Numerical Investigation of Performance, Combustion, and Emission Characteristics of Various Microalgae Biodiesel on CI Engine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Fuel Properties
2.2. Experimental Setup
2.3. Uncertainty Analysis
2.4. Numerical Tool
2.4.1. Diesel-RK Model
2.4.2. Simulation Models
2.4.3. Governing Equations
2.4.4. Simulation Inputs
2.5. Diesel-RK Model Validation
3. Results
3.1. Combustion Parameters Analysis
3.1.1. Cylinder Pressure (CP)
3.1.2. Heat Release Rate (HRR)
3.2. Performance Parameters Analysis
3.2.1. Brake Thermal Efficiency (BTE)
3.2.2. Exhaust Gas Temperature
3.2.3. Specific Fuel Combustion
3.3. Emission Parameters Analysis
3.3.1. NOX Emission
3.3.2. CO2 Emission
3.3.3. PM Emission
3.3.4. Smoke Analysis
4. Conclusions
- -
- In terms of combustion characteristics, the microalgae biodiesel blends, when compared to petroleum diesel, have less cylinder pressure as biodiesel has a shorter ignition delay. The HRR for biodiesel and its blends were lower than that for diesel because they burn for longer periods of time and contain more oxygen. Irrespective of CRs, minor reductions in CP and HRR were found for DMB20;
- -
- In terms of performance characteristics, SFC for biodiesel blends increased, but BTE and EGT decreased when compared to diesel because the blends that were evaluated had greater heating values and oxygen content. Additionally, with an increase in CRs, SFC increases, while BTE and EGT decrease. The highest increment in SFC was found for CMB20 around 3.27–5.35% with all CRs;
- -
- In terms of emission characteristics, PM and smoke level decrease for all the biodiesel blends, while NOx, as opposed to diesel, and CO2 rise. As the engine load increases, the rate of CO2 emission decreases, entailing more fuel injection. With an increase in CRs, the smoke level decreases, while PM, CO2, and NOx emissions increase. Irrespective of CRs, major reductions in the PM and smoke level were found in SDMB20 and SOMB20 in the range of 8–14%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
BDC | Bottom dead center | BSN | Bosch smoke number |
BTE | Brake thermal efficiency | CA | Crank angle |
CI | Compression ignition | CR | Compression ratio |
CO2 | Carbon dioxide | CP | Cylinder pressure |
CMB20 | 80% diesel + 20% Chlorella protothecoides microalgae biodiesel | D100 | 100% diesel + 0% biodiesel |
DMB20 | 80% diesel + 20% Dunaliella tertiolecta microalgae biodiesel | EGT | Exhaust gas temperature |
HRR | Heat release rate | PM | Particulate matter |
SOMB20 | SOMB20 80% diesel + 20% Scenedesmus obliquus microalgae biodiesel | SDMB20 | 80% diesel + 20% Scenedesmus dimorphu microalgae biodiesel |
SFC | Specific fuel consumption | NOx | Oxide of nitrogen |
References
- Abomohra, A.E.-F.; Jin, W.; Tu, R.; Han, S.-F.; Eid, M.; Eladel, H. Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives. Renew. Sustain. Energy Rev. 2016, 64, 596–606. [Google Scholar] [CrossRef]
- Kalsi, S.S.; Subramanian, K.A. Effect of simulated biogas on performance, combustion and emissions characteristics of a bio-diesel fueled diesel engine. Renew. Energy 2017, 106, 78–90. [Google Scholar] [CrossRef]
- Corrêa, S.M.; Arbilla, G. Carbonyl emissions in diesel and biodiesel exhaust. Atmos. Environ. 2008, 42, 769–775. [Google Scholar] [CrossRef]
- Chang, J.; Leung, D.Y.; Wu, C.; Yuan, Z. A review on the energy production, consumption, and prospect of renewable energy in China. Renew. Sustain. Energy Rev. 2003, 7, 453–468. [Google Scholar] [CrossRef]
- IEA (International Energy Agency). Key World Energy Statistics 2020; International Energy Agency India, 2020; Volume 33, p. 4649. Available online: https://www.iea.org/reports/key-world-energy-statistics-2020 (accessed on 17 October 2022).
- Bharadwaj, S.; Ballare, S.; Rohit; Chandel, M.K. Impact of congestion on greenhouse gas emissions for road transport in Mumbai metropolitan region. Transp. Res. Procedia 2017, 25, 3538–3551. [Google Scholar] [CrossRef]
- IEA (2021). Tracking Transport; IEA: Paris, France, 2021; Available online: https://www.iea.org/reports/tracking-transport-2021 (accessed on 17 October 2022).
- Murugesan, A.; Umarani, C.; Subramanian, R.; Nedunchezhian, N. Bio-diesel as an alternative fuel for diesel engines—A review. Renew. Sustain. Energy Rev. 2009, 13, 653–662. [Google Scholar] [CrossRef]
- Chauhan, S.; Shukla, A. Environmental Impacts of Production of Biodiesel and Its Use in Transportation Sector. Environ. Impact Biofuels 2011, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Zhou, H.; Lin, L. Biodiesel: An Alternative to Conventional Fuel. Energy Procedia 2012, 16, 1874–1885. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekar, K.; Sudhakar, S.; Rajappan, R.; Senthil, S.; Balu, P. Present developments and the reach of alternative fuel: A review. Mater. Today Proc. 2021, 51, 74–83. [Google Scholar] [CrossRef]
- Gumus, M.; Kasifoglu, S. Performance and emission evaluation of a compression ignition engine using a biodiesel (apricot seed kernel oil methyl ester) and its blends with diesel fuel. Biomass-Bioenergy 2010, 34, 134–139. [Google Scholar] [CrossRef]
- Kannan, D.; Pachamuthu, S.; Nabi, N.; Hustad, J.E.; Løvås, T. Theoretical and experimental investigation of diesel engine performance, combustion and emissions analysis fuelled with the blends of ethanol, diesel and jatropha methyl ester. Energy Convers. Manag. 2012, 53, 322–331. [Google Scholar] [CrossRef]
- Fazal, M.; Haseeb, A.; Masjuki, H. Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability. Renew. Sustain. Energy Rev. 2011, 15, 1314–1324. [Google Scholar] [CrossRef]
- Jaafar, M.N.M.; Safiullah, S. Combustion Characteristics of Rice Bran Oil Biodiesel in an Oil Burner. J. Teknol. 2018, 80. [Google Scholar] [CrossRef]
- Bhuiya, M.M.K.; Rasul, M.; Khan, M.; Ashwath, N.; Azad, A.; Hazrat, M. Second generation biodiesel: Potential alternative to-edible oil-derived biodiesel. Energy Procedia 2014, 61, 1969–1972. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.L.; Yasin, N.H.M.; Derek, C.J.C.; Lim, J.K. Microalgae as a sustainable energy source for biodiesel production: A review, Renew. Sustain. Energy Rev. 2010, 15, 584–593. [Google Scholar] [CrossRef]
- Suparmaniam, U.; Lam, M.K.; Uemura, Y.; Lim, J.W.; Lee, K.T.; Shuit, S.H. Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review. Renew. Sustain. Energy Rev. 2019, 115, 109361. [Google Scholar] [CrossRef]
- Singh, J.; Gu, S. Commercialization potential of microalgae for biofuels production. Renew. Sustain. Energy Rev. 2010, 14, 2596–2610. [Google Scholar] [CrossRef]
- Amaro, H.M.; Guedes, A.C.; Malcata, F.X. Advances and perspectives in using microalgae to produce biodiesel. Appl. Energy 2011, 88, 3402–3410. [Google Scholar] [CrossRef]
- Khan, S.A.; Rashmi; Hussain, M.Z.; Prasad, S.; Banerjee, U. Prospects of biodiesel production from microalgae in India. Renew. Sustain. Energy Rev. 2009, 13, 2361–2372. [Google Scholar] [CrossRef]
- Aravantinou, A.F.; Theodorakopoulos, M.A.; Manariotis, I.D. Selection of microalgae for wastewater treatment and potential lipids production. Bioresour. Technol. 2013, 147, 130–134. [Google Scholar] [CrossRef]
- Singh, B.; Guldhe, A.; Rawat, I.; Bux, F. Towards a sustainable approach for development of biodiesel from plant and microalgae. Renew. Sustain. Energy Rev. 2014, 29, 216–245. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.T.; Rashid, F.; Arefin, A. Numerical analysis of the performance and NOx emission of a diesel engine fueled with algae biofuel-diesel blends. Energy Sources Part A Recover. Util. Environ. Eff. 2021, 43, 1–20. [Google Scholar] [CrossRef]
- Hoekman, S.K.; Robbins, C. Review of the effects of biodiesel on NOx emissions. Fuel Process. Technol. 2012, 96, 237–249. [Google Scholar] [CrossRef]
- Shuping, Z.; Yulong, W.; Mingde, Y.; Kaleem, I.; Chun, L.; Tong, J. Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake. Energy 2010, 35, 5406–5411. [Google Scholar] [CrossRef]
- Tang, H.; Abunasser, N.; Garcia, M.; Chen, M.E.D.; Ng, K.Y.S.; Salley, S.O. Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Appl. Energy 2011, 88, 3324–3330. [Google Scholar] [CrossRef]
- da Silva, M.R.O.B.; Moura, Y.A.S.; Converti, A.; Porto, A.L.F.; Marques, D.D.A.V.; Bezerra, R.P. Assessment of the potential of Dunaliella microalgae for different biotechnological applications: A systematic review. Algal Res. 2021, 58, 102396. [Google Scholar] [CrossRef]
- Tizvir, A.; Shojaeefard, M.H.; Zahedi, A.; Molaeimanesh, G.R. Performance and emission characteristics of biodiesel fuel from Dunaliella tertiolecta microalgae. Renew. Energy 2021, 182, 552–561. [Google Scholar] [CrossRef]
- El-Sheekh, M.; Abomohra, A.E.-F.; Eladel, H.; Battah, M.; Mohammed, S. Screening of different species of Scenedesmus isolated from Egyptian freshwater habitats for biodiesel production. Renew. Energy 2018, 129, 114–120. [Google Scholar] [CrossRef]
- El-Baz, F.K.; Gad, M.S.; Abdo, S.M.; Abed, K.A.; Matter, I.A. Performance and Exhaust Emissions of a Diesel Engine Burning Algal Biodiesel Blends. Fuel 2016, 10, 11. [Google Scholar]
- Mandal, S.; Mallick, N. Biodiesel Production by the Green Microalga Scenedesmus obliquus in a Recirculatory Aquaculture System. Appl. Environ. Microbiol. 2012, 78, 5929–5934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chand, G.S.; Richa, G.; Mahavir, Y.; Archana, T. Analysis for the Higher Production of Biodiesel from Scenedesmus dimorphus Algal Species. Open Access Sci. Rep. 2012, 1, 1–4. [Google Scholar] [CrossRef]
- Pugazhendhi, A.; Arvindnarayan, S.; Shobana, S.; Dharmaraja, J.; Vadivel, M.; Atabani, A.E.; Chang, S.W.; Nguyen, D.D.; Kumar, G. Biodiesel from Scenedesmus species: Engine performance, emission characteristics, corrosion inhibition and bioanalysis. Fuel 2020, 276, 118074. [Google Scholar] [CrossRef]
- Al-Lwayzy, S.H.; Yusaf, T. Chlorella protothecoides Microalgae as an Alternative Fuel for Tractor Diesel Engines. Energies 2013, 6, 766–783. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.; Gami, B.; Patel, P.; Patel, B. Biodiesel production from microalgae Dunaliella tertiolecta: A study on economic feasibility on large-scale cultivation systems, Biomass Convers. Biorefinery 2021, 13, 1071–1085. [Google Scholar] [CrossRef]
- Arun, N.; Singh, D.P. Differential response of Dunaliella salina and Dunaliella tertiolecta isolated from brines of Sambhar Salt Lake of Rajasthan (India) to salinities: A study on growth, pigment and glycerol synthesis. J. Mar. Biol. Assoc. India 2013, 55, 65–70. [Google Scholar] [CrossRef]
- Basu, S.; Roy, A.S.; Mohanty, K.; Ghoshal, A.K. Enhanced CO2 sequestration by a novel microalga: Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam, India. Bioresour. Technol. 2013, 143, 369–377. [Google Scholar] [CrossRef]
- Chandra, R.; Goswami, D.; Kalita, M.C. Microalgal resources in Chandrapur area, North-East, Assam, India: A perspective for Industrial refinement system and a boon for alternative energy generation and mitigation of green house gases. Arch. Appl. Sci. Res. 2012, 4, 795–799. [Google Scholar]
- Bajwa, K.; Bishnoi, N.R.; Kirrollia, A.; Selvan, S.T. A New Lipid Rich Microalgal SP Scenedesmus Dimorphus Isolated: Nile Red Staining and Effect of Carbon, Nitrogen Sources on its Physio-Biochemical Components. Eur. J. Sustain. Dev. Res. 2018, 2, 43. [Google Scholar] [CrossRef] [Green Version]
- Arvindnarayan, S.; Shobana, S.; Dharmaraja, J.; Nguyen, D.D.; Chang, S.W.; Atabani, A.E.; Kumar, G.; Prabhu, K.K.S. Spectral, In Vitro Biological, Engine and Emission Performances of Biodiesel Production from Chlorella protothecoides: A Sustainable Renewable Energy Source. Waste Biomass-Valorization 2020, 11, 5809–5819. [Google Scholar] [CrossRef]
- Piloto-Rodríguez, R.; Sánchez-Borroto, Y.; Melo-Espinosa, E.A.; Verhelst, S. Assessment of diesel engine performance when fueled with biodiesel from algae and microalgae: An overview. Renew. Sustain. Energy Rev. 2017, 69, 833–842. [Google Scholar] [CrossRef]
- Tang, D.; Han, W.; Li, P.; Miao, X.; Zhong, J. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour. Technol. 2011, 102, 3071–3076. [Google Scholar] [CrossRef] [PubMed]
- Tsaousis, P.; Wang, Y.; Roskilly, A.P.; Caldwell, G.S. Algae to Energy: Engine Performance Using Raw Algal Oil. Energy Procedia 2014, 61, 656–659. [Google Scholar] [CrossRef] [Green Version]
- British Standard Institution. Automotive Fuels—Fatty Acid Methyl Esters (FAME) for Diesel Engines—Requirements and Test Methods; Br. Stand. Inst., European Union 2010; p. 22. Available online: http://agrifuelsqcs-i.com/attachments/1598/en14214.pdf (accessed on 19 October 2022).
- IS 15607; Bio-Diesel (B 100) Blend Stock for Diesel Fuel. Bureau of Indian Standards: Bhopal, India, 2005.
- Yaşar, F.; Altun, Ş. Biodiesel properties of microalgae (Chlorella protothecoides) oil for use in diesel engines. Int. J. Green Energy 2018, 15, 941–946. [Google Scholar] [CrossRef]
- Subramaniam, M.; Solomon, J.M.; Nadanakumar, V.; Anaimuthu, S.; Sathyamurthy, R. Experimental investigation on performance, combustion and emission characteristics of DI diesel engine using algae as a biodiesel. Energy Rep. 2020, 6, 1382–1392. [Google Scholar] [CrossRef]
- Rajak, U.; Nashine, P.; Verma, T.N. Effect of fuel injection pressure of microalgae spirulina biodiesel blends on engine characteristics. J. Comput. Appl. Res. Mech. Eng. 2021, 10, 113–125. [Google Scholar] [CrossRef]
- Datta, A.; Mandal, B.K. Engine performance, combustion and emission characteristics of a compression ignition engine operating on different biodiesel-alcohol blends. Energy 2017, 125, 470–483. [Google Scholar] [CrossRef]
- Prabu, S.S.; Asokan, M.A.; Roy, R.; Francis, S.; Sreelekh, M.K. Performance, combustion and emission characteristics of diesel engine fuelled with waste cooking oil bio-diesel/diesel blends with additives. Energy 2017, 122, 638–648. [Google Scholar] [CrossRef]
- Sachuthananthan, B.; Krupakaran, R.L.; Balaji, G. Exploration on the behaviour pattern of a DI diesel engine using magnesium oxide nano additive with plastic pyrolysis oil as alternate fuel. Int. J. Ambient. Energy 2021, 42, 701–712. [Google Scholar] [CrossRef]
- Rajak, U.; Nashine, P.; Verma, T.N. Assessment of diesel engine performance using spirulina microalgae biodiesel. Energy 2019, 166, 1025–1036. [Google Scholar] [CrossRef]
- Yadav, B.; Noguchi, R.; Soni, P.; Abah, E.; Yadav, C.B. Performance evaluation and emission characteristics of microalgae fuel in combustion engine. J. Pharmacogn. Phytochem. 2018, 7, 2319–2326. [Google Scholar]
- Fiveland, S.B.; Assanis, D.N. A Four-Stroke Homogeneous Charge Compression Ignition Engine Simulation for Combustion and Performance Studies. J. Engines 2000, 109, 452–468. [Google Scholar] [CrossRef]
- Rajak, U.; Nashine, P.; Verma, T.N.; Pugazhendhi, A. Performance, combustion and emission analysis of microalgae Spirulina in a common rail direct injection diesel engine. Fuel 2019, 255, 115855. [Google Scholar] [CrossRef]
- Rajak, U.; Nashine, P.; Dasore, A.; Verma, T.N. Utilization of renewable and sustainable microalgae biodiesel for reducing the engine emissions in a diesel engine. Fuel 2022, 311, 122498. [Google Scholar] [CrossRef]
- Rajak, U.; Nashine, P.; Verma, T.N. Verma, Comparative Assessment of The Emission Characteristics of First, Second and Third Generation Biodiesels As Fuel in A Diesel Engine. J. Therm. Eng. 2020, 6, 211–225. [Google Scholar] [CrossRef]
- Kesharvani, S.; Dwivedi, G.; Verma, T.N.; Verma, P. The Experimental Investigation of a Diesel Engine Using Ternary Blends of Algae Biodiesel, Ethanol and Diesel Fuels. Energies 2023, 16, 229. [Google Scholar] [CrossRef]
- Rajak, U.; Nashine, P.; Verma, T.N. Verma, Characteristics of microalgae spirulina biodiesel with the impact of n-butanol addition on a CI engine. Energy 2019, 189, 116311. [Google Scholar] [CrossRef]
- Al-Dawody, M.F.; Bhatti, S.K. Optimization strategies to reduce the biodiesel NOx effect in diesel engine with experimental verification. Energy Convers. Manag. 2013, 68, 96–104. [Google Scholar] [CrossRef]
- Datta, A.; Mandal, B.K. Effect of compression ratio on the performance, combustion and emission from a diesel engine using palm biodiesel. AIP Conf. Proc. 2016, 1754, 050005. [Google Scholar] [CrossRef]
- Shrivastava, P.; Verma, T.N. An experimental investigation into engine characteristics fueled with Lal ambari biodiesel and its blends. Therm. Sci. Eng. Prog. 2020, 17, 100356. [Google Scholar] [CrossRef]
- Wei, L.; Cheung, C.; Ning, Z. Influence of waste cooking oil biodiesel on combustion, unregulated gaseous emissions and particulate emissions of a direct-injection diesel engine. Energy 2017, 127, 175–185. [Google Scholar] [CrossRef]
- Gnanasekaran, S.; Saravanan, N.; Ilangkumaran, M. Influence of injection timing on performance, emission and combustion characteristics of a DI diesel engine running on fish oil biodiesel. Energy 2016, 116, 1218–1229. [Google Scholar] [CrossRef]
- Bora, B.J.; Saha, U.K.; Chatterjee, S.; Veer, V. Veer, Effect of compression ratio on performance, combustion and emission characteristics of a dual fuel diesel engine run on raw biogas. Energy Convers. Manag. 2014, 87, 1000–1009. [Google Scholar] [CrossRef]
- Jamuwa, D.K.; Sharma, D.; Soni, S.L. Experimental investigation of performance, exhaust emission and combustion parameters of stationary compression ignition engine using ethanol fumigation in dual fuel mode. Energy Convers. Manag. 2016, 115, 221–231. [Google Scholar] [CrossRef]
- Forero, J.D.; Valencia, G.E.; Obregon, L.G. Study of the influence of compression ratio on the rate of heat release in small displacement Diesel engines. Indian J. Sci. Technol. 2018, 11, 1–8. [Google Scholar] [CrossRef]
- Kalam, M.A.; Masjuki, H.H. Emissions and deposit characteristics of a small diesel engine when operated on preheated crude palm oil. Biomass Bioenergy 2004, 27, 289–297. [Google Scholar] [CrossRef]
- Sanjid, A.; Masjuki, H.H.; Kalam, M.A.; Rahman, S.M.A.; Abedin, M.J.; Palash, S.M. Production of palm and jatropha based biodiesel and investigation of palm-jatropha combined blend properties, performance, exhaust emission and noise in an unmodified diesel engine. J. Clean. Prod. 2014, 65, 295–303. [Google Scholar] [CrossRef]
- Bajpai, S.; Sahoo, P.K.; Das, L.M. Feasibility of blending karanja vegetable oil in petro-diesel and utilization in a direct injection diesel engine. Fuel 2009, 88, 705–711. [Google Scholar] [CrossRef]
- Pereira, R.G.; Tulcan, O.E.P.; Fellows, C.E.; De Jesus Lameira, V.; Quelhas, O.L.G.; Elias De Aguiar, M.; Filho, D.M.D.E.S. Sustainability and mitigation of greenhouse gases using ethyl beef tallow biodiesel in energy generation. J. Clean. Prod. 2012, 29–30, 269–276. [Google Scholar] [CrossRef]
- Fattah, I.M.R.; Hassan, M.H.; Kalam, M.A.; Atabani, A.E.; Abedin, M.J. Synthetic phenolic antioxidants to biodiesel: Path toward NOx reduction of an unmodified indirect injection diesel engine. J. Clean. Prod. 2014, 79, 82–90. [Google Scholar] [CrossRef]
- Sakthivel, R.; Ramesh, K.; Purnachandran, R.; Shameer, P.M. A review on the properties, performance and emission aspects of the third-generation biodiesels. Renew. Sustain. Energy Rev. 2018, 82, 2970–2992. [Google Scholar] [CrossRef]
- Gogoi, T.K.; Baruah, D.C. The use of Koroch seed oil methyl ester blends as fuel in a diesel engine. Appl. Energy 2011, 88, 2713–2725. [Google Scholar] [CrossRef]
- Dhamodaran, G.; Krishnan, R.; Pochareddy, Y.K.; Pyarelal, H.M.; Sivasubramanian, H.; Ganeshram, A.K. A comparative study of combustion, emission, and performance characteristics of rice-bran-, neem-, and cottonseed-oil biodiesels with varying degree of unsaturation. Fuel 2017, 187, 296–305. [Google Scholar] [CrossRef]
- Syed, A.; Quadri, S.A.P.; Rao, G.A.P.; Mohd, W. Experimental investigations on DI (direct injection) diesel engine operated on dual fuel mode with hydrogen and mahua oil methyl ester (MOME) as injected fuels and effects of injection opening pressure. Appl. Therm. Eng. 2017, 114, 118–129. [Google Scholar] [CrossRef]
- Krishania, N.; Rajak, U.; Chaurasiya, P.; Singh, T.; Birru, A.; Verma, T. Investigations of spirulina, waste cooking and animal fats blended biodiesel fuel on auto-ignition diesel engine performance, emission characteristics. Fuel 2020, 276, 118123. [Google Scholar] [CrossRef]
- Gharehghani, A.; Mirsalim, M.; Hosseini, R. Effects of waste fish oil biodiesel on diesel engine combustion characteristics and emission. Renew. Energy 2017, 101, 930–936. [Google Scholar] [CrossRef]
- Jiao, Y.; Liu, R.; Zhang, Z.; Yang, C.; Zhou, G.; Dong, S.; Liu, W. Comparison of combustion and emission characteristics of a diesel engine fueled with diesel and methanol-Fischer-Tropsch diesel-biodiesel-diesel blends at various altitudes. Fuel 2019, 243, 52–59. [Google Scholar] [CrossRef]
- Datta, A.; Mandal, B.K. Impact of alcohol addition to diesel on the performance combustion and emissions of a compression ignition engine. Appl. Therm. Eng. 2016, 98, 670–682. [Google Scholar] [CrossRef]
- Sathiyamoorthi, R.; Sankaranarayanan, G. The effects of using ethanol as additive on the combustion and emissions of a direct injection diesel engine fuelled with neat lemongrass oil-diesel fuel blend. Renew. Energy 2017, 101, 747–756. [Google Scholar] [CrossRef]
- Rajak, U.; Nashine, P.; Singh, T.S.; Verma, T.N. Numerical investigation of performance, combustion and emission characteristics of various biofuels. Energy Convers. Manag. 2018, 156, 235–252. [Google Scholar] [CrossRef]
- Şahin, Z.; Aksu, O.N. Experimental investigation of the effects of using low ratio n-butanol/diesel fuel blends on engine performance and exhaust emissions in a turbocharged DI diesel engine. Renew. Energy 2015, 77, 279–290. [Google Scholar] [CrossRef]
- Wu, H.W.; Wu, Z.Y. Investigation on combustion characteristics and emissions of diesel/hydrogen mixtures by using energy-share method in a diesel engine. Appl. Therm. Eng. 2012, 42, 154–162. [Google Scholar] [CrossRef]
- Wamankar, A.K.; Satapathy, A.K.; Murugan, S. Experimental investigation of the effect of compression ratio, injection timing & pressure in a DI (direct injection) diesel engine running on carbon black-water-diesel emulsion. Energy 2015, 93, 511–520. [Google Scholar] [CrossRef]
- Kuleshov, A.; Mahkamov, K. Multi-zone diesel fuel spray combustion model for the simulation of a diesel engine running on biofuel. Proc. Inst. Mech. Eng. Part A J. Power Energy 2008, 222, 309–321. [Google Scholar] [CrossRef]
- Rajak, U.; Verma, T.N. Effect of emission from ethylic biodiesel of edible and non-edible vegetable oil, animal fats, waste oil and alcohol in CI engine. Energy Convers. Manag. 2018, 166, 704–718. [Google Scholar] [CrossRef]
- Sharma, P.; Dhar, A. Compression ratio influence on combustion and emissions characteristic of hydrogen diesel dual fuel CI engine: Numerical Study. Fuel 2018, 222, 852–858. [Google Scholar] [CrossRef]
- Senthil, M.; Visagavel, K.; Saravanan, C.G.; Rajendran, K. Rajendran, Investigations of red mud as a catalyst in Mahua oil biodiesel production and its engine performance. Fuel Process Technol. 2016, 149, 7–14. [Google Scholar] [CrossRef]
- Rahman, S.M.A.; Masjuki, H.H.; Kalam, M.A.; Abedin, M.J.; Sanjid, A.; Sajjad, H. Production of palm and Calophyllum inophyllum based biodiesel and investigation of blend performance and exhaust emission in an unmodified diesel engine at high idling conditions. Energy Convers. Manag. 2013, 76, 362–367. [Google Scholar] [CrossRef]
- Singh, T.S.; Rajak, U.; Verma, T.N.; Nashine, P.; Mehboob, H.; Manokar, A.M.; Afzal, A. Exhaust emission characteristics study of light and heavy-duty diesel vehicles in India. Case Stud. Therm. Eng. 2021, 29, 101709. [Google Scholar] [CrossRef]
- Kesharvani, S.; Verma, T.N.; Dwivedi, G. Computational analysis of chlorella protothecoides biofuels on engine combustion, performance and emission. Sustain. Energy Technol. Assess. 2023, 55, 102972. [Google Scholar] [CrossRef]
- Rajak, U.; Verma, T.N. Influence of combustion and emission characteristics on a compression ignition engine from a different generation of biodiesel. Eng. Sci. Technol. Int. J. 2020, 23, 10–20. [Google Scholar] [CrossRef]
- Rajak, U.; Nashine, P.; Verma, T.N. Performance analysis and exhaust emissions of aegle methyl ester operated compression ignition engine. Therm. Sci. Eng. Prog. 2019, 12, 100354. [Google Scholar] [CrossRef]
- Shrivastava, P.; Verma, T.N.; Pugazhendhi, A. An experimental evaluation of engine performance and emisssion characteristics of CI engine operated with Roselle and Karanja biodiesel. Fuel 2019, 254, 115652. [Google Scholar] [CrossRef]
- Rajak, U.; Verma, T.N. A comparative analysis of engine characteristics from various biodiesels: Numerical study. Energy Convers. Manag. 2019, 180, 904–923. [Google Scholar] [CrossRef]
- Emiroğlu, A.O.; Şen, M. Combustion, performance and exhaust emission characterizations of a diesel engine operating with a ternary blend (alcohol-biodiesel-diesel fuel). Appl. Therm. Eng. 2018, 133, 371–380. [Google Scholar] [CrossRef]
- Karthickeyan, V.; Thiyagarajan, S.; Ashok, B.; Geo, V.E.; Azad, A. Experimental investigation of pomegranate oil methyl ester in ceramic coated engine at different operating condition in direct injection diesel engine with energy and exergy analysis. Energy Convers. Manag. 2020, 205, 112334. [Google Scholar] [CrossRef]
- Ramalingam, S.; Chinnaia, P.; Rajendran, S. Influence of Compression Ratio on the Performance and Emission Characteristics of Annona Methyl Ester Operated di Diesel Engine. Adv. Mech. Eng. 2014, 6, 17–19. [Google Scholar] [CrossRef]
- Liu, J.; Sun, P.; Huang, H.; Meng, J.; Yao, X. Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends. Appl. Energy 2017, 202, 527–536. [Google Scholar] [CrossRef]
Fuel Properties | EN Standard | IS Standard | Diesel | Dunaliella tertiolecta | Scenedesmus obliquus | Scenedesmus dimorphu | Chlorella protothecoides |
---|---|---|---|---|---|---|---|
Density at 15 (kg/m3) | 860–900 | 870–900 | 850 | 890 | 863 | 862 | 881 |
Kinematic viscosity (m2 s−1 at 40 °C) | 3.5–5 | 2.5–6.0 | 2.6 | 4.2 | 4.09 | 4.14 | 4.491 |
Cetane no | ≥51 | ≥51 | 49–55 | 54 | 63.2 | 37.1 | 57.3 |
Higher Heating Value (MJ/kg) | 42.2 | 40.2 | 42.11 | 42.13 | 37.56 | ||
Ash content (%) | <0.02 | <0.02 | 0.01 | - | - | - | 0.01 |
Flashpoint (°C) | 101 | 120 | 73 | - | - | - | 141 |
Pour Point (°C) | - | - | −16 | −16 | |||
Specific gravity (°C) | - | - | - | 0.84 | 0.82 | - | |
Acid Value (mg KOH/g) | <0.5 | ≤0.8 | 0.4 | - | 0.38 | 0.33 | 0.21 |
Properties | Diesel | DMB20 | SOMB20 | SDMB20 | CMB20 |
---|---|---|---|---|---|
C (% w/w) | 0.87 | 0.843 | 0.82899 | 0.844 | 0.8472 |
H (% w/w) | 12.6 | 0.119 | 0.12189 | 0.123 | 0.124 |
O (% w/w) | 0.4 | 0.116 | 0.04912 | 0.321 | 0.0278 |
Cetane Number | 52 | 49.317 | 51.764 | 46.234 | 50.137 |
LHV (MJ/kg) | 42.5 | 42.06 | 42.422 | 42.426 | 41.606 |
Dynamic Viscosity coefficient (Pas @ 40 °C) | 0.003 | 0.00353 | 0.00341 | 0.00345 | 0.0038 |
Density (kg/m3 @ 15 °C) | 830 | 843.68 | 836.80 | 836.59 | 840.69 |
Engine Parameter | Specification |
---|---|
Model | Kirloskar Model TV 1 |
Type | Direct-injection diesel engine |
Rated power(kW) | 3.7 |
Stroke(mm) | 110 |
Bore(mm) | 80 |
Type of cooling | water |
No of cylinder | Single |
CR | 15.5:1,16.5:1,17.5:1,18.5:1 |
Speed (rpm) | 1500 |
Dynamometer type | Eddy current |
Fuel injection type | Higher-pressure common rail |
Injection timing | 23.5 (deg. before TDC) |
Exhaust valve closing | 4.5 (deg. before TDC) |
Exhaust valve opening | 35.5 (deg. before BDC) |
Inlet valve closing | 35.5 (deg. after BDC) |
Inlet valve opening | 4.5 (deg. before TDC) |
Fuel pressure | 500–800 bar |
Number of the nozzle and hole diameter (mm) | 3.0 and 0.25 |
Piston type | 120 deg. |
Instruments | Range | Accuracy | Uncertainties | |
---|---|---|---|---|
Smoke meter | BSU 0–100 | ±1% | ±1.0% | |
Crank angle encoder | ±0.5 CA | ± 0.2 °CA | ±0.2% | |
Load indicator | 0–100 kg | ±1 kg | ±0.2% | |
Eddy current dynamometer | - | - | ±0.15% | |
Testo 350 gas analyzer | NOx | 0–3000 ppm | ±5% reading | ±0.5% |
HC | 0–40,000 ppm | ±10% of reading | ±0.1% | |
CO | 0–10,000 ppm | ±10 ppm < 200 ppm | ±0.3% | |
CO2 | 0–50 vol% | ±0.3% < 25 vol% | ±1% | |
Digital stopwatch | - | ±0.2 s | ±0.2% | |
Speed sensor | - | - | ±0.1% | |
Load indicator | - | - | ±0.2% |
Sr. No. | Parameter | Models |
---|---|---|
1 | Combustion | Multi-Zone Model |
2 | Ignition Delay | Tolstov’s Mechanism |
3 | Smoke | Bosch and Hartridge mechanism |
4 | Rate of heat release | Wiebe method |
5 | NO | Thermal Zeldovich mechanism |
6 | PM | Alkidas formula |
7 | Soot | Razleytsev Mechanism |
8 | Heat transfer | Woshchni’s formula |
System | Equation | Abbreviation |
---|---|---|
Conservation of mass | wj = mass flow rate of jth species (kg/s) | |
Conversion of species | w = total mass within cylinder (kg) | |
Species equations | Sg = net generation of ith species (kg/s) | |
ith species net generation | Ωi = rate of molar(mol/s) Ρ = density (kg/m3) | |
Energy balance | P= pressure (MPa) | |
Frictional means effective pressure | α = β = γ constants, Pm = Peak cylinder pressure(bar), Vp = mean piston velocity(m/s) | |
Brake-specific fuel consumption | wf = mass flow rate(kg/s) | |
Heat release in ignition delay | P = pressure, T = temperature Ea = Activation energy of fuel, τ = time (s) | |
Heat release in pre-mixed combustion | σud = σu = fuel fractions evaporated at ignition delay | |
Heat release during controlled combustion | = heat release rate (J/s) x = fraction of fuel burnt ϕ0 = ϕ1 = ϕ2 = ϕ3 = ϕ = crank angle | |
Heat release during late combustion | α = air-fuel ratio ξb = air efficiency | |
NOx formation modeling (Zeldovich mechanism) | O = Oxygen N = Nitrogen | |
Bosch Smoke Number | PM = Particulate matter BN = Bosch Number | |
Hartridge smoke level |
Sr. No. | Input Parameter | Output | |||
---|---|---|---|---|---|
Compression Ratio | Engine Speed (rpm) | Load (%) | Fuel Blend | ||
1 | 15.5 | 1500 | 25% | D100 Blends (DMB20,SOMB20 CMB20,SDMB20) | CP HRR BTE SFC EGT Specific Carbon Dioxides Emission Nitric Oxide Emission Specific Particulate Matter Smoke Level (BSN) |
16.5 | 50% | ||||
17.5 | 75% | ||||
18.5 | 100% | ||||
2 | 15.5 | 1500 | 25% | D100 Blends (DMB20,SOMB20 CMB20,SDMB20) | |
16.5 | 50% | ||||
17.5 | 75% | ||||
18.5 | 100% | ||||
3 | 15.5 | 1500 | 25% | D100 Blends (DMB20,SOMB20 CMB20,SDMB20) | |
16.5 | 50% | ||||
17.5 | 75% | ||||
18.5 | 100% | ||||
4 | 15.5 | 1500 | 25% | D100 Blends (DMB20,SOMB20 CMB20,SDMB20) | |
16.5 | 50% | ||||
17.5 | 75% | ||||
18.5 | 100% |
Sr. No. | Parameter | Validation | ||
---|---|---|---|---|
Experimental Results | Numerical Results | Error Deviation | ||
1 | Maximum cylinder pressure (bar) | 85.44 | 82.45 | 4.61% |
2 | Brake thermal efficiency (%) | 32.2 | 33.4 | 3.7% |
3 | Exhaust gas temperature (K) | 630 | 600.59 | 4.76% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, M.; Kesharvani, S.; Dwivedi, G. Numerical Investigation of Performance, Combustion, and Emission Characteristics of Various Microalgae Biodiesel on CI Engine. Fuels 2023, 4, 132-155. https://doi.org/10.3390/fuels4020009
Rehman M, Kesharvani S, Dwivedi G. Numerical Investigation of Performance, Combustion, and Emission Characteristics of Various Microalgae Biodiesel on CI Engine. Fuels. 2023; 4(2):132-155. https://doi.org/10.3390/fuels4020009
Chicago/Turabian StyleRehman, Madeeha, Sujeet Kesharvani, and Gaurav Dwivedi. 2023. "Numerical Investigation of Performance, Combustion, and Emission Characteristics of Various Microalgae Biodiesel on CI Engine" Fuels 4, no. 2: 132-155. https://doi.org/10.3390/fuels4020009
APA StyleRehman, M., Kesharvani, S., & Dwivedi, G. (2023). Numerical Investigation of Performance, Combustion, and Emission Characteristics of Various Microalgae Biodiesel on CI Engine. Fuels, 4(2), 132-155. https://doi.org/10.3390/fuels4020009