42.3 (28.2) | 52.0 (24.1) | 59.1 (24.9) | 40.1 (26.4) | 0.8 (0.9) |
Daily | Interventions | 53.1 (14.3) | 59.1 (24.5) | 39.0 (9.2) | 45.3 (8.0) | 82.5 (11.4) | 39.1 (9.7) | 7.8 (6.4) |
Summary | Interventions | 55.0 (21.5) | 61.2 (28.2) | 35.5 (23.1) | 52.5 (21.6) | 67.6 (26.9) | 35.8 (23.9) | 2.5 (−0.2) |
Admission | Lab tests | 56.5 (12.0) | 37.0 (15.1) | 51.1 (9.8) | 52.7 (12.6) | 44.9 (16.9) | 50.4 (9.4) | 3.8 (−0.6) |
Daily | Lab tests | 58.4 (9.1) | 39.3 (12.2) | 44.3 (7.4) | 52.1 (9.7) | 52.6 (13.9) | 44.1 (7.3) | 6.3 (−0.6) |
Outcome | Outcome health | 78.8 (38.6) | 19.9 (37.2) | 22.6 (40.5) | 78.3 (39.2) | 20.5 (37.6) | 23.1 (41.2) | 0.5 (−0.6) |
All | All | 43.9 (21.0) | 61.6 (24.3) | 53.3 (22.4) | 41.0 (19.9) | 70.2 (22.7) | 52.4 (22.0) | 3.0 (1.2) |
Collection Time | Field Group | Field | Utilisation Distance, All Patients (x, y) | Utilisation Distance, Severe Patients (x, y) | Delta | Utilisation Colour Group (Severe) |
---|---|---|---|---|---|---|
Admission | Demographics | Sex | 1.7 (99.9, 97.6) | 1.7 (99.9, 97.6) | 0 | |
Daily | Vitals and assessments | O2 saturation | 42.3 (71.2, 47.6) | 38.7 (84.1, 47.6) | 3.6 | |
Outcome | Outcome status | Outcome | 5.7 (92.3, 97.6) | 2.0 (97.2, 100) | 3.7 | |
Admission | Lab tests | INR | 58.5 (30.8, 54.8) | 54.6 (39.2, 52.4) | 3.8 | |
Summary | Complications | Bacteraemia | 32.4 (71.4, 64.3) | 27.3 (85.3, 64.3) | 5.0 | |
Daily | Lab tests | Troponin | 73.4 (18.4, 35.7) | 67.8 (28.8, 35.7) | 5.6 | |
Summary | Complications | ARDS | 30.3 (68.0, 71.4) | 24.0 (81.6, 71.4) | 6.3 | |
Daily | Lab tests | ALT | 52.1 (45.9, 50.0) | 45.8 (58.8, 50.0) | 6.3 | |
Daily | Vitals and assessments | Glasgow coma score | 51.9 (48.5, 47.6) | 45.2 (63.5, 47.6) | 6.8 | |
Daily | Lab tests | PT | 70.7 (21.4, 38.1) | 63.3 (35.4, 38.1) | 7.5 | |
Daily | Lab tests | Lactate | 63.7 (28.5, 45.2) | 55.0 (44.8, 45.2) | 8.7 | |
Daily | Vitals and assessments | PaO2 sample type | 64.9 (34.4, 35.7) | 56.0 (53.6, 35.7) | 8.9 | |
Summary | Interventions | High-flow nasal cannula duration | 81.1 (26.6, 11.9) | 71.5 (50.3, 11.9) | 9.5 | |
Summary | Interventions | Non-invasive vent duration | 74.3 (10.3, 45.2) | 63.7 (28.5, 45.2) | 10.6 | |
Daily | Interventions | Dopamine | 64.9 (34.5, 35.7) | 45.5 (97.1, 35.7) | 19.4 | |
Daily | Interventions | ECLS/ECMO type | 90.9 (2.1, 16.7) | 60.9 (78.2, 16.7) | 30.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merson, L.; Duque, S.; Garcia-Gallo, E.; Yeabah, T.O.; Rylance, J.; Diaz, J.; Flahault, A.; ISARIC Clinical Characterisation Group. Optimising Clinical Epidemiology in Disease Outbreaks: Analysis of ISARIC-WHO COVID-19 Case Report Form Utilisation. Epidemiologia 2024, 5, 557-580. https://doi.org/10.3390/epidemiologia5030039
Merson L, Duque S, Garcia-Gallo E, Yeabah TO, Rylance J, Diaz J, Flahault A, ISARIC Clinical Characterisation Group. Optimising Clinical Epidemiology in Disease Outbreaks: Analysis of ISARIC-WHO COVID-19 Case Report Form Utilisation. Epidemiologia. 2024; 5(3):557-580. https://doi.org/10.3390/epidemiologia5030039
Chicago/Turabian StyleMerson, Laura, Sara Duque, Esteban Garcia-Gallo, Trokon Omarley Yeabah, Jamie Rylance, Janet Diaz, Antoine Flahault, and ISARIC Clinical Characterisation Group. 2024. "Optimising Clinical Epidemiology in Disease Outbreaks: Analysis of ISARIC-WHO COVID-19 Case Report Form Utilisation" Epidemiologia 5, no. 3: 557-580. https://doi.org/10.3390/epidemiologia5030039
APA StyleMerson, L., Duque, S., Garcia-Gallo, E., Yeabah, T. O., Rylance, J., Diaz, J., Flahault, A., & ISARIC Clinical Characterisation Group. (2024). Optimising Clinical Epidemiology in Disease Outbreaks: Analysis of ISARIC-WHO COVID-19 Case Report Form Utilisation. Epidemiologia, 5(3), 557-580. https://doi.org/10.3390/epidemiologia5030039