Experimental Evaluation of a MIMO Radar Performance for ADAS Application
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Calibration of the Radar
3.2. Effective Probability of False Alarm
3.3. Mean Error in Range
3.4. Number of Echoes per Unit of Time
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bilik, I.; Longman, O.; Villeval, S.; Tabrikian, J. The Rise of Radar for Autonomous Vehicles: Signal Processing Solutions and Future Research Directions. IEEE Signal Process. Mag. 2019, 36, 20–31. [Google Scholar] [CrossRef]
- Ignatious, H.A.; El-Sayed, H.; Khan, M. An overview of sensors in Autonomous Vehicles. Procedia Comput. Sci. 2022, 198, 736–741. [Google Scholar] [CrossRef]
- Gao, X.; Roy, S.; Xing, G. MIMO-SAR: A Hierarchical High-Resolution Imaging Algorithm for mmWave FMCW Radar in Autonomous Driving. IEEE Trans. Veh. Technol. 2021, 70, 7322–7334. [Google Scholar] [CrossRef]
- Marti, E.; Perez, J.; de Miguel, M.A.; Garcia, F. A review of sensor technologies for perception in automated driving. IEEE Intell. Transp. Syst. Mag. 2019, 11, 94–108. [Google Scholar] [CrossRef]
- Reina, G.; Johnson, D.; Underwood, J. Radar sensing for intelligent vehicles in urban environments. Sensors 2015, 15, 14661–14678. [Google Scholar] [CrossRef] [PubMed]
- Patole, S.M.; Torlak, M.; Wang, D.; Ali, M. Automotive radars: A review of signal processing techniques. IEEE Signal Process. Mag. 2017, 34, 22–35. [Google Scholar] [CrossRef]
- Wagner, M.; Sulejmani, F.; Melzer, A.; Meissner, P.; Huemer, M. Threshold-Free Interference Cancellation Method for Automotive FMCW Radar Systems. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Stark, W.; Ali, M.; Maher, M. Digital Code Modulation (DCM) for Automotive Application. In Uhnder White Paper; Uhnder: Austin, TX, USA, 2020. [Google Scholar]
- Plšičík, R.; Danko, M. Introducing to using mmWave Radar development board AWR1843. In Proceedings of the 2022 ELEKTRO (ELEKTRO), Krakow, Poland, 23–26 May 2022. [Google Scholar]
- Peng, Y.; Wang, X.H.; Hu, J.J.; Xu, Y.; Shi, X.W. Design of Miniature Millimeter Wave Radar System Based on TI Integrated Chip. In Proceedings of the 2022 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Harbin, China, 12–15 August 2022; pp. 1–3. [Google Scholar] [CrossRef]
- Gao, X.; Xing, G.; Roy, S.; Liu, H. Experiments with mmWave Automotive Radar Test-bed. In Proceedings of the 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 3–6 November 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Gao, X.; Roy, S.; Xing, G.; Jin, S. Perception Through 2D-MIMO FMCW Automotive Radar Under Adverse Weather. In Proceedings of the 2021 IEEE International Conference on Autonomous Systems (ICAS), Montreal, QC, Canada, 11–13 August 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Correas-Serrano, A.; González-Hiuci, M.A. Experimental evaluation of compressive sensing for DoA estimation in automotive radar. In Proceedings of the 19th International Radar Symposium IRS, Bonn, Germany, 20–22 June 2018. [Google Scholar]
- Patole, S.; Baral, A.B.; Torlak, M. Fast 3D Joint Superresolution Algorithm for Millimeter Wave FMCW Radars. IEEE Open J. Signal Process. 2023, 4, 346–365. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, H.; Guo, K.; Li, J.; Xu, G.; Chen, Z. Density-Based Vehicle Detection Approach for Automotive Millimeter-Wave Radar. In Proceedings of the 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT), Shenzhen, China, 13–15 November 2020; pp. 534–537. [Google Scholar] [CrossRef]
- Pirkani, A.; Cassidy, S.; Pooni, S.; Cherniakov, M.; Gashinova, M. Modelling and experimental validation of radar—Environment interaction in automotive scenarios. In Proceedings of the International Conference on Radar Systems (RADAR 2022), Hybrid Conference, Edinburgh, UK, 24–27 October 2022; pp. 395–400. [Google Scholar] [CrossRef]
- Meinl, F.; Stolz, M.; Kunert, M.; Blume, H. An experimental high-performance radar system for highly automated driving. In Proceedings of the 2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Nagoya, Japan, 19–21 March 2017; pp. 71–74. [Google Scholar] [CrossRef]
- Golovachev, Y.; Etinger, A.; Pinhasi, G.A.; Pinhasi, Y. Millimeter Wave High Resolution Radar Accuracy in Fog Conditions—Theory and Experimental Verification. Sensors 2018, 18, 2148. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, A.; Tsotsos, J.K. Autonomous Vehicles That Interact with Pedestrians: A Survey of Theory and Practice. IEEE Trans. Intell. Transp. Syst. 2020, 21, 900–918. [Google Scholar] [CrossRef]
- Nimac, P.; Krpič, A.; Batagelj, B.; Gams, A. Pedestrian Traffic Light Control with Crosswalk FMCW Radar and Group Tracking Algorithm. Sensors 2022, 22, 1754. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Petropolu, A.P.; Poor, H.V. MIMO radar for Advanced Driver-Assistance Systems and autonomous driving. IEEE Signal Process. Mag. 2020, 37, 98–117. [Google Scholar] [CrossRef]
- Iovescu, C.; Rao, S. The fundamentals of millimeter wave sensors. In TI Report SPYY005; Texas Instruments: Dallas, TX, USA, 2017. [Google Scholar]
- Rao, S. MIMO Radar. In TI Application Report SWRA554A, May 2017, Revised July 2018; Texas Instruments: Dallas, TX, USA, 2018. [Google Scholar]
- Faus, O. Signal Processing for mmWave MIMO Radar. Master’s Thesis, University of Gävle, Gävle, Sweden, 2015. [Google Scholar]
- Dham, V. Programming Chirp Parameters in TI Radar Devices. In Application Report SWRA553A–May 2017—Revised February 2020; Texas Instruments: Dallas, TX, USA, 2020. [Google Scholar]
- Levanon, R.N. Encyclopedia of Physical Science and Technology, 3rd ed.; Meyers, R.A., Ed.; Academic Press: Cambridge, MA, USA, 2003; pp. 497–510. [Google Scholar]
- Katzlberger, C. Object Detection with Automotive Radar Sensors Using CFAR Algorithms. Bachelor’s Thesis, Johannes Kepler University, Linz, Austria, 2018. [Google Scholar]
- Ren, S.; Han, S.; Wang, B. Stationary and Small Target Detection for Millimeter-Wave Radar. In Proceedings of the 2022 IEEE 22nd International Conference on Communication Technology (ICCT), Nanjing, China, 11–14 November 2022; pp. 1698–1702. [Google Scholar] [CrossRef]
- Xu, C.; Wang, F.; Zhang, Y.; Xu, L.; Ai, M.; Yan, G. Two-level CFAR Algorithm for Target Detection in mmWave Radar. In Proceedings of the 2021 International Conference on Computer Engineering and Application (ICCEA), Kunming, China, 25–27 June 2021; pp. 240–243. [Google Scholar] [CrossRef]
- Wang, S.; Herschel, R. Fast 3D-CFAR for Drone Detection with MIMO Radars. In Proceedings of the 2021 18th European Radar Conference (EuRAD), London, UK, 5–7 April 2022; pp. 209–212. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dios, F.; Torres-Benito, S.; Lázaro, J.A.; Casas, J.R.; Pinazo, J.; Lerín, A. Experimental Evaluation of a MIMO Radar Performance for ADAS Application. Telecom 2024, 5, 508-521. https://doi.org/10.3390/telecom5030026
Dios F, Torres-Benito S, Lázaro JA, Casas JR, Pinazo J, Lerín A. Experimental Evaluation of a MIMO Radar Performance for ADAS Application. Telecom. 2024; 5(3):508-521. https://doi.org/10.3390/telecom5030026
Chicago/Turabian StyleDios, Federico, Sergio Torres-Benito, Jose A. Lázaro, Josep R. Casas, Jorge Pinazo, and Adolfo Lerín. 2024. "Experimental Evaluation of a MIMO Radar Performance for ADAS Application" Telecom 5, no. 3: 508-521. https://doi.org/10.3390/telecom5030026
APA StyleDios, F., Torres-Benito, S., Lázaro, J. A., Casas, J. R., Pinazo, J., & Lerín, A. (2024). Experimental Evaluation of a MIMO Radar Performance for ADAS Application. Telecom, 5(3), 508-521. https://doi.org/10.3390/telecom5030026