Mixotrophic Cultivation of Microalgae in Cassava Processing Wastewater for Simultaneous Treatment and Production of Lipid-Rich Biomass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.2. Cassava Wastewater
2.3. Cultivation Conditions
2.4. Analytical Methods
2.4.1. Determination of Cell Concentration
2.4.2. Characterization of Cassava Processing Wastewater
2.4.3. Lipid Analysis
2.4.4. FAME Analysis by Gas Chromatography
2.4.5. Data Analysis
3. Results and Discussion
3.1. Microalgae Growth in CPW
3.2. Characteristics of Cassava Wastewater
3.3. Removal of Pollutants from CPW by Microalgae
3.3.1. Nitrate and Phosphate Reduction
3.3.2. Chemical and Biochemical Oxygen Demand Reduction
3.4. Lipid Content
3.5. Fatty Acid Composition of Biodiesel Produced from Microbial Lipids
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perez-Garcia, O.; Escalante, F.M.E.; De-Bashan, L.E.; Bashan, Y. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res. 2011, 45, 11–36. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Bhatnagar, M.; Chinnasamy, S.; Das, K.C. Chlorella minutissima—A Promising Fuel Alga for Cultivation in Municipal Wastewaters. Appl. Biochem. Biotechnol. 2009, 161, 523–536. [Google Scholar] [CrossRef]
- Neves, C.; Maroneze, M.; Dos Santos, A.M.; Francisco, E.C.; Wagner, R.; Zepka, L.Q.; Jacob-Lopes, E. Cassava processing wastewater as a platform for third generation biodiesel production. Sci. Agricol. 2016, 73, 412–416. [Google Scholar] [CrossRef] [Green Version]
- De Carvalho, J.C.; Sydney, E.B.; Tessari, L.F.A.; Soccol, C.R. Chapter 2—Culture media for mass production of microalgae. In Biomass, Biofuels, Biochemicals: Biofuels from Algae, 2nd ed.; Pandey, A., Chang, J.S., Soccol, C.R., Lee, D.J., Chisti, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 33–50. [Google Scholar] [CrossRef]
- Leano, E.; Babel, S. Effects of pretreatment methods on cassava wastewater for biohydrogen production optimization. Renew. Energy 2012, 39, 339–346. [Google Scholar] [CrossRef]
- Hongyang, S.; Yalei, Z.; Chunmin, Z.; Xuefei, Z.; Jinpeng, L. Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresour. Technol. 2011, 102, 9884–9890. [Google Scholar] [CrossRef]
- Wu, L.F.; Chen, P.C.; Huang, A.P.; Lee, C.M. The feasibility of biodiesel production by microalgae using industrial wastewater. Bioresour. Technol. 2012, 113, 14–18. [Google Scholar] [CrossRef]
- de Carvalho, J.C.; Borghetti, I.A.; Cartas, L.C.; Woiciechowski, A.L.; Soccol, V.T.; Soccol, C.R. Biorefinery integration of microalgae production into cassava processing industry: Potential and perspectives. Bioresour. Technol. 2018, 247, 1165–1172. [Google Scholar] [CrossRef]
- FAOSTAT-Database; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020.
- Martinez-Burgos, W.J.; Sydney, E.B.; Medeiros, A.B.P.; Magalhães, A.I.; de Carvalho, J.C.; Karp, S.G.; Vandenberghe, L.P.D.S.; Letti, L.A.J.; Soccol, V.T.; Pereira, G.V.D.M.; et al. Agro-industrial wastewater in a circular economy: Characteristics, impacts and applications for bioenergy and biochemicals. Bioresour. Technol. 2021, 341, 125795. [Google Scholar] [CrossRef]
- Setyawaty, R.; Katayama-Hirayama, K.; Kaneko, H.; Hirayama, K. Current tapioca starch wastewater (TSW) management in Indonesia. World Appl. Sci. J. 2011, 14, 658–665. [Google Scholar]
- Cartas, L.C. Isolamento e Cultivo de Microalgas em Resíduo Líquido do Processamento da Mandioca: Manipueira; Federal University of Tocantins: Palmas, Brasil, 2017. [Google Scholar]
- Reungsang, A.; Sangyoka, S.; Imai, T.; Chaiprasert, P. Biohydrogen Production from Cassava Starch Manufacturing Wastewater. Asian J. Energy Environ. 2006, 7, 367–377. [Google Scholar]
- Maróstica, M.R., Jr.; Pastore, G.M. Production of R-(+)-α-terpineol by the biotransformation of limonene from orange essential oil, using cassava waste water as medium. Food Chem. 2007, 101, 345–350. [Google Scholar] [CrossRef]
- Costa, S.G.; Nitschke, M.; Lépine, F.; Déziel, E.; Contiero, J. Structure, properties and applications of rhamnolipids produced by Pseudomonas aeruginosa L2-1 from cassava wastewater. Process Biochem. 2010, 45, 1511–1516. [Google Scholar] [CrossRef]
- Cappelletti, B.M.; Reginatto, V.; Amante, E.R.; Antônio, R.V. Fermentative production of hydrogen from cassava processing wastewater by Clostridium acetobutylicum. Renew. Energy 2011, 36, 3367–3372. [Google Scholar] [CrossRef]
- Martinez-Burgos, W.J.; Sydney, E.B.; Brar, S.K.; Tanobe, V.O.D.A.; Medeiros, A.B.P.; de Carvalho, J.C.; Soccol, C.R. The effect of hydrolysis and sterilization in biohydrogen production from cassava processing wastewater medium using anaerobic bacterial consortia. Int. J. Hydrogen Energy 2019, 44, 25551–25564. [Google Scholar] [CrossRef]
- de Faria Ferreira Carraro, C.; Loures, C.C.A.; de Castro, J.A. Microalgae Technique for Bioremediation Treatment of Cassava Wastewater. Water Air Soil Pollut. 2021, 232, 281. [Google Scholar] [CrossRef]
- Coutinho Rodrigues, O.H.; Itokazu, A.G.; Rörig, L.; Maraschin, M.; Corrêa, R.G.; Pimentel-Almeida, W. Evaluation of astaxanthin biosynthesis by Haematococcus pluvialis grown in culture medium added of cassava wastewater. Int. Biodeterior. Biodegrad. 2021, 163, 105269. Available online: https://www.sciencedirect.com/science/article/pii/S0964830521000998 (accessed on 10 October 2021). [CrossRef]
- Okpozu, O.O.; Ogbonna, I.O.; Ikwebe, J.; Ogbonna, J.C. Phycoremediation of cassava wastewater by Desmodesmus armatus and the concomitant accumulation of lipids for biodiesel production. Bioresour. Technol. Rep. 2019, 7, 100255. [Google Scholar] [CrossRef]
- Araujo, G.S.; Santiago, C.S.; Moreira, R.T.; Neto, M.P.D.; Fernandes, F.A. Nutrient removal by Arthrospira platensis cyanobacteria in cassava processing wastewater. J. Water Process. Eng. 2020, 40, 101826. [Google Scholar] [CrossRef]
- Mata, T.M.; Melo, A.C.; Simões, M.; Caetano, N. Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus. Bioresour. Technol. 2012, 107, 151–158. [Google Scholar] [CrossRef]
- Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M. Microalgae and wastewater treatment. Saudi J. Biol. Sci. 2012, 19, 257–275. Available online: http://www.scopus.com/inward/record.url?eid=2-s2.0-84863199246&partnerID=tZOtx3y1 (accessed on 14 July 2014). [CrossRef] [Green Version]
- Larissa, B.; Maran, R.M.; Ioan, B.; Anca, N.; Mircea-Iosif, R.; Horia, T.; Gheorghe, F.; Speranta, M.E.; Dan, M.I. Adjusted Net Savings of CEE and Baltic Nations in the Context of Sustainable Economic Growth: A Panel Data Analysis. J. Risk Financ. Manag. 2020, 13, 234. [Google Scholar] [CrossRef]
- Colusse, G.A.; Duarte, M.E.R.; de Carvalho, J.C.; Noseda, M.D. Media effects on laboratory scale production costs of Haematococcus pluvialis biomass. Bioresour. Technol. Rep. 2019, 7, 100236. [Google Scholar] [CrossRef]
- Wei, A.; Zhang, X.; Wei, D.; Chen, G.; Wu, Q.; Yang, S.-T. Effects of cassava starch hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides. J. Ind. Microbiol. Biotechnol. 2009, 36, 1383–1389. [Google Scholar] [CrossRef]
- Lu, Y.; Zhai, Y.; Liu, M.; Wu, Q. Biodiesel production from algal oil using cassava (Manihot esculenta Crantz) as feedstock. Environ. Boil. Fishes 2009, 22, 573–578. [Google Scholar] [CrossRef]
- Rismani-Yazdi, H.; Haznedaroglu, B.Z.; Hsin, C.; Peccia, J. Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotechnol. Biofuels 2012, 5, 74. [Google Scholar] [CrossRef] [Green Version]
- Francisco, C.; Franco, T.T.; Wagner, R.; Jacob-Lopes, E. Assessment of different carbohydrates as exogenous carbon source in cultivation of cyanobacteria. Bioprocess Biosyst. Eng. 2014, 37, 1497–1505. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wan, S.; Yu, Z.; Wang, Y.; Wang, S. Anaerobic biological treatment of high strength cassava starch wastewater in a new type up-flow multistage anaerobic reactor. Bioresour. Technol. 2011, 104, 280–288. [Google Scholar] [CrossRef]
- Popovich, C.A.; Damiani, C.; Constenla, D.; Martínez, A.M.; Freije, H.; Giovanardi, M.; Pancaldi, S.; Leonardi, P.I. Neochloris oleoabundans grown in enriched natural seawater for biodiesel feedstock: Evaluation of its growth and biochemical composition. Bioresour. Technol. 2012, 114, 287–293. [Google Scholar] [CrossRef]
- Andrew, D.E.; Lenore, S.C.; Eugene, W.R.; Arnold, E.G. Standard methods for the examination of water and wastewater, 21st edition. Am. Public Health Assoc. Wash. DC 2005. Available online: https://beta-static.fishersci.com/content/dam/fishersci/en_US/documents/programs/scientific/technical-documents/white-papers/apha-water-testing-standard-methods-introduction-white-paper.pdf (accessed on 8 October 2021).
- Daniels, L.; Hanson, R.S.; Philips, J.A. Chemical Analysis in Methods for General and Molecular Bacteriology; American Society for Microbiology: Washington, DC, USA, 1994; pp. 512–554. [Google Scholar]
- Nelson, N. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 1944, 153, 375–380. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency U-E. Total, Fixed, and Volatile Solids in Water, Solids and Biosolids; Method 1684; EPA-821-R-01-015; U.S. Environmental Protection Agency UE: Copenhagen, Denmark, 2001.
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, Z. Biodiesel production by direct methanolysis of oleaginous microbial biomass. J. Chem. Technol. Biotechnol. 2007, 82, 775–780. [Google Scholar] [CrossRef]
- Damiani, M.C.; Popovich, C.A.; Constenla, D.; Leonardi, P.I. Lipid analysis in Haematococcus pluvialis to assess its potential use as a biodiesel feedstock. Bioresour. Technol. 2010, 101, 3801–3807. [Google Scholar] [CrossRef]
- Pruvost, J.; Van Vooren, G.; Cogne, G.; Legrand, J. Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresour. Technol. 2009, 100, 5988–5995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Templeton, D.; Laurens, L.M. Nitrogen-to-protein conversion factors revisited for applications of microalgal biomass conversion to food, feed and fuel. Algal Res. 2015, 11, 359–367. [Google Scholar] [CrossRef] [Green Version]
- de Carvalho, J.C.; Magalhães, A.I.; de Melo Pereira, G.V.; Medeiros, A.B.P.; Sydney, E.B.; Rodrigues, C. Microalgal biomass pretreatment for integrated processing into biofuels, food, and feed. Bioresour. Technol. 2020, 300, 122719. Available online: https://www.sciencedirect.com/science/article/pii/S0960852419319480?via%3Dihub (accessed on 24 January 2020). [CrossRef]
- Geider, R.; La Roche, J.; Geider, R.J. European Journal of Phycology Redfield revisited: Variability of C:N:P in marine microalgae and its biochemical basis Redfield revisited: Variability of C: N: P in marine microalgae and its biochemical basis. Eur. J. Phycol. Br. Phycol. Soc. 2002, 371, 1–17. [Google Scholar]
- Ruiz González, J.; Álvarez Díaz, P.D.; Arbib, Z.; Garrido Pérez, C.; Barragán Sánchez, J.; Perales Vargas-Machuca, J.A. Effect of Nitrogen and Phosphorus Concentration on Their Removal Kinetic in Treated Urban Wastewater by Chlorella Vulgaris. Int. J. Phytoremediation 2011, 13, 884–896. [Google Scholar] [CrossRef]
- Wang, H.; Xiong, H.; Hui, Z.; Zeng, X. Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids. Bioresour. Technol. 2012, 104, 215–220. [Google Scholar] [CrossRef]
- Aslan, S.; Kapdan, I.K. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol. Eng. 2006, 28, 64–70. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Prathima, A. Neochloris oleoabundans microalgae oil as a fuel for diesel engines. Energy Sources Part A Recover Util. Environ. Eff. 2017, 39, 606–612. [Google Scholar] [CrossRef]
- Samudro, G.; Mangkoedihardjo, S. Review on Bod, Cod and Bod/Cod Ratio: A Triangle Zone for Toxic, Biodegradable and Stable Levels. Int. J. Acad. Res. 2010, 2, 4. [Google Scholar]
- Lei, A.; Chen, H.; Shen, G.; Hu, Z.; Chen, L.; Wang, J. Expression of fatty acid synthesis genes and fatty acid accumulation in haematococcus pluvialis under different stressors. Biotechnol. Biofuels 2012, 5, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, P.; Corilo, Y.; Marshall, A.G. Polar Lipid Composition of Biodiesel Algae Candidates Nannochloropsis oculata and Haematococcus pluvialis from Nano Liquid Chromatography Coupled with Negative Electrospray Ionization 14.5 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2016, 30, 8270–8276. [Google Scholar] [CrossRef]
- Abu Hajar, H.A.; Riefler, R.G.; Stuart, B.J. Cultivation of the microalga Neochloris oleoabundans for biofuels production and other industrial applications (a review). Appl. Biochem. Microbiol. 2017, 53, 640–653. [Google Scholar] [CrossRef]
- Günerken, E.; D’Hondt, E.; Eppink, M.; Elst, K.; Wijffels, R. Influence of nitrogen depletion in the growth of N. oleoabundans on the release of cellular components after beadmilling. Bioresour. Technol. 2016, 214, 89–95. [Google Scholar] [CrossRef]
- Goiris, K.; Muylaert, K.; Fraeye, I.; Foubert, I.; De Brabanter, J.; De Cooman, L. Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J. Appl. Phycol. 2012, 24, 1477–1486. [Google Scholar] [CrossRef]
- Castro-Puyana, M.; Herrero, M.; Urreta, I.; Mendiola, J.A.; Cifuentes, A.; Ibáñez, E.; Suárez-Alvarez, S. Optimization of clean extraction methods to isolate carotenoids from the microalga Neochloris oleoabundans and subsequent chemical characterization using liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2013, 405, 4607–4616. [Google Scholar] [CrossRef] [Green Version]
Microorganism | Products | References |
---|---|---|
Rhodospirillum rubrum | Biohydrogen | [13] |
Fusarium oxysporum | R-(+)-α-terpineol | [14] |
Pseudomonas aeruginosa | Rhamnolipid surfactants | [15] |
Clostridium acetobutylicum | Biohydrogen | [16] |
Mixed bacteria | Biohydrogen | [17] |
Chlorella minutissima | Biomass, proteins and lipids, effluent treatment | [8] |
Chlorella minutissima | Biomass, bioremediation | [18] |
Phormidium autumnale | Biomass, lipids | [3] |
Haematococcus pluvialis | Astaxanthin | [19] |
Desmodesmus armatus | Biomass, bioremediation | [20] |
Arthrospira platensis | Biomass, nutrient removal | [21] |
Microalgae | Average Biomass Productivity (g·L−1·day−1) |
---|---|
Amphiprora paludosa SAG 15.83 | 0.18 ± 0.04 |
Aphanothece clathrata SAG 23.99 | 0.13 ± 0.02 |
Botryococcus braunii SAG 30.81 | 0.15 ± 0.05 |
Chlorella protothecoides SAG 211−7b | 0.09 ± 0.02 |
Chlorella vulgaris SAG 2.80 | 0.10 ± 0.04 |
Chlorococcum oleofaciens SAG 213−11 | 0.06 ± 0.04 |
Dunaliella parva SAG 19−1 | 0.08 ± 0.03 |
Haematococcus pluvialis SAG 34−1b | 0.08 ± 0.02 |
Neochloris oleoabundans UTEX 1 185 | 0.21 ± 0.03 |
Scenedesmus obliquus SAG 276−10 | 0.08 ± 0.04 |
Components | Raw CPW | Sterilized CPW |
---|---|---|
pH | 5.4 ± 0.02 | 5.4 ± 0.02 |
Total solids (g·L−1) | 38.5 ± 0.13 | 39.1 ± 0.11 |
Volatile solids (g·L−1) | 32.0 ± 0.08 | 32.7 ± 0.08 |
Total carbohydrates (g·L−1) | 39.5 ± 1.10 | 40.1 ± 1.04 |
Reducing sugars (g·L−1) | 15.3 ± 0.30 | 15.8 ± 0.46 |
Total nitrate (g·L−1) | 1.90 ± 0.05 | 1.92 ± 0.04 |
Total phosphate (mg·L−1) | 246 ± 1.23 | 258 ± 1.41 |
Potassium (g·L−1) | 2.02 ± 0.03 | 2.09 ± 0.07 |
Magnesium (mg·L−1) | 165 ± 0.02 | 164 ± 0.02 |
COD (g·L−1) | 46.8 ± 0.26 | 46.8 ± 0.29 |
BOD (g·L−1) | 16.7 ± 0.12 | 16.9 ± 0.10 |
Components | Sterilized Raw CPW | Sterilized Filtered CPW | 25% Filtered CPW | H. pluvialis Culture | N. oleoabundans Culture |
---|---|---|---|---|---|
Total nitrate (g·L−1) | 1.92 ± 0.04 | 1.86 ± 0.05 | 0.47 ± 0.01 | 0.23 ± 0.01 | 0.20 ± 0.01 |
Total phosphate (mg·L−1) | 258 ± 1.41 | 250 ± 1.37 | 62.55 ± 0.35 | 28.10 ± 1.27 | 18.70 ± 1.13 |
Components | Sterilized Raw CPW | Sterilized Filtered CPW | 25% Filtered CPW | H. pluvialis Culture | N. oleoabundans Culture |
---|---|---|---|---|---|
COD (g·L−1) | 46.84 ± 0.29 | 32.78 ± 0.20 | 8.19 ± 0.05 | 3.21 ± 0.03 | 2.52 ± 0.05 |
BOD (g·L−1) | 16.89 ± 0.10 | 14.41± 0.08 | 3.60 ± 0.02 | 0.42 ± 0.02 | 0.34 ± 0.01 |
BOD/COD ratio | 0.36 ± 0.004 | 0.44 ± 0.005 | 0.44 ± 0.005 | 0.13 ± 0.01 | 0.13 ± 0.007 |
Microalgae Species | Synthetic Mixotrophic Medium | 25% CPW Medium | ||
---|---|---|---|---|
Lipids (% dw) | Lipid Productivity (g·L−1·day−1) | Lipids (% dw) | Lipid Productivity (g·L−1·day−1) | |
H. pluvialis | 18.5 ± 0.71 | 0.017 ± 0.001 | 15.2 ± 1.06 | 0.019 ± 0.001 |
N. oleoabundans | 21.0 ± 1.41 | 0.036 ± 0.002 | 19.2 ± 1.13 | 0.042 ± 0.002 |
Fatty Acids | H. pluvialis | N. oleoabundans | ||
---|---|---|---|---|
Synthetic Mixotrophic Medium | 25% CPW Medium | Synthetic Mixotrophic Medium | 25% CPW Medium | |
C14:0—Miristic acid (%) | 0.80 ± 0.02 | 0.8 ± 0.03 | 1.1 ± 0.02 | 0.97 ± 0.07 |
C16:0—Palmitic acid (%) | 21.60 ± 0.40 | 21.23 ± 0.31 | 21.10 ± 0.46 | 21.77 ± 0.32 |
C16:1 Palmitoleic acid (%) | 0.51 ± 0.02 | 0.50 ± 0.02 | 1.81 ± 0.04 | 1.80 ± 0.02 |
C16:2,3,4 (%) | 2.57 ± 0.21 | 2.33 ± 0.21 | 9.40 ± 0.08 | 9.32 ± 0.07 |
C18:0—Stearic acid (%) | 4.50 ± 0.50 | 4.42 ± 0.09 | 6.03 ± 0.40 | 6.02 ± 0.28 |
C18:1—Oleic acid (%) | 16.03 ± 0.32 | 16.13 ± 0.35 | 20.30 ± 0.53 | 20.33 ± 0.24 |
C18:2—Linoleic acid (%) | 29.87 ± 0.80 | 29.80 ± 0.72 | 12.97± 0.61 | 13.28 ± 0.33 |
C18:3—Linolenic acid (%) | 17.40 ± 0.20 | 17.53 ± 0.12 | 15.65 ± 0.10 | 15.65 ± 0.11 |
C20:0—Arachidic acid (%) | 0.35 ± 0.02 | 0.35 ± 0.01 | nd | nd |
C20:4n6—Arachidonic acid (%) | 1.18 ± 0.04 | 1.18 ± 0.02 | nd | nd |
Total (%) | 94.80 ± 1.40 | 94.29 ± 0.80 | 88.36 ± 1.28 | 89.13 ± 0.78 |
SFA (%) * | 27.25 ± 0.90 | 26.80 ± 0.36 | 28.24 ± 0.84 | 28.75 ± 0.30 |
MUFA (%) * | 16.54 ± 0.30 | 16.64 ± 0.34 | 22.11 ± 0.53 | 22.13 ± 0.25 |
PUFA (%) * | 51.02 ± 0.77 | 50.85 ± 0.69 | 38.02 ± 0.62 | 38.25 ± 0.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorgatto, V.G.; Soccol, C.R.; Molina-Aulestia, D.T.; de Carvalho, M.A.; de Melo Pereira, G.V.; de Carvalho, J.C. Mixotrophic Cultivation of Microalgae in Cassava Processing Wastewater for Simultaneous Treatment and Production of Lipid-Rich Biomass. Fuels 2021, 2, 521-532. https://doi.org/10.3390/fuels2040030
Sorgatto VG, Soccol CR, Molina-Aulestia DT, de Carvalho MA, de Melo Pereira GV, de Carvalho JC. Mixotrophic Cultivation of Microalgae in Cassava Processing Wastewater for Simultaneous Treatment and Production of Lipid-Rich Biomass. Fuels. 2021; 2(4):521-532. https://doi.org/10.3390/fuels2040030
Chicago/Turabian StyleSorgatto, Vanessa Ghiggi, Carlos Ricardo Soccol, Denisse Tatiana Molina-Aulestia, Marco Aurélio de Carvalho, Gilberto Vinícius de Melo Pereira, and Júlio Cesar de Carvalho. 2021. "Mixotrophic Cultivation of Microalgae in Cassava Processing Wastewater for Simultaneous Treatment and Production of Lipid-Rich Biomass" Fuels 2, no. 4: 521-532. https://doi.org/10.3390/fuels2040030
APA StyleSorgatto, V. G., Soccol, C. R., Molina-Aulestia, D. T., de Carvalho, M. A., de Melo Pereira, G. V., & de Carvalho, J. C. (2021). Mixotrophic Cultivation of Microalgae in Cassava Processing Wastewater for Simultaneous Treatment and Production of Lipid-Rich Biomass. Fuels, 2(4), 521-532. https://doi.org/10.3390/fuels2040030