Optimizing Methane Recovery for Fuels: A Comparative Study of Fugitive Emissions in Biogas Plants, WWTPs, and Landfills
Abstract
:1. Introduction
2. Materials and Methods
2.1. Landfills
2.2. Wastewater Treatment Plants
2.3. Biogas Plants
3. Results and Discussion
3.1. Sources of Uncertainty
3.2. Comparison and Discussion of Results with Previous Literature
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Codification | Fugitive CH4 Emissions (Calculated) [kg CH4/Year] | Facility | Region |
---|---|---|---|
L-61-1 | 3318.86 | Landfill | 61 |
L-61-2 | 4141.89 | Landfill | 61 |
L-61-3 | 38.87 | Landfill | 61 |
L-61-4 | 7560.81 | Landfill | 61 |
L-61-5 | 9028.67 | Landfill | 61 |
L-61-6 | 9018.03 | Landfill | 61 |
L-61-7 | 14,023.03 | Landfill | 61 |
L-61-8 | 9008.60 | Landfill | 61 |
L-61-9 | 7209.19 | Landfill | 61 |
L-61-10 | 21,474.23 | Landfill | 61 |
L-61-11 | 7346.00 | Landfill | 61 |
L-61-12 | 11,309.19 | Landfill | 61 |
L-61-13 | 2654.32 | Landfill | 61 |
L-61-14 | 6321.28 | Landfill | 61 |
L-61-15 | 4.20 | Landfill | 61 |
L-61-16 | 16,365.20 | Landfill | 61 |
L-61-17 | 13,299.79 | Landfill | 61 |
L-61-18 | 9334.25 | Landfill | 61 |
L-61-19 | 20,718.43 | Landfill | 61 |
L-61-20 | 5780.65 | Landfill | 61 |
L-61-21 | 1481.66 | Landfill | 61 |
L-62-1 | 2577.40 | Landfill | 62 |
L-62-2 | 1629.98 | Landfill | 62 |
L-62-3 | 1356.20 | Landfill | 62 |
L-62-4 | 629.03 | Landfill | 62 |
L-62-5 | 1100.91 | Landfill | 62 |
L-62-6 | 1315.70 | Landfill | 62 |
L-62-7 | 1364.04 | Landfill | 62 |
L-62-8 | 1410.30 | Landfill | 62 |
L-63-1 | 11,891.02 | Landfill | 63 |
L-66-1 | 46,104.64 | Landfill | 66 |
L-68-1 | 28,315.51 | Landfill | 68 |
L-68-2 | 8322.62 | Landfill | 68 |
L-68-3 | 3364.64 | Landfill | 68 |
L-68-4 | 7239.85 | Landfill | 68 |
L-68-5 | 3233.16 | Landfill | 68 |
L-68-6 | 4395.62 | Landfill | 68 |
L-67-1 | 10,430.88 | Landfill | 67 |
L-67-2 | 3084.91 | Landfill | 67 |
L-67-3 | 582.72 | Landfill | 67 |
L-67-4 | 1332.61 | Landfill | 67 |
L-67-5 | 2227.99 | Landfill | 67 |
L-67-6 | 8116.72 | Landfill | 67 |
L-67-7 | 2973.66 | Landfill | 67 |
L-67-8 | 5998.44 | Landfill | 67 |
L-67-9 | 2570.76 | Landfill | 67 |
L-67-10 | 1904.77 | Landfill | 67 |
L-67-11 | 1407.62 | Landfill | 67 |
L-67-12 | 8614.55 | Landfill | 67 |
L-69-1 | 3084.91 | Landfill | 69 |
L-69-2 | 5022.24 | Landfill | 69 |
L-69-3 | 21,835.84 | Landfill | 69 |
L-69-4 | 6351.28 | Landfill | 69 |
L-69-5 | 1445.75 | Landfill | 69 |
L-69-6 | 0.00 | Landfill | 69 |
L-69-7 | 11,263.91 | Landfill | 69 |
L-69-8 | 4913.06 | Landfill | 69 |
L-69-9 | 5458.96 | Landfill | 69 |
L-69-10 | 10,917.92 | Landfill | 69 |
L-69-11 | 701.80 | Landfill | 69 |
L-69-12 | 2456.31 | Landfill | 69 |
L-69-13 | 1637.69 | Landfill | 69 |
L-69-14 | 9369.10 | Landfill | 69 |
L-69-15 | 649.18 | Landfill | 69 |
L-69-16 | 473.73 | Landfill | 69 |
L-69-17 | 1368.56 | Landfill | 69 |
L-69-18 | 1315.94 | Landfill | 69 |
L-69-19 | 0.00 | Landfill | 69 |
L-69-20 | 982.61 | Landfill | 69 |
L-69-21 | 5458.96 | Landfill | 69 |
L-69-22 | 929.88 | Landfill | 69 |
L-77-1 | 666.76 | Landfill | 77 |
L-77-2 | 13,979.85 | Landfill | 77 |
L-77-3 | 12,688.81 | Landfill | 77 |
L-77-4 | 27,839.27 | Landfill | 77 |
L-77-5 | 8882.16 | Landfill | 77 |
L-77-6 | 8036.24 | Landfill | 77 |
L-77-7 | 8734.34 | Landfill | 77 |
L-77-8 | 15,438.05 | Landfill | 77 |
L-77-9 | 8882.16 | Landfill | 77 |
L-77-10 | 12,265.85 | Landfill | 77 |
L-70-1 | 35,461.73 | Landfill | 70 |
L-70-2 | 4574.31 | Landfill | 70 |
L-70-3 | 2997.38 | Landfill | 70 |
L-70-4 | 32,697.76 | Landfill | 70 |
L-70-5 | 677.68 | Landfill | 70 |
L-70-6 | 1909.33 | Landfill | 70 |
L-71-1 | 2267.51 | Landfill | 71 |
L-71-2 | 83,987.77 | Landfill | 71 |
L-71-3 | 14,855.57 | Landfill | 71 |
L-64-1 | 3199.44 | Landfill | 64 |
L-64-2 | 14,805.08 | Landfill | 64 |
L-64-3 | 1526.97 | Landfill | 64 |
L-65-1 | 6903.77 | Landfill | 65 |
L-65-2 | 3614.47 | Landfill | 65 |
L-65-3 | 17,631.48 | Landfill | 65 |
L-65-4 | 9925.85 | Landfill | 65 |
L-65-5 | 6072.54 | Landfill | 65 |
L-65-6 | 349.38 | Landfill | 65 |
L-65-7 | 685.66 | Landfill | 65 |
L-65-8 | 2656.12 | Landfill | 65 |
L-76-1 | 28.31 | Landfill | 76 |
L-76-2 | 4367.17 | Landfill | 76 |
L-72-1 | 11,688.07 | Landfill | 72 |
L-72-2 | 41,707.27 | Landfill | 72 |
L-72-3 | 32,314.63 | Landfill | 72 |
L-72-4 | 11,121.94 | Landfill | 72 |
L-73-1 | 9036.57 | Landfill | 73 |
L-73-2 | 4169.71 | Landfill | 73 |
L-73-3 | 2801.66 | Landfill | 73 |
L-73-4 | 513.45 | Landfill | 73 |
L-73-5 | 9653.59 | Landfill | 73 |
L-74-1 | 3371.94 | Landfill | 74 |
L-74-2 | 2148.68 | Landfill | 74 |
L-74-3 | 4004.17 | Landfill | 74 |
L-75-1 | 15,944.39 | Landfill | 75 |
L-75-2 | 3409.21 | Landfill | 75 |
L-75-3 | 1461.09 | Landfill | 75 |
W-72-1 | 21,835.12 | WWTP | 72 |
W-72-2 | 12,525.25 | WWTP | 72 |
W-72-3 | 11,929.29 | WWTP | 72 |
W-72-4 | 7397.12 | WWTP | 72 |
W-72-5 | 6724.65 | WWTP | 72 |
W-72-6 | 6724.65 | WWTP | 72 |
W-72-7 | 5699.14 | WWTP | 72 |
W-72-8 | 2911.60 | WWTP | 72 |
W-72-9 | 2334.95 | WWTP | 72 |
W-72-10 | 337.40 | WWTP | 72 |
W-72-11 | 3127.00 | WWTP | 72 |
W-72-12 | 2023.62 | WWTP | 72 |
W-72-13 | 4423.95 | WWTP | 72 |
W-72-14 | 2918.69 | WWTP | 72 |
W-72-15 | 2689.86 | WWTP | 72 |
W-72-16 | 1011.81 | WWTP | 72 |
W-72-17 | 817.23 | WWTP | 72 |
W-72-18 | 583.74 | WWTP | 72 |
W-72-19 | 50.59 | WWTP | 72 |
W-72-20 | 120.64 | WWTP | 72 |
W-72-21 | 68.10 | WWTP | 72 |
W-72-22 | 778.32 | WWTP | 72 |
W-72-23 | 1416.07 | WWTP | 72 |
W-72-24 | 77.83 | WWTP | 72 |
W-72-25 | 1362.05 | WWTP | 72 |
W-72-26 | 25.03 | WWTP | 72 |
W-72-27 | 51.37 | WWTP | 72 |
W-62-1 | 1344.93 | WWTP | 62 |
W-62-2 | 801.67 | WWTP | 62 |
W-62-3 | 56.95 | WWTP | 62 |
W-62-4 | 933.98 | WWTP | 62 |
W-62-5 | 466.99 | WWTP | 62 |
W-62-6 | 33.08 | WWTP | 62 |
W-62-7 | 0.00 | WWTP | 62 |
W-62-8 | 0.00 | WWTP | 62 |
W-62-9 | 1011.81 | WWTP | 62 |
W-67-1 | 46.12 | WWTP | 67 |
W-67-2 | 3930.50 | WWTP | 67 |
W-67-3 | 6070.87 | WWTP | 67 |
W-67-4 | 163.45 | WWTP | 67 |
W-67-5 | 4572.61 | WWTP | 67 |
W-67-6 | 34.74 | WWTP | 67 |
W-67-7 | 1284.22 | WWTP | 67 |
W-67-8 | 1751.21 | WWTP | 67 |
W-67-9 | 319.85 | WWTP | 67 |
W-67-10 | 1606.44 | WWTP | 67 |
W-67-11 | 101.18 | WWTP | 67 |
W-67-12 | 1867.96 | WWTP | 67 |
W-67-13 | 803.22 | WWTP | 67 |
W-67-14 | 194.58 | WWTP | 67 |
W-63-1 | 160.72 | WWTP | 63 |
W-63-2 | 537.97 | WWTP | 63 |
W-63-3 | 6.30 | WWTP | 63 |
W-63-4 | 5086.37 | WWTP | 63 |
W-63-5 | 1639.13 | WWTP | 63 |
W-63-6 | 175.12 | WWTP | 63 |
W-63-7 | 5346.10 | WWTP | 63 |
W-68-1 | 1751.21 | WWTP | 68 |
W-68-2 | 120.64 | WWTP | 68 |
W-68-3 | 933.98 | WWTP | 68 |
W-68-4 | 33.08 | WWTP | 68 |
W-68-5 | 46.70 | WWTP | 68 |
W-68-6 | 20.55 | WWTP | 68 |
W-68-7 | 34.21 | WWTP | 68 |
W-68-8 | 1926.33 | WWTP | 68 |
W-68-9 | 134.26 | WWTP | 68 |
W-68-10 | 54.48 | WWTP | 68 |
W-68-11 | 1400.97 | WWTP | 68 |
W-68-12 | 46.70 | WWTP | 68 |
W-68-13 | 116.75 | WWTP | 68 |
W-68-14 | 466.99 | WWTP | 68 |
W-68-15 | 159.55 | WWTP | 68 |
W-68-16 | 26.85 | WWTP | 68 |
W-76-1 | 4034.79 | WWTP | 76 |
W-76-2 | 895.06 | WWTP | 76 |
W-66-1 | 4256.69 | WWTP | 66 |
W-66-2 | 4421.46 | WWTP | 66 |
W-66-3 | 0.00 | WWTP | 66 |
W-66-4 | 108.96 | WWTP | 66 |
W-71-1 | 1362.05 | WWTP | 71 |
W-71-2 | 26,898.61 | WWTP | 71 |
W-71-3 | 5253.63 | WWTP | 71 |
W-71-4 | 3026.09 | WWTP | 71 |
W-71-5 | 2977.06 | WWTP | 71 |
W-71-6 | 200.81 | WWTP | 71 |
W-71-7 | 2017.40 | WWTP | 71 |
W-71-8 | 4.67 | WWTP | 71 |
B-71-1 | 4669.90 | Biogas plant | 71 |
B-71-2 | 28,800.00 | Biogas plant | 71 |
B-71-3 | 19,200.00 | Biogas plant | 71 |
B-69-1 | 0.00 | Biogas plant | 69 |
B-69-2 | 5280.00 | Biogas plant | 69 |
B-69-3 | 5870.40 | Biogas plant | 69 |
B-69-4 | 24,960.00 | Biogas plant | 69 |
B-69-5 | 0.00 | Biogas plant | 69 |
B-69-6 | 8040.00 | Biogas plant | 69 |
B-69-7 | 0.00 | Biogas plant | 69 |
B-69-8 | 0.00 | Biogas plant | 69 |
B-69-9 | 15,768.00 | Biogas plant | 69 |
B-69-10 | 0.00 | Biogas plant | 69 |
B-62-1 | 67,200.00 | Biogas plant | 62 |
B-62-2 | 96.00 | Biogas plant | 62 |
B-62-3 | 0.00 | Biogas plant | 62 |
B-67-1 | 28,800.00 | Biogas plant | 67 |
B-67-2 | 15,768.00 | Biogas plant | 67 |
B-67-3 | 0.00 | Biogas plant | 67 |
B-67-4 | 0.00 | Biogas plant | 67 |
B-72-1 | 0.00 | Biogas plant | 72 |
B-72-2 | 104,640.00 | Biogas plant | 72 |
B-77-1 | 41,520.00 | Biogas plant | 77 |
B-77-2 | 19,200.00 | Biogas plant | 77 |
B-70-1 | 5280.00 | Biogas plant | 70 |
B-70-2 | 0.00 | Biogas plant | 70 |
B-61-1 | 14,880.00 | Biogas plant | 61 |
B-61-2 | 0.00 | Biogas plant | 61 |
B-61-3 | 0.00 | Biogas plant | 61 |
B-61-4 | 0.00 | Biogas plant | 61 |
B-61-5 | 28,800.00 | Biogas plant | 61 |
B-61-6 | 28,800.00 | Biogas plant | 61 |
B-61-7 | 0.00 | Biogas plant | 61 |
B-73-1 | 0.00 | Biogas plant | 73 |
References
- Mikhaylov, A.; Moiseev, N.; Aleshin, K.; Burkhardt, T. Global Climate Change and Greenhouse Effect. Entrep. Sustain. Issues 2020, 7, 2897. [Google Scholar] [CrossRef] [PubMed]
- Rhein, M.; Steinfeldt, R.; Kieke, D.; Stendardo, I.; Yashayaev, I. Ventilation Variability of Labrador Sea Water and Its Impact on Oxygen and Anthropogenic Carbon: A Review. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20160321. [Google Scholar] [CrossRef] [PubMed]
- Bharathiraja, B.; Sudharsana, T.; Jayamuthunagai, J.; Praveenkumar, R.; Chozhavendhan, S.; Iyyappan, J. Biogas Production—A Review on Composition, Fuel Properties, Feed Stock and Principles of Anaerobic Digestion. Renew. Sustain. Energy Rev. 2018, 90, 570–582. [Google Scholar] [CrossRef]
- Bogner, J.; Pipatti, R.; Hashimoto, S.; Diaz, C.; Mareckova, K.; Diaz, L.; Kjeldsen, P.; Monni, S.; Faaij, A.; Gao, Q. Mitigation of Global Greenhouse Gas Emissions from Waste: Conclusions and Strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). Waste Manag. Res. 2008, 26, 11–32. [Google Scholar] [CrossRef] [PubMed]
- Zhongming, Z.; Linong, L.; Xiaona, Y.; Wangqiang, Z.; Wei, L. Annual European Union Greenhouse Gas Inventory 1990–2014 and Inventory Report 2016; European Environment Agency: Copenhagen, Denmark, 2016. [Google Scholar]
- Blanco, G.; Gerlagh, R.; Suh, S.; Barrett, J.; de Coninck, H.C.; Morejon, C.D.; Mathur, R.; Nakicenovic, N.; Ahenkorah, A.O.; Pan, J.; et al. Drivers, Trends and Mitigation. In Climate Change 2014: Mitigation of Climate Change, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; Available online: https://econ.au.dk/fileadmin/site_files/filer_oekonomi/Working_Papers/CREATES/2019/rp19_21.pdf (accessed on 1 May 2022).
- Spokas, K.; Graff, C.; Morcet, M.; Aran, C. Implications of the Spatial Variability of Landfill Emission Rates on Geospatial Analyses. Waste Manag. 2003, 23, 599–607. [Google Scholar] [CrossRef]
- Parravicini, V.; Svardal, K.; Krampe, J. Greenhouse Gas Emissions from Wastewater Treatment Plants. Energy Procedia 2016, 97, 246–253. [Google Scholar] [CrossRef]
- Gärtner, A.; Hirschberger, R.; Becker, A.; Düputell, D. Diffuse Biogenic Emissions from Wastewater Treatment Plants (Diffuse Biogene Emissionen Aus Kläranlagen). KA–Korresp. Abwasser Abfall Heft 2017, 11, 985–993. [Google Scholar]
- Nisbet, E.; Fisher, R.; Lowry, D.; France, J.; Allen, G.; Bakkaloglu, S.; Broderick, T.; Cain, M.; Coleman, M.; Fernandez, J. Methane Mitigation: Methods to Reduce Emissions, on the Path to the Paris Agreement. Rev. Geophys. 2020, 58, e2019RG000675. [Google Scholar] [CrossRef]
- Mould, K.; Silva, F.; Knott, S.F.; O’Regan, B. A Comparative Analysis of Biogas and Hydrogen, and the Impact of the Certificates and Blockchain New Paradigms. Int. J. Hydrogen Energy 2022, 47, 39303–39318. [Google Scholar] [CrossRef]
- Mønster, J.; Kjeldsen, P.; Scheutz, C. Methodologies for Measuring Fugitive Methane Emissions from Landfills—A Review. Waste Manag. 2019, 87, 835–859. [Google Scholar] [CrossRef]
- Mehrdad, S.M.; Abbasi, M.; Yeganeh, B.; Kamalan, H. Prediction of Methane Emission from Landfills Using Machine Learning Models. Environ. Prog. Sustain. Energy 2021, 40, e13629. [Google Scholar] [CrossRef]
- IPCC; IEA. IPCC Guidelines for National Greenhouse Gas Inventories; Intergovernmental Panel on Climate Change: Geneva, Switzerland; International Energy Agency: Paris, France, 2006; pp. 10–11. [Google Scholar]
- Vadillo Abascal, J.M. Revisión y Propuesta de una Metodología para la Estimación de Emisiones Difusas de Metano en un Vertedero. 2018. Available online: https://repositorio.unican.es/xmlui/bitstream/handle/10902/14931/412077.pdf?sequence=1 (accessed on 1 May 2022).
- Woess-Gallasch, S.; Bird, N.; Enzinger, P.; Jungmeier, G.; Padinger, R.; Pena, N.; Zanchi, G. Greenhouse Gas Benefits of a Biogas Plant in Austria. Graz, Austria. 2010, Volume 38. Available online: http://www.slocombe.com.au/T38_Paldau_Case_Study_Final_2011.pdf (accessed on 1 May 2022).
- Becker, A.; Düputell, D.; Gärtner, A.; Hirschberger, R.; Oberdörfer, M. Emissions of Climate-Relevant Gases from Sewage Treatment Plants (Emissionen Klimarelevanter Gase Aus Kläranlagen). Immissionsschutz 2012, 4, 182–188. [Google Scholar]
- Tauber, J.; Parravicini, V.; Svardal, K.; Krampe, J. Quantifying Methane Emissions from Anaerobic Digesters. Water Sci. Technol. 2019, 80, 1654–1661. [Google Scholar] [CrossRef] [PubMed]
- Noyola, A.; Paredes, M.; Güereca, L.; Molina, L.; Zavala, M. Methane Correction Factors for Estimating Emissions from Aerobic Wastewater Treatment Facilities Based on Field Data in Mexico and on Literature Review. Sci. Total Environ. 2018, 639, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Bakkaloglu, S.; Cooper, J.; Hawkes, A. Methane Emissions along Biomethane and Biogas Supply Chains Are Underestimated. One Earth 2022, 5, 724–736. [Google Scholar] [CrossRef]
- Bennett, P.; Buckley, P. IEA BIOENERGY: EXCO: 2022: 01. 2022. Available online: https://m.masalalite.com/wp-content/uploads/2022/04/IEA-Bioenergy-Annual-Report-2021.pdf (accessed on 1 May 2022).
- Tait, S.; Harris, P.W.; McCabe, B.K. Biogas Recovery by Anaerobic Digestion of Australian Agro-Industry Waste: A Review. J. Clean. Prod. 2021, 299, 126876. [Google Scholar] [CrossRef]
- Khanal, S.K.; Nindhia, T.G.T.; Nitayavardhana, S. Biogas from Wastes: Processes and Applications. In Sustainable Resource Recovery and Zero Waste Approaches; Elsevier: Amsterdam, The Netherlands, 2019; pp. 165–174. [Google Scholar]
- MITERD. State Register of Emissions and Pollutant Sources (Registro Estatal de Emisiones y Fuentes Contaminantes); Spanish Ministry for the Ecological Transition and the Demographic Challenge: Madrid, Spain, 2020. [Google Scholar]
- Zhao, X.; Jin, X.; Guo, W.; Zhang, C.; Shan, Y.; Du, M.; Tillotson, M.; Yang, H.; Liao, X.; Li, Y. China’s Urban Methane Emissions from Municipal Wastewater Treatment Plant. Earth’s Future 2019, 7, 480–490. [Google Scholar] [CrossRef]
- Zarco-Periñán, P.J.; Zarco-Soto, I.M.; Zarco-Soto, F.J. Influence of Population Density on CO2 Emissions Eliminating the Influence of Climate. Atmosphere 2021, 12, 1193. [Google Scholar] [CrossRef]
- Gavilán, Á. Macroeconomic Projections for Spain 2022-2024 (Proyecciones Macroeconómicas de España 2022-2024); Central Bank of Spain: Madrid, Spain, 2022. [Google Scholar]
- Zhang, C.; Geng, X.; Wang, H.; Zhou, L.; Wang, B. Emission Factor for Atmospheric Ammonia from a Typical Municipal Wastewater Treatment Plant in South China. Environ. Pollut. 2017, 220, 963–970. [Google Scholar] [CrossRef]
- Du, M.; Zhu, Q.; Wang, X.; Li, P.; Yang, B.; Chen, H.; Wang, M.; Zhou, X.; Peng, C. Estimates and Predictions of Methane Emissions from Wastewater in China from 2000 to 2020. Earth’s Future 2018, 6, 252–263. [Google Scholar] [CrossRef]
- Shen, Y.; Linville, J.L.; Urgun-Demirtas, M.; Mintz, M.M.; Snyder, S.W. An Overview of Biogas Production and Utilization at Full-Scale Wastewater Treatment Plants (WWTPs) in the United States: Challenges and Opportunities towards Energy-Neutral WWTPs. Renew. Sustain. Energy Rev. 2015, 50, 346–362. [Google Scholar] [CrossRef]
- Schirmer, W.N.; Crovador, M.I.C. Energy Generation from Municipal Solid Waste and the Current Scenario of Biogas Recovery in Brazil. Revista CIATEC-UPF 2016, 8, 1–11. [Google Scholar] [CrossRef]
- Du, M.; Peng, C.; Wang, X.; Chen, H.; Wang, M.; Zhu, Q. Quantification of Methane Emissions from Municipal Solid Waste Landfills in China during the Past Decade. Renew. Sustain. Energy Rev. 2017, 78, 272–279. [Google Scholar] [CrossRef]
- Ulla-Maija, M.; Ajanko-Laurikko, S.; Arnold, M.; Laiho, A.; Laiho, M.; Wihersaari, I.; Savolainen, H.; Dahlbo, M.-R.; Korhonen, R. The Possibilities of New Waste Treatment Concepts in Reducing Greenhouse Gas Emissions (Uusien Jätteenkäsittelykonseptien Mahdollisuudet Kasvihuonekaasupäästöjen Vähentämisessä); VTT Technical Research Centre of Finland: Espoo, Finland, 2007. [Google Scholar]
- Spokas, K.; Bogner, J.; Chanton, J.P.; Morcet, M.; Aran, C.; Graff, C.; Golvan, Y.M.-L.; Hebe, I. Methane Mass Balance at Three Landfill Sites: What Is the Efficiency of Capture by Gas Collection Systems? Waste Manag. 2006, 26, 516–525. [Google Scholar] [CrossRef]
IPCC (Level 3) | ADEME | GasSIM | |
---|---|---|---|
Is the fact that part of the biogenic carbon fraction is not degraded considered? | Yes | Yes | Yes |
Is sequestered carbon calculated and a value presented? | Yes | No | No |
Can the value be calculated accurately (fraction-by-fraction degradability parameters available)? | Yes | No | Yes |
Can the value be calculated globally for the entire waste mass (for example, is the mean degradability parameter provided for MSW)? | Yes | No | Yes |
Landfill Type | MCF |
---|---|
Managed anaerobic | 1 |
Managed semi-anaerobic | 0.5 |
Unmanaged (>5 m depth) | 0.8 |
Unmanaged (<5 m depth) | 0.4 |
Type of Treatment and Discharge Pathway or System | Comments | Proposed MCF | IPCC’s MCF |
---|---|---|---|
Centralized, aerobic treatment plant | It must be well managed. Some CH4 can be emitted from settling basins and other pockets. | 0.06 | 0.0 |
Centralized, aerobic treatment plant with anaerobic sludge digesters | It must be well managed. Some CH4 can be emitted from settling basins and other pockets. Fugitive emissions from digesters are considered. | 0.32 | - |
Centralized, anaerobic (or anoxic) aerobic treatment plant | It must be well managed. Some CH4 can be emitted from settling basins and other pockets. | 0.08 | - |
Centralized, anaerobic (or anoxic) aerobic treatment plant with anaerobic sludge digesters | It must be well managed. Some CH4 can be emitted from settling basins and other pockets. Fugitive emissions from digesters are considered. | 0.34 | - |
Year | Region | N Inst | L | W | B | Total | Efficiency Level | Extension | P | GDP | |
---|---|---|---|---|---|---|---|---|---|---|---|
[kg CH4/year] | (0–10) | [km2] | [M hab] | [MEUR] | |||||||
2020 | 61 | 28 | 179.44 | 83.48 | 72.48 | 335.40 | (18%) | 3 | 87,599 | 8.52 | 150,557 |
62 | 20 | 11.38 | 4.65 | 67.30 | 83.33 | (4%) | 8 | 47,720 | 1.31 | 35,290 | |
63 | 8 | 11.89 | 12.95 | 0.00 | 24.84 | (1%) | 9 | 10,604 | 1.01 | 21,475 | |
64 | 3 | 19.53 | 0.00 | 0.00 | 19.53 | (1%) | 7 | 4992 | 1.22 | 26,789 | |
65 | 8 | 47.84 | 23.85 | 0.00 | 71.69 | (4%) | 5 | 7447 | 2.25 | 39,163 | |
66 | 5 | 46.10 | 8.79 | 0.00 | 54.89 | (3%) | 4 | 5321 | 0.58 | 12,867 | |
67 | 30 | 49.25 | 22.75 | 44.57 | 116.56 | (6%) | 9 | 94,224 | 2.38 | 55,401 | |
68 | 22 | 54.87 | 7.27 | 0.00 | 62.14 | (3%) | 9 | 79,461 | 2.05 | 39,573 | |
69 | 32 | 95.64 | 96.94 | 59.92 | 252.49 | (13%) | 6 | 32,113 | 7.68 | 212,931 | |
70 | 8 | 78.32 | 14.06 | 5.28 | 97.66 | (5%) | 3 | 41,634 | 1.05 | 19,386 | |
71 | 14 | 101.11 | 41.74 | 52.67 | 195.52 | (10%) | 2 | 29,575 | 2.69 | 59,105 | |
72 | 33 | 96.83 | 99.97 | 104.64 | 301.44 | (16%) | 5 | 8028 | 6.77 | 216,527 | |
73 | 6 | 26.17 | 10.54 | 0.00 | 36.72 | (2%) | 7 | 11,314 | 1.52 | 29,940 | |
74 | 3 | 9.52 | 3.70 | 0.00 | 13.22 | (1%) | 8 | 10,391 | 0.66 | 19,265 | |
75 | 3 | 20.81 | 8.94 | 0.00 | 29.76 | (2%) | 5 | 7234 | 2.18 | 66,558 | |
76 | 4 | 4.40 | 4.93 | 0.00 | 9.33 | (0%) | 10 | 5045 | 0.32 | 8129 | |
77 | 12 | 117.41 | 21.09 | 60.72 | 199.22 | (10%) | 0 | 23,225 | 5.07 | 104,724 | |
2020 | TOTAL | 239 | 970.53 | 465.65 | 467.57 | 1903.75 | (100%) | 505,927 | 47.26 | 1,117,680 | |
Added | (51%) | (24%) | (25%) | (100%) |
Extension | GDP | Population | |||
---|---|---|---|---|---|
L | |||||
W | |||||
B | |||||
T estimation |
Year | T as Function of GDP | T as Function of P | T Mean Estimation | T as Function of GDP | T as Function of P | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T Added | T Estimation | ε | p-Value | T Added | T Estimation | ε | p-Value | ε | p-Value | ε | p-Value | ||
[Tons CH4/Year] | (T Added—T Estimation) | [Tons CH4/Year] | (T Added—T Estimation) | [Tons CH4/Year] | (T Estimation—T Mean Estimation) | (T Estimation—T Mean Estimation) | |||||||
2016 | 1904.13 | 1904.14 | 0.00% | 1.00 | 1872.97 | 1888.55 | 0.00% | 1.00 | 1888.55 | −0.82% | 1.00 | 0.83% | 1.00 |
2017 | 2081.66 | 2081.66 | 0.00% | 1.00 | 1876.01 | 1978.84 | 0.00% | 1.00 | 1978.84 | −4.94% | 0.90 | 5.48% | 0.90 |
2018 | 2023.67 | 2023.68 | 0.00% | 1.00 | 1883.61 | 1953.64 | 0.00% | 1.00 | 1953.64 | −3.46% | 1.00 | 3.72% | 1.00 |
2019 | 2081.66 | 2081.66 | 0.00% | 1.00 | 1897.67 | 1989.67 | 0.00% | 1.00 | 1989.67 | −4.42% | 0.90 | 4.85% | 0.90 |
2020 | 1903.70 | 1903.71 | 0.00% | 1.00 | 1903.76 | 1903.73 | 0.00% | 1.00 | 1903.73 | 0.00% | 1.00 | 0.00% | 1.00 |
2021 | 2027.82 | 2027.83 | 0.00% | 1.00 | 1906.42 | 1967.12 | 0.00% | 1.00 | 1967.12 | −2.99% | 1.00 | 3.18% | 1.00 |
2022 | 1970.61 | 1970.61 | 0.00% | 1.00 | 1910.22 | 1940.42 | 0.00% | 1.00 | 1940.42 | −1.53% | 1.00 | 1.58% | 1.00 |
2023 | 1927.04 | 1927.05 | 0.00% | 1.00 | 1923.90 | 1925.47 | 0.00% | 1.00 | 1925.47 | −0.08% | 1.00 | 0.08% | 1.00 |
2024 | 1934.82 | 1934.83 | 0.00% | 1.00 | 1938.96 | 1936.89 | 0.00% | 1.00 | 1936.89 | 0.11% | 1.00 | −0.11% | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil-García, D.; Revuelta-Aramburu, M.; Morales-Polo, C.; Cledera-Castro, M.d.M. Optimizing Methane Recovery for Fuels: A Comparative Study of Fugitive Emissions in Biogas Plants, WWTPs, and Landfills. Fuels 2024, 5, 762-781. https://doi.org/10.3390/fuels5040042
Gil-García D, Revuelta-Aramburu M, Morales-Polo C, Cledera-Castro MdM. Optimizing Methane Recovery for Fuels: A Comparative Study of Fugitive Emissions in Biogas Plants, WWTPs, and Landfills. Fuels. 2024; 5(4):762-781. https://doi.org/10.3390/fuels5040042
Chicago/Turabian StyleGil-García, Daniel, Marta Revuelta-Aramburu, Carlos Morales-Polo, and María del Mar Cledera-Castro. 2024. "Optimizing Methane Recovery for Fuels: A Comparative Study of Fugitive Emissions in Biogas Plants, WWTPs, and Landfills" Fuels 5, no. 4: 762-781. https://doi.org/10.3390/fuels5040042
APA StyleGil-García, D., Revuelta-Aramburu, M., Morales-Polo, C., & Cledera-Castro, M. d. M. (2024). Optimizing Methane Recovery for Fuels: A Comparative Study of Fugitive Emissions in Biogas Plants, WWTPs, and Landfills. Fuels, 5(4), 762-781. https://doi.org/10.3390/fuels5040042