Synthesis and Characterization of Epoxidized Beechwood Pyrolysis Bio-Oil as a Curing Agent of Bio-Based Novolac Resin
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Beech Wood Pyrolysis Bio-Oil Fractions
2.3. Synthesis of Bio-Oil Based Glyoxal Novolac Resin
2.4. Synthesis of Bio-Oil-Based Epoxy Resin
2.5. Curing Process
2.6. Characterization
2.6.1. Attenuated Total Reflection Fourier-Transform Infrared (ATR-FTIR)
2.6.2. Nuclear Magnetic Resonance (1H-NMR)
2.6.3. Epoxy Equivalent Weight (EEW) Determination
2.6.4. Gel Permeation Chromatography (GPC)
2.6.5. Thermal Analysis of the Cured Resins
3. Results and Discussion
3.1. Synthesis and Characterization of the Bio-Oil Based Epoxy (BOE) Resin
3.2. Characterization of BOG Resin
3.3. Kinetic Study of BOE/DGEBA-BOG Curing System
3.4. Thermal Characterization of the BOE/DGEBA Cured BOG Resins
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
A | Pre-exponential factor (min−1) |
BOE | Bio-oil based epoxy resin |
BOG | Bio-oil based glyoxal novolac resin |
BPA | Bisphenol A |
C | Constant of Flynn–Wall–Ozawa method |
CNaOH | Molar concentration of 0.2 mol/L NaOH solution |
DCM | Dichloromethane |
DGEBA | Bisphenol A type epoxy resin |
DMSO-D6 | Dimethyl sulfoxide-D6 |
DSC | Differential scanning calorimeter |
DTR | Drop tube reactor |
ECH | Epichlorohydrin |
EEW | Epoxy equivalent weight |
FTIR | Fourier transform infrared spectroscopy |
FWO | Flynn–Wall–Ozawa method |
GC-FID | Gas chromatography with flame ionization detector |
GC–MS | Gas chromatograph-mass spectrometry instrument |
GPC | Gel permeation chromatography |
1H-NMR | Proton nuclear magnetic resonance |
HMTA | Hexamethylenetetramine |
HPLC | High-performance liquid chromatography |
KOH | Potassium hydroxide |
L | Weight of the dried OIL1WI |
M | Molar concentration |
Mn | Average molecular weight number |
Mw | Average molecular weight |
n | Reaction order |
NaOH | Sodium hydroxide |
OHN | Hydroxyl number |
OIL1WI | Water-insoluble fractions of bio-oil products |
OILS | Pyrolysis oil products from single condenser |
OIL1 | Pyrolysis oil products from first condenser |
OIL2 | Pyrolysis oil products from second condenser |
OIL3 | Pyrolysis oil products from third condenser |
P | BOE resin weight (g) |
PA | Phenol acetaldehyde resin |
PF | Phenol formaldehyde resin |
R | Gas constant (8.314 J/mol. K) |
R2 | Pearson’s correlation coefficient (0 ≤ R2 ≤ 1) |
R800 | Residual percentage at 800 °C |
S | Weight of dried BOE |
TEBAC | Benzyltriethylammonium chloride |
Td5 | Initial degradation temperature for 5% weight loss |
Tg | Glass transition temperature |
Tmax | Temperature of maximum decomposition rate |
Tp | Temperature of maximum reaction rate, or peak temperature |
TGA | Thermogravimetric analysis |
TPP | Triphenylphosphine |
VA | 0.2 mol/L NaOH volume (mL) for the blank |
VB | 0.2 mol/L NaOH volume (mL) for the prepolymer |
wt.% | Percentage, on mass basis |
β | Heating rate (K/min) |
Appendix A
References
- Ferdosian, F.; Yuan, Z.; Anderson, M.; Xu, C.C. Thermal performance and thermal decomposition kinetics of lignin-based epoxy resins. J. Anal. Appl. Pyrolysis 2016, 119, 124–132. [Google Scholar] [CrossRef]
- Kumar, S.; Krishnan, S.; Mohanty, S.; Nayak, S.K. Synthesis and characterization of petroleum and biobased epoxy resins: A review. Polym. Int. 2018, 67, 815–839. [Google Scholar] [CrossRef]
- Kumar, S.; Samal, S.K.; Mohanty, S.; Nayak, S.K. Recent development of biobased epoxy resins: A review. Polym.-Plast. Technol. Eng. 2018, 57, 133–155. [Google Scholar] [CrossRef]
- Wan, J.; Zhao, J.; Zhang, X.; Fan, H.; Zhang, J.; Hu, D.; Jin, P.; Wang, D.-Y. Epoxy thermosets and materials derived from bio-based monomeric phenols: Transformations and performances. Prog. Polym. Sci. 2020, 108, 101287. [Google Scholar] [CrossRef]
- Ding, C.; Matharu, A.S. Recent Developments on Biobased Curing Agents: A Review of Their Preparation and Use. ACS Sustain. Chem. Eng. 2014, 2, 2217–2236. [Google Scholar] [CrossRef]
- Feghali, E.; van de Pas, D.J.; Parrott, A.J.; Torr, K.M. Biobased Epoxy Thermoset Polymers from Depolymerized Native Hardwood Lignin. ACS Macro Lett. 2020, 9, 1155–1160. [Google Scholar] [CrossRef]
- Celikbag, Y.; Meadows, S.; Barde, M.; Adhikari, S.; Buschle-Diller, G.; Auad, M.L.; Via, B.K. Synthesis and Characterization of Bio-oil-Based Self-Curing Epoxy Resin. Ind. Eng. Chem. Res. 2017, 56, 9389–9400. [Google Scholar] [CrossRef]
- Fang, Z.; Weisenberger, M.C.; Meier, M.S. Utilization of Lignin-Derived Small Molecules: Epoxy Polymers from Lignin Oxidation Products. ACS Appl. Bio. Mater. 2020, 3, 881–890. [Google Scholar] [CrossRef]
- Feghali, E.; van de Pas, D.J.; Torr, K.M. Toward Bio-Based Epoxy Thermoset Polymers from Depolymerized Native Lignins Produced at the Pilot Scale. Biomacromolecules 2020, 21, 1548–1559. [Google Scholar] [CrossRef]
- Ferdosian, F.; Yuan, Z.; Anderson, M.; Xu, C. Synthesis of lignin-based epoxy resins: Optimization of reaction parameters using response surface methodology. RSC Adv. 2014, 4, 31745–31753. [Google Scholar] [CrossRef]
- Hernandez, E.D.; Bassett, A.W.; Sadler, J.M.; La Scala, J.J.; Stanzione, J.F. Synthesis and Characterization of Bio-based Epoxy Resins Derived from Vanillyl Alcohol. ACS Sustain. Chem. Eng. 2016, 4, 4328–4339. [Google Scholar] [CrossRef]
- Chen, C.-H.; Tung, S.-H.; Jeng, R.-J.; Abu-Omar, M.M.; Lin, C.-H. A facile strategy to achieve fully bio-based epoxy thermosets from eugenol. Green Chem. 2019, 21, 4475–4488. [Google Scholar] [CrossRef]
- Khundamri, N.; Aouf, C.; Fulcrand, H.; Dubreucq, E.; Tanrattanakul, V. Bio-based flexible epoxy foam synthesized from epoxidized soybean oil and epoxidized mangosteen tannin. Ind. Crops Prod. 2019, 128, 556–565. [Google Scholar] [CrossRef]
- Benyahya, S.; Aouf, C.; Caillol, S.; Boutevin, B.; Pascault, J.P.; Fulcrand, H. Functionalized green tea tannins as phenolic prepolymers for bio-based epoxy resins. Ind. Crops Prod. 2014, 53, 296–307. [Google Scholar] [CrossRef]
- Kim, J.R.; Sharma, S. The development and comparison of bio-thermoset plastics from epoxidized plant oils. Ind. Crops Prod. 2012, 36, 485–499. [Google Scholar] [CrossRef]
- Pan, X.; Sengupta, P.; Webster, D.C. Novel biobased epoxy compounds: Epoxidized sucrose esters of fatty acids. Green Chem. 2011, 13, 965–975. [Google Scholar] [CrossRef]
- Koike, T. Progress in development of epoxy resin systems based on wood biomass in Japan. Polym. Eng. Sci. 2012, 52, 701–717. [Google Scholar] [CrossRef]
- Zhang, Y.; Pang, H.; Wei, D.; Li, J.; Li, S.; Lin, X.; Wang, F.; Liao, B. Preparation and characterization of chemical grouting derived from lignin epoxy resin. Eur. Polym. J. 2019, 118, 290–305. [Google Scholar] [CrossRef]
- Cheng, S.; Yuan, Z.; Anderson, M.; Leitch, M.; Xu, C.C. Synthesis of biobased phenolic resins/adhesives with methylolated wood-derived bio-oil. J. Appl. Polym. Sci. 2012, 126, E431–E441. [Google Scholar] [CrossRef]
- Mohabeer, C.; Abdelouahed, L.; Marcotte, S.; Taouk, B. Comparative analysis of pyrolytic liquid products of beech wood, flax shives and woody biomass components. J. Anal. Appl. Pyrolysis 2017, 127, 269–277. [Google Scholar] [CrossRef]
- Aslan, M.; Özbay, G.; Ayrilmis, N. Adhesive characteristics and bonding performance of phenol formaldehyde modified with phenol-rich fraction of crude bio-oil. J. Adhes. Sci. Technol. 2015, 29, 2679–2691. [Google Scholar] [CrossRef]
- Cheng, S.; D’Cruz, I.; Yuan, Z.; Wang, M.; Anderson, M.; Leitch, M.; Xu, C.C. Use of biocrude derived from woody biomass to substitute phenol at a high-substitution level for the production of biobased phenolic resol resins. J. Appl. Polym. Sci. 2011, 121, 2743–2751. [Google Scholar] [CrossRef]
- Cui, Y.; Chang, J.; Wang, W. Fabrication of Glass Fiber Reinforced Composites Based on Bio-Oil Phenol Formaldehyde Resin. Materials 2016, 9, 886. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Hou, X.; Wang, W.; Chang, J. Synthesis and Characterization of Bio-Oil Phenol Formaldehyde Resin Used to Fabricate Phenolic Based Materials. Materials 2017, 10, 668. [Google Scholar] [CrossRef]
- Wang, J.; Abdelouahed, L.; Xu, J.; Brodu, N.; Taouk, B. Catalytic Hydrodeoxygenation of Model Bio-oils Using HZSM-5 and Ni2P/HZM-5 Catalysts: Comprehension of Interaction. Chem. Eng. Technol. 2021, 44, 2126–2138. [Google Scholar] [CrossRef]
- Xu, J.; Brodu, N.; Wang, J.; Abdelouahed, L.; Taouk, B. Chemical characteristics of bio-oil from beech wood pyrolysis separated by fractional condensation and water extraction. J. Energy Inst. 2021, 99, 186–197. [Google Scholar] [CrossRef]
- Oasmaa, A.; Kuoppala, E.; Gust, S.; Solantausta, Y. Fast Pyrolysis of Forestry Residue. 1. Effect of Extractives on Phase Separation of Pyrolysis Liquids. Energy Fuels 2003, 17, 1–12. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, H.; Wu, S.; Jiang, W.; Wei, W.; Lei, M. Fractionation of pyrolysis oil derived from lignin through a simple water extraction method. Fuel 2019, 242, 587–595. [Google Scholar] [CrossRef]
- Liu, Y.; Via, B.K.; Pan, Y.; Cheng, Q.; Guo, H.; Auad, M.L.; Taylor, S. Preparation and Characterization of Epoxy Resin Cross-Linked with High Wood Pyrolysis Bio-Oil Substitution by Acetone Pretreatment. Polymers 2017, 9, 106. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, S.; Zhang, X.; Jing, X. The effect of free dihydroxydiphenylmethanes on the thermal stability of novolac resin. Polym. Degrad. Stab. 2019, 168, 108946. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, Z.; Xu, C. Bio-based resins for fiber-reinforced polymer composites. In Natural Fiber-Reinforced Biodegradable and Bioresorbable Polymer Composites; Woodhead Publishing: Sawston, UK, 2017; pp. 137–162. [Google Scholar]
- Xu, J.; Brodu, N.; Mignot, M.; Youssef, B.; Taouk, B. Synthesis and characterization of phenolic resins based on pyrolysis bio-oil separated by fractional condensation and water extraction. Biomass Bioenergy 2022, 159, 106393. [Google Scholar] [CrossRef]
- Xu, J.; Brodu, N.; Abdelouahed, L.; Taouk, B. Investigation of the combination of fractional condensation and water extraction for improving the storage stability of pyrolysis bio-oil. Fuel 2022, 314, 123019. [Google Scholar] [CrossRef]
- Aouf, C.; Benyahya, S.; Esnouf, A.; Caillol, S.; Boutevin, B.; Fulcrand, H. Tara tannins as phenolic precursors of thermosetting epoxy resins. Eur. Polym. J. 2014, 55, 186–198. [Google Scholar] [CrossRef]
- Barde, M.; Adhikari, S.; Via, B.K.; Auad, M.L. Synthesis and characterization of epoxy resins from fast pyrolysis bio-oil. Green Mater. 2018, 6, 76–84. [Google Scholar] [CrossRef]
- Wang, F.; Kuai, J.; Pan, H.; Wang, N.; Zhu, X. Study on the demethylation of enzymatic hydrolysis lignin and the properties of lignin–epoxy resin blends. Wood Sci. Technol. 2018, 52, 1343–1357. [Google Scholar] [CrossRef]
- Choi, W.S.; Shanmugharaj, A.M.; Ryu, S.H. Study on the effect of phenol anchored multiwall carbon nanotube on the curing kinetics of epoxy/Novolac resins. Thermochim. Acta 2010, 506, 77–81. [Google Scholar] [CrossRef]
- Ren, S.-P.; Lan, Y.-X.; Zhen, Y.-Q.; Ling, Y.-D.; Lu, M.-G. Curing reaction characteristics and phase behaviors of biphenol type epoxy resins with phenol novolac resins. Thermochim. Acta 2006, 440, 60–67. [Google Scholar] [CrossRef]
- Zhang, Y.; Ferdosian, F.; Yuan, Z.; Xu, C.C. Sustainable glucose-based phenolic resin and its curing with a DGEBA epoxy resin. J. Taiwan Inst. Chem. Eng. 2017, 71, 381–387. [Google Scholar] [CrossRef]
- Böhm, R.; Hauptmann, M.; Pizzi, A.; Friedrich, C.; Laborie, M.-P. The chemical, kinetic and mechanical characterization of tannin-based adhesives with different crosslinking systems. Int. J. Adhes. Adhes. 2016, 68, 1–8. [Google Scholar] [CrossRef]
- Hussin, M.H.; Samad, N.A.; Latif, N.H.A.; Rozuli, N.A.; Yusoff, S.B.; Gambier, F.; Brosse, N. Production of oil palm (Elaeis guineensis) fronds lignin-derived non-toxic aldehyde for eco-friendly wood adhesive. Int. J. Biol. Macromol. 2018, 113, 1266–1272. [Google Scholar] [CrossRef]
- Aziz, N.A.; Latip, A.F.A.; Peng, L.C.; Latif, N.H.A.; Brosse, N.; Hashim, R.; Hussin, M.H. Reinforced lignin-phenol-glyoxal (LPG) wood adhesives from coconut husk. Int. J. Biol. Macromol. 2019, 141, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Aouf, C.; Le Guernevé, C.; Caillol, S.; Fulcrand, H. Study of the O-glycidylation of natural phenolic compounds. The relationship between the phenolic structure and the reaction mechanism. Tetrahedron 2013, 69, 1345–1353. [Google Scholar] [CrossRef]
- Sibaja, B.; Adhikari, S.; Celikbag, Y.; Via, B.; Auad, M.L. Fast pyrolysis bio-oil as precursor of thermosetting epoxy resins. Polym. Eng. Sci. 2018, 58, 1296–1307. [Google Scholar] [CrossRef]
- Hussin, M.H.; Aziz, A.A.; Iqbal, A.; Ibrahim, M.N.M.; Latif, N.H.A. Development and characterization novel bio-adhesive for wood using kenaf core (Hibiscus cannabinus) lignin and glyoxal. Int. J. Biol. Macromol. 2019, 122, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Nahra, L.R.; Rezende, M.C.; Oliveira, M.P.; Guerrini, L.M. Glyoxalation of Kraft lignin and optimization of electrospinning process parameters for producing polyacrylonitrile/KL nanomats for potential applications as carbon material. J. Polym. Res. 2020, 27, 331. [Google Scholar] [CrossRef]
- van de Pas, D.J.; Torr, K.M. Biobased Epoxy Resins from Deconstructed Native Softwood Lignin. Biomacromolecules 2017, 18, 2640–2648. [Google Scholar] [CrossRef]
- Ma, S.; Liu, X.; Fan, L.; Jiang, Y.; Cao, L.; Tang, Z.; Zhu, J. Synthesis and properties of a bio-based epoxy resin with high epoxy value and low viscosity. ChemSusChem 2014, 7, 555–562. [Google Scholar] [CrossRef]
- Nouailhas, H.; Aouf, C.; Le Guerneve, C.; Caillol, S.; Boutevin, B.; Fulcrand, H. Synthesis and properties of biobased epoxy resins. part 1. Glycidylation of flavonoids by epichlorohydrin. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 2261–2270. [Google Scholar] [CrossRef]
- Shang, L.; Zhang, X.; Zhang, M.; Jin, L.; Liu, L.; Xiao, L.; Li, M.; Ao, Y. A highly active bio-based epoxy resin with multi-functional group: Synthesis, characterization, curing and properties. J. Mater. Sci. 2017, 53, 5402–5417. [Google Scholar] [CrossRef]
- Wang, Z.; Gnanasekar, P.; Nair, S.S.; Farnood, R.; Yi, S.; Yan, N. Biobased Epoxy Synthesized from a Vanillin Derivative and Its Reinforcement Using Lignin-Containing Cellulose Nanofibrils. ACS Sustain. Chem. Eng. 2020, 8, 11215–11223. [Google Scholar] [CrossRef]
- Kuo, P.-Y.; de Assis Barros, L.; Sain, M.; Tjong, J.S.Y.; Yan, N. Effects of Reaction Parameters on the Glycidyl Etherification of Bark Extractives during Bioepoxy Resin Synthesis. ACS Sustain. Chem. Eng. 2016, 4, 1016–1024. [Google Scholar] [CrossRef]
- Ramires, E.C.; Megiatto, J.D., Jr.; Gardrat, C.; Castellan, A.; Frollini, E. Biobased composites from glyoxal-phenolic resins and sisal fibers. Bioresour. Technol. 2010, 101, 1998–2006. [Google Scholar] [CrossRef]
- Nair, C. Advances in addition-cure phenolic resins. Prog. Polym. Sci. 2004, 29, 401–498. [Google Scholar] [CrossRef]
- Wang, M.; Wei, L.; Zhao, T. Cure study of addition-cure-type and condensation–addition-type phenolic resins. Eur. Polym. J. 2005, 41, 903–912. [Google Scholar] [CrossRef]
Phenols in Oil | mol.% | |
---|---|---|
OIL1 | OIL1WI | |
Phenol | 1.20 | 2.47 |
o-Cresol | 1.20 | 3.26 |
m-Cresol | 0.94 | 1.91 |
2,6-Dimethylphenol | 1.10 | 1.86 |
2,4-Dimethylphenol | 3.59 | 5.06 |
Phenol, 3-ethyl−5-methyl- | 1.00 | 2.42 |
3-Methylcatechol | 2.62 | 2.57 |
Catechol | 2.88 | 3.14 |
4-Methylcatechol | 1.88 | 3.08 |
4-Ethylcatechol | 1.69 | 5.52 |
Guaiacol | - | - |
Creosol | 1.69 | 3.58 |
4-Ethylguaiacol | 1.59 | 3.02 |
Syringol | 3.06 | 4.71 |
Isoeugenol | 1.55 | 3.21 |
2,4-Dimethoxyphenol | 1.30 | 4.62 |
Hydroxyl group/mmol·g−1 | 3.62 | 7.62 |
Epoxy Resin | Reaction Time/h | Yield (%) | EEW (g Equiv−1) | Mn (g/mol) | Mw (g/mol) | Polydispersity |
---|---|---|---|---|---|---|
BOE1.5 | 1.5 | 87.3 ± 2.2 | 310 ± 3 | 303 ± 20 | 723 ± 15 | 2.39 |
BOE2 | 2.0 | 91.0 ± 1.7 | 317 ± 2 | 368 ± 18 | 1019 ± 31 | 2.77 |
BOE2.5 | 2.5 | 92.8 ± 1.1 | 375 ± 1 | 375 ± 11 | 1108 ± 33 | 2.96 |
DGEBA | - | - | 181 ± 1 | - | - | - |
Resin | Onset Temp (°C) | Peak Temp (°C) | Enthalpy (J/g) |
---|---|---|---|
BOG + 40% DGEBA | 134.2 | 164.7 | 83.4 |
BOG + 30% DGEBA + 10% BOE | 106.5 | 148.7 | 78.9 |
BOG + 20% DGEBA + 20% BOE | 107.8 | 147.3 | 73.6 |
BOG + 10% DGEBA + 30% BOE | 104.2 | 141.5 | 69.9 |
BOG + 40% BOE | 106.1 | 135.3 | 63.1 |
Resin Type | Heating Rate (K/min) | Ea(kJ/mol) | n | |||||
---|---|---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | Kissinger | Flynn–Wall–Ozawa | |||
BOG + 40% DGEBA | Onset temp (°C) | 122.2 | 134.2 | 136.9 | 139.9 | 89.5 | 92.1 | 0.95 |
Peak temp (°C) | 153.2 | 164.7 | 171.6 | 175.8 | ||||
BOG + 30% DGEBA + 10% BOE | Onset temp (°C) | 104.0 | 106.5 | 116.5 | 123.9 | 76.9 | 79.8 | 0.94 |
Peak temp (°C) | 137.6 | 148.7 | 157.4 | 161.7 | ||||
BOG + 20% DGEBA + 20% BOE | Onset temp (°C) | 95.7 | 107.8 | 114.9 | 119.3 | 74.2 | 77.3 | 0.93 |
Peak temp (°C) | 135.7 | 147.3 | 155.3 | 160.7 | ||||
BOG + 10% DGEBA + 30% BOE | Onset temp (°C) | 84.9 | 104.2 | 114.6 | 116.1 | 73.8 | 76.7 | 0.94 |
Peak temp (°C) | 129.1 | 141.5 | 149.3 | 153.1 | ||||
BOG + 40% BOE | Onset temp (°C) | 85.4 | 106.1 | 112.0 | 113.8 | 64.0 | 67.3 | 0.92 |
Peak temp (°C) | 121.0 | 135.3 | 142.1 | 148.2 |
Resin Name | Tg (°C) | Td5 (°C) | Tmax (°C) | R800 (%) |
---|---|---|---|---|
BOG | 75.8 ± 1.1 | 203.7 ± 0.8 | 335.0 ± 1.0 | 30.90 ± 0.21 |
BOG + 40% DGEBA | 121.1 ± 0.5 | 282.9 ± 0.6 | 390.6 ± 1.7 | 39.66 ± 0.31 |
BOG + 30% DGEBA + 10% BOE | 117.4 ± 0.8 | 282.8 ± 1.1 | 389.2 ± 2.1 | 39.99 ± 0.39 |
BOG + 20% DGEBA + 20% BOE | 113.7 ± 0.7 | 282.4 ± 2.7 | 385.7 ± 3.3 | 40.16 ± 0.23 |
BOG + 10% DGEBA + 30% BOE | 101.2 ± 1.5 | 278.1 ± 2.3 | 383.1 ± 1.5 | 42.29 ± 0.43 |
BOG + 40% BOE | 96.1 ± 2.4 | 271.7 ± 1.3 | 381.5 ± 2.2 | 43.26 ± 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Brodu, N.; Abdelouahed, L.; Mohabeer, C.; Taouk, B. Synthesis and Characterization of Epoxidized Beechwood Pyrolysis Bio-Oil as a Curing Agent of Bio-Based Novolac Resin. Fuels 2023, 4, 186-204. https://doi.org/10.3390/fuels4020012
Xu J, Brodu N, Abdelouahed L, Mohabeer C, Taouk B. Synthesis and Characterization of Epoxidized Beechwood Pyrolysis Bio-Oil as a Curing Agent of Bio-Based Novolac Resin. Fuels. 2023; 4(2):186-204. https://doi.org/10.3390/fuels4020012
Chicago/Turabian StyleXu, Jie, Nicolas Brodu, Lokmane Abdelouahed, Chetna Mohabeer, and Bechara Taouk. 2023. "Synthesis and Characterization of Epoxidized Beechwood Pyrolysis Bio-Oil as a Curing Agent of Bio-Based Novolac Resin" Fuels 4, no. 2: 186-204. https://doi.org/10.3390/fuels4020012
APA StyleXu, J., Brodu, N., Abdelouahed, L., Mohabeer, C., & Taouk, B. (2023). Synthesis and Characterization of Epoxidized Beechwood Pyrolysis Bio-Oil as a Curing Agent of Bio-Based Novolac Resin. Fuels, 4(2), 186-204. https://doi.org/10.3390/fuels4020012