Sediment Organic Contents Required for Gas Hydrate Formation: A Survey of Published Basin and Hydrocarbon System Models
Abstract
:1. Introduction
2. Surveyed Studies
3. Survey Results and Discussion
4. Concluding Remarks
- (A)
- Sediment organic contents are important: organic matter content and richness exert control on the volumes of liquid and gaseous hydrocarbons generated (which ultimately impacts gas hydrate formation).
- (B)
- Geology is important: both stratigraphic and structural controls on gas migration and accumulation are noted within the surveyed studies. These geologic controls impact gas migration and accumulation, which ultimately influence gas hydrate formation.
- (C)
- Basin-scale (and system-scale) investigation is important: gas does not generate, migrate, and accumulate in one dimension (i.e., in the traditional view of a single well or borehole). Gas and gas hydrate systems are dynamic, operating in three dimensions, through time.
- (D)
- Kinetics for biogenic gas-forming reactions are poorly defined and often left open to interpretation at the discretion of authors within the surveyed studies. Improved biogenic gas kinetics are necessary to better understand and predict gas hydrate formation.
- (E)
- Calibration matters: testing multiple scenarios for organic contents in a study area (as well as multiple scenarios for any parameter in the broader basin and hydrocarbon system, e.g., heat flow, lithology, sediment–water interface temperature, rock properties) can yield a better fit between model predictions and observations.
- (F)
- The distribution of studies harnessing basin and hydrocarbon system modelling of gas hydrate systems is limited (Figure 1), and overall, relatively few studies have used basin and petroleum systems modelling-based approaches to investigate gas hydrate systems. This invites much-expanded investigation of gas hydrate systems in additional locations and additional geological contexts.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hantschel, T.; Kauerauf, A.I. Fundamentals of Basin and Petroleum Systems Modeling; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Kroeger, K.F.; Plaza-Faverola, A.; Barnes, P.M.; Pecher, I.A. Thermal evolution of the New Zealand Hikurangi subduction margin: Impact on natural gas generation and methane hydrate formation–A model study. Mar. Pet. Geol. 2015, 63, 97–114. [Google Scholar] [CrossRef]
- Piñero, E.; Hensen, C.; Haeckel, M.; Rottke, W.; Fuchs, T.; Wallmann, K. 3-D numerical modelling of methane hydrate accumulations using PetroMod. Mar. Pet. Geol. 2016, 71, 288–295. [Google Scholar] [CrossRef]
- Burton, Z.F.M.; Dafov, L.N. Testing the sediment organic contents required for biogenic gas hydrate formation: Insights from synthetic 3-D basin and hydrocarbon system modelling. Minerals 2022, 3, 555–562. [Google Scholar] [CrossRef]
- Burton, Z.F.M. Characterizing Oil, Gas Hydrate, and Sedimentary Systems via Geochemistry, Computational Modeling, and Global Synthesis. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2020. [Google Scholar]
- Fujii, T.; Tin Aung, T.; Wada, N.; Komatsu, Y.; Suzuki, K.; Ukita, T.; Wygrala, B.; Fuchs, T.; Rottke, W.; Egawa, K. Modeling gas hydrate petroleum systems of the Pleistocene turbiditic sedimentary sequences of the Daini-Atsumi area, eastern Nankai Trough, Japan. Interpretation 2016, 4, SA95–SA111. [Google Scholar] [CrossRef]
- Burwicz, E.; Reichel, T.; Wallmann, K.; Rottke, W.; Haeckel, M.; Hensen, C. 3-D basin-scale reconstruction of natural gas hydrate system of the Green Canyon, Gulf of Mexico. Geochem. Geophys. Geosyst. 2017, 18, 1959–1985. [Google Scholar] [CrossRef]
- Crutchley, G.J.; Kroeger, K.F.; Pecher, I.A.; Mountjoy, J.J.; Gorman, A.R. Gas hydrate formation amid submarine canyon incision: Investigations from New Zealand’s Hikurangi subduction margin. Geochem. Geophys. Geosyst. 2017, 18, 4299–4316. [Google Scholar] [CrossRef]
- Kroeger, K.F.; Crutchley, G.J.; Hill, M.G.; Pecher, I.A. Potential for gas hydrate formation at the northwest New Zealand shelf margin—New insights from seismic reflection data and petroleum systems modelling. Mar. Pet. Geol. 2017, 83, 215–230. [Google Scholar] [CrossRef]
- Kroeger, K.F.; Crutchley, G.J.; Kellett, R.; Barnes, P.M. A 3-D Model of Gas Generation, Migration, and Gas Hydrate Formation at a Young Convergent Margin (Hikurangi Margin, New Zealand). Geochem. Geophys. Geosyst. 2019, 20, 5126–5147. [Google Scholar] [CrossRef]
- Sun, L.; Wang, X.; He, M.; Jin, J.; Li, J.; Yuanping, L.; Zhu, Z.; Zhang, G. Thermogenic gas controls high saturation gas hydrate distribution in the Pearl River Mouth Basin: Evidence from numerical modeling and seismic anomalies. Ore Geol. Rev. 2020, 127, 103846. [Google Scholar] [CrossRef]
- Haeckel, M.; Pińero, E.; Rottke, W.; Fuchs, T.; Hensen, C.; Wallmann, K. 3-D Numerical Modelling of Gas Hydrate Accumulations at the Alaska North Slope. In Proceedings of the 75th EAGE Conference & Exhibition-Workshops, European Association of Geoscientists & Engineers, London, UK, 10–13 June 2013. [Google Scholar]
- Hillman, J.I.; Burwicz, E.; Zander, T.; Bialas, J.; Klaucke, I.; Feldman, H.; Drexler, T.; Awwiller, D. Investigating a gas hydrate system in apparent disequilibrium in the Danube Fan, Black Sea. Earth Planet. Sci. Lett. 2018, 502, 1–11. [Google Scholar] [CrossRef]
- Su, P.; Liang, J.; Peng, J.; Zhang, W.; Xu, J. Petroleum systems modeling on gas hydrate of the first experimental exploitation region in the Shenhu area, northern South China sea. J. Asian Earth Sci. 2018, 168, 57–76. [Google Scholar] [CrossRef]
- Burton, Z.F.M.; Kroeger, K.F.; Hosford Scheirer, A.; Seol, Y.; Burgreen-Chan, B.; Graham, S.A. Tectonic uplift destabilizes subsea gas hydrate: A model example from Hikurangi Margin, New Zealand. Geophys. Res. Lett. 2020, 47, e2020GL087150. [Google Scholar] [CrossRef]
- Hillman, J.I.; Crutchley, G.J.; Kroeger, K.F. Investigating the role of faults in fluid migration and gas hydrate formation along the southern Hikurangi Margin, New Zealand. Mar. Geophys. Res. 2020, 41, 1–19. [Google Scholar] [CrossRef]
- Kroeger, K.F.; Crutchley, G.J.; Hillman, J.I.; Turco, F.; Barnes, P.M. Gas hydrate formation beneath thrust ridges: A test of concepts using 3D modelling at the southern Hikurangi Margin, New Zealand. Mar. Pet. Geol. 2022, 135, 105394. [Google Scholar] [CrossRef]
- Katz, B.J. Microbial processes and natural gas accumulations. Open Geol. J. 2011, 5, 75–83. [Google Scholar] [CrossRef] [Green Version]
Year | Full Reference | Map Location |
---|---|---|
2015 | Kroeger, K.F.; Plaza-Faverola, A.; Barnes, P.M.; Pecher, I.A. Thermal evolution of the New Zealand Hikurangi subduction margin: Impact on natural gas generation and methane hydrate formation–A model study. Marine and Petroleum Geology 2015, 63, 97–114. [2] | 1. New Zealand (Pegasus Basin) |
2016 | Fujii, T.; Tin Aung, T.; Wada, N.; Komatsu, Y.; Suzuki, K.; Ukita, T.; Wygrala, B.; Fuchs, T.; Rottke, W.; Egawa, K. Modeling gas hydrate petroleum systems of the Pleistocene turbiditic sedimentary sequences of the Daini-Atsumi area, eastern Nankai Trough, Japan. Interpretation 2016, 4, SA95–SA111. [6] | 2. Japan (Nankai Trough) |
2016 | Piñero, E.; Hensen, C.; Haeckel, M.; Rottke, W.; Fuchs, T.; Wallmann, K. 3-D numerical modelling of methane hydrate accumulations using PetroMod. Marine and Petroleum Geology 2016, 71, 288–295. [3] | N/A (Theoretical layer-cake model) |
2017 | Burwicz, E.; Reichel, T.; Wallmann, K.; Rottke, W.; Haeckel, M.; Hensen, C. 3-D basin-scale reconstruction of natural gas hydrate system of the Green Canyon, Gulf of Mexico. Geochemistry, Geophysics, Geosystems 2017, 18, 1959–1985. [7] | 3. Gulf of Mexico (Green Canyon) |
2017 | Crutchley, G.J.; Kroeger, K.F.; Pecher, I.A.; Mountjoy, J.J.; Gorman, A.R. Gas hydrate formation amid submarine canyon incision: investigations from New Zealand’s Hikurangi subduction margin. Geochemistry, Geophysics, Geosystems 2017, 18, 4299–4316. [8] | 4. New Zealand (Hikurangi margin) |
2017 | Kroeger, K.F.; Crutchley, G.J.; Hill, M.G.; Pecher, I.A. Potential for gas hydrate formation at the northwest New Zealand shelf margin—New insights from seismic reflection data and petroleum systems modelling. Marine and Petroleum Geology 2017, 83, 215–230. [9] | 5. New Zealand (Taranaki Basin) |
2019 | Kroeger, K.F.; Crutchley, G.J.; Kellett, R.; Barnes, P.M. A 3-D Model of Gas Generation, Migration, and Gas Hydrate Formation at a Young Convergent Margin (Hikurangi Margin, New Zealand). Geochemistry, Geophysics, Geosystems 2019, 20, 5126–5147. [10] | 6. New Zealand (Pegasus Basin) |
2020 | Sun, L.; Wang, X.; He, M.; Jin, J.; Li, J.; Yuanping, L.; Zhu, Z.; Zhang, G. Thermogenic gas controls high saturation gas hydrate distribution in the Pearl River Mouth Basin: Evidence from numerical modeling and seismic anomalies. Ore Geology Reviews 2020, 127, 103846. [11] | 7. China (Pearl River Mouth Basin) |
Year | Full Reference | Map Location |
---|---|---|
2013 | Haeckel, M.; Piñero, E.; Rottke, W.; Fuchs, T.; Hensen, C.; Wallmann, K. 3-D numerical modelling of gas hydrate accumulations at the Alaska North Slope. In 75th EAGE Conference & Exhibition-Workshops, European Association of Geoscientists & Engineers, June 2013. [12] | A. Alaska North Slope |
2018 | Hillman, J.I.; Burwicz, E.; Zander, T.; Bialas, J.; Klaucke, I.; Feldman, H.; Drexler, T.; Awwiller, D. Investigating a gas hydrate system in apparent disequilibrium in the Danube Fan, Black Sea. Earth and Planetary Science Letters 2018, 502, 1–11. [13] | B. Black Sea |
2018 | Su, P.; Liang, J.; Peng, J.; Zhang, W.; Xu, J. Petroleum systems modeling on gas hydrate of the first experimental exploitation region in the Shenhu area, northern South China sea. Journal of Asian Earth Sciences 2018, 168, 57–76. [14] | China (Pearl River Mouth Basin) |
2020 | Burton, Z.F.M.; Kroeger, K.F.; Hosford Scheirer, A.; Seol, Y.; Burgreen-Chan, B.; Graham, S.A. Tectonic uplift destabilizes subsea gas hydrate: A model example from Hikurangi Margin, New Zealand. Geophysical Research Letters 2020, 47, e2020GL087150. [15] | New Zealand (Hikurangi margin) |
2020 | Hillman, J.I.; Crutchley, G.J.; Kroeger, K.F. Investigating the role of faults in fluid migration and gas hydrate formation along the southern Hikurangi Margin, New Zealand. Marine Geophysical Research 2020, 41, 1–19. [16] | New Zealand (Hikurangi margin) |
Reference | Location | Sediment Age | TOC (wt.%) | HI |
---|---|---|---|---|
Kroeger et al., 2015 [2] | New Zealand (Pegasus Basin) | Miocene to Recent | 0.5 (conservative) 1.0 | 100 |
Fujii et al., 2016 [6] | Japan (Nankai Trough) | 1.5 to 0 Ma | 0.5 | 60 |
Piñero et al., 2016 [3] | Theoretical layer-cake model | 2.5 to 0 Ma | 2.5 | 240 |
Burwicz et al., 2017 [7] | Gulf of Mexico (Green Canyon) | Pliocene and Pleistocene | 0.7 (conservative) 1.0 (most realistic) | 100 |
Crutchley et al., 2017 [8] | New Zealand (Hikurangi margin) | Miocene to Recent | 0.5 | 100 |
Kroeger et al., 2017 [9] | New Zealand (Taranaki Basin) | Miocene to Recent | 0.5 | 100 |
Kroeger et al., 2019 [10] | New Zealand (Pegasus Basin) | Neogene | 0.5 1.0 | 100 |
Sun et al., 2020 [11] | China (Pearl River Mouth Basin) | Quaternary and older | 0.5 1.0 | ? |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burton, Z.F.M. Sediment Organic Contents Required for Gas Hydrate Formation: A Survey of Published Basin and Hydrocarbon System Models. Fuels 2022, 3, 580-587. https://doi.org/10.3390/fuels3040035
Burton ZFM. Sediment Organic Contents Required for Gas Hydrate Formation: A Survey of Published Basin and Hydrocarbon System Models. Fuels. 2022; 3(4):580-587. https://doi.org/10.3390/fuels3040035
Chicago/Turabian StyleBurton, Zachary F. M. 2022. "Sediment Organic Contents Required for Gas Hydrate Formation: A Survey of Published Basin and Hydrocarbon System Models" Fuels 3, no. 4: 580-587. https://doi.org/10.3390/fuels3040035
APA StyleBurton, Z. F. M. (2022). Sediment Organic Contents Required for Gas Hydrate Formation: A Survey of Published Basin and Hydrocarbon System Models. Fuels, 3(4), 580-587. https://doi.org/10.3390/fuels3040035