Bi-GRU-APSO: Bi-Directional Gated Recurrent Unit with Adaptive Particle Swarm Optimization Algorithm for Sales Forecasting in Multi-Channel Retail
Abstract
:1. Introduction
- Performed outlier’s removal, interpolation of missing data, normalization, and de-normalization in the acquired datasets. The forecasting accuracy is significantly improved by excluding outliers and interpolating missing data. The outlier’s removal aims to eliminate rare or unexpected instances in datasets, and a more typical value is interpolated with the missing data to avoid problems like bias and loss of power. Additionally, data integrity is improved by performing normalization and de-normalization using the Z-score normalization technique.
- Integrated APSO algorithm, RFE, and MRMR for optimizing features in the acquired Rossmann and Walmart datasets. The feature engineering process minimizes the number of features in the pre-processed datasets and, in turn, decreases the computational complexity and processing time, alongside improving the performance of the regression model. The selection of active features decreases the complexity to linear, and the regression model consumes a minimal processing time of 20.11 s, while consuming 30.12 s in the Rossmann and Walmart datasets.
- The selected active features are passed to the Bi-GRU model for precise retail sales forecasting. When related to other regression models, the Bi-GRU model consumes limited memory and is faster in data processing. The effectiveness of the proposed regression model is analyzed based on six evaluation measures: Coefficient of determination (R2), MSE, Normalized Deviation (ND), MAE, Root Mean Square Scale Error (RMSSE), and Normalized Root Mean Square Error (NRMSE).
2. Literature Survey
3. Methods
- Retail data pre-processing: Interpolating missing data, outliers’ removal, normalization, and de-normalization.
- Feature engineering: MRMR, RFE, and APSO.
- Retail sales forecasting: Bi-GRU model.
3.1. Retail Data Pre-Processing
3.2. Feature Engineering
3.3. Retail Sales Forecasting
3.4. Complexity and Convergence Analysis
4. Results and Discussion
4.1. Evaluation Measures
4.2. Dataset Description
4.3. Quantitative Analysis
4.4. Comparative Analysis
4.5. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Esmeli, R.; Bader-El-Den, M.; Abdullahi, H. Towards Early Purchase Intention Prediction in Online Session Based Retailing Systems. Electron. Mark. 2021, 31, 697–715. [Google Scholar] [CrossRef]
- Fildes, R.; Ma, S.; Kolassa, S. Retail Forecasting: Research and Practice. Int. J. Forecast. 2022, 38, 1283–1318. [Google Scholar] [CrossRef]
- Wang, X.S.; Ryoo, J.H.J.; Bendle, N.; Kopalle, P.K. The Role of Machine Learning Analytics and Metrics in Retailing Research. J. Retail. 2021, 97, 658–675. [Google Scholar] [CrossRef]
- Wang, J.; Liu, G.Q.; Liu, L. A Selection of Advanced Technologies for Demand Forecasting in The Retail Industry. In Proceedings of the 2019 IEEE 4th International Conference on Big Data Analytics (ICBDA), Suzhou, China, 15–18 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 317–320. [Google Scholar]
- Güven, I.; Şimşir, F. Demand Forecasting with Color Parameter in Retail Apparel Industry Using Artificial Neural Networks (ANN) And Support Vector Machines (SVM) Methods. Comput. Ind. Eng. 2020, 147, 106678. [Google Scholar] [CrossRef]
- Cui, H.; Rajagopalan, S.; Ward, A.R. Predicting Product Return Volume Using Machine Learning Methods. Eur. J. Oper. Res. 2020, 281, 612–627. [Google Scholar] [CrossRef]
- Salinas, D.; Flunkert, V.; Gasthaus, J.; Januschowski, T. Deepar: Probabilistic Forecasting with Autoregressive Recurrent Networks. Int. J. Forecast. 2020, 36, 1181–1191. [Google Scholar] [CrossRef]
- Kavitha, M.; Srinivasan, R.; Kavitha, R.; Suganthy, M. Sales Demand Forecasting for Retail Marketing Using Xgboost Algorithm. In Intelligent and Soft Computing Systems for Green Energy; Wiley Online Library: Hoboken, NJ, USA, 2023; pp. 127–140. [Google Scholar]
- Schaeffer, S.E.; Sanchez, S.V.R. Forecasting Client Retention-A Machine-Learning Approach. J. Retail. Consum. Serv. 2020, 52, 101918. [Google Scholar] [CrossRef]
- Ramos, P.; Santos, N.; Rebelo, R. Performance of State Space and ARIMA Models for Consumer Retail Sales Forecasting. Rob. Comput. Integr. Manuf. 2015, 34, 151–163. [Google Scholar] [CrossRef]
- Sharma, A.; Shafiq, M.O. Predicting Purchase Probability of Retail Items Using an Ensemble Learning Approach and Historical Data. In Proceedings of the 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 14–17 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 723–728. [Google Scholar]
- Yu, M.; Tian, X.; Tao, Y. Dynamic Model Selection Based on Demand Pattern Classification in Retail Sales Forecasting. Mathematics 2022, 10, 3179. [Google Scholar] [CrossRef]
- Dhote, S.; Vichoray, C.; Pais, R.; Baskar, S.; Mohamed Shakeel, P. Hybrid Geometric Sampling and adaboost Based Deep Learning Approach for Data Imbalance in E-Commerce. Electron. Commer. Res. 2020, 20, 259–274. [Google Scholar] [CrossRef]
- Pavlyshenko, B.M. Machine-Learning Models for Sales Time Series Forecasting. Data 2019, 4, 15. [Google Scholar] [CrossRef]
- Nosratabadi, S.; Mosavi, A.; Duan, P.; Ghamisi, P.; Filip, F.; Band, S.S.; Reuter, U.; Gama, J.; Gandomi, A.H. Data Science in Economics: Comprehensive Review of Advanced Machine Learning and Deep Learning Methods. Mathematics 2020, 8, 1799. [Google Scholar] [CrossRef]
- He, Q.Q.; Wu, C.; Si, Y.W. LSTM with Particle Swam Optimization for Sales Forecasting. Electron. Commer. Res. Appl. 2020, 51, 101118. [Google Scholar] [CrossRef]
- Ji, S.; Wang, X.; Zhao, W.; Guo, D. An Application of a Three-Stage Xgboost-Based Model to Sales Forecasting of a Cross-Border E-Commerce Enterprise. Math. Probl. Eng. 2019, 2019, 8503252. [Google Scholar] [CrossRef]
- Massaro, A.; Panarese, A.; Giannone, D.; Galiano, A. Augmented Data and XGBoost Improvement for Sales Forecasting in the Large-Scale Retail Sector. Appl. Sci. 2020, 11, 7793. [Google Scholar] [CrossRef]
- Wong, W.K.; Guo, Z.X. A Hybrid Intelligent Model for Medium-Term Sales Forecasting in Fashion Retail Supply Chains Using Extreme Learning Machine and Harmony Search Algorithm. Int. J. Prod. Econ. 2020, 128, 614–624. [Google Scholar] [CrossRef]
- Loureiro, A.L.; Miguéis, V.L.; da Silva, L.F. Exploring the Use of Deep Neural Networks for Sales Forecasting in Fashion Retail. Decis. Support Syst. 2018, 114, 81–93. [Google Scholar] [CrossRef]
- Lu, C.J. Sales Forecasting of Computer Products Based on Variable Selection Scheme and Support Vector Regression. Neurocomputing 2014, 128, 491–499. [Google Scholar] [CrossRef]
- Luo, T.; Chang, D.; Xu, Z. Research on Apparel Retail Sales Forecasting Based on Xdeepfm-LSTM Combined Forecasting Model. Information 2022, 13, 497. [Google Scholar] [CrossRef]
- Zhang, B.; Tan, R.; Lin, C.J. Forecasting of E-Commerce Transaction Volume Using a Hybrid of Extreme Learning Machine and Improved Moth-Flame Optimization Algorithm. Appl. Intell. 2021, 51, 952–965. [Google Scholar] [CrossRef]
- Weng, T.; Liu, W.; Xiao, J. Supply Chain Sales Forecasting Based on Lightgbm and LSTM Combination Model. Ind. Manag. Data Syst. 2020, 120, 265–279. [Google Scholar] [CrossRef]
- Shilong, Z. Machine Learning Model for Sales Forecasting by Using Xgboost. In Proceedings of the 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE), Guangzhou, China, 15–17 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 480–483. [Google Scholar]
- Punia, S.; Nikolopoulos, K.; Singh, S.P.; Madaan, J.K.; Litsiou, K. Deep Learning with Long Short-Term Memory Networks and Random Forests for Demand Forecasting in Multi-Channel Retail. Int. J. Prod. Res. 2020, 58, 4964–4979. [Google Scholar] [CrossRef]
- Karmy, J.P.; Maldonado, S. Hierarchical Time Series Forecasting Via Support Vector Regression in The European Travel Retail Industry. Expert Syst. Appl. 2019, 137, 59–73. [Google Scholar] [CrossRef]
- Kilimci, Z.H.; Akyuz, A.O.; Uysal, M.; Akyokus, S.; Uysal, M.O.; Atak Bulbul, B.; Ekmis, M.A. An Improved Demand Forecasting Model Using Deep Learning Approach and Proposed Decision Integration Strategy for Supply Chain. Complexity 2019, 2019, 9067367. [Google Scholar] [CrossRef]
- Kohli, S.; Godwin, G.T.; Urolagin, S. Sales prediction using linear and KNN regression. In Advances in Machine Learning and Computational Intelligence: Proceedings of ICMLCI 2019; Springer: Singapore, 2021; pp. 321–329. [Google Scholar]
- Ma, S.; Fildes, R. Retail Sales Forecasting with Meta-Learning. Eur. J. Oper. Res 2021, 288, 111–128. [Google Scholar] [CrossRef]
- Tang, L.; Li, J.; Du, H.; Li, L.; Wu, J.; Wang, S. Big Data in Forecasting Research: A Literature Review. Big Data Res. 2022, 27, 100289. [Google Scholar] [CrossRef]
- Yang, R.; Yin, L.; Hao, X.; Liu, L.; Wang, C.; Li, X.; Liu, Q. Identifying A Suitable Model for Predicting Hourly Pollutant Concentrations by Using Low-Cost Microstation Data and Machine Learning. Sci. Rep. 2022, 12, 19949. [Google Scholar] [CrossRef]
- Hossain, M.M.; Swarna, R.A.; Mostafiz, R.; Shaha, P.; Pinky, L.Y.; Rahman, M.M.; Rahman, W.; Hossain, M.S.; Hossain, M.E.; Iqbal, M.S. Analysis of The Performance of Feature Optimization Techniques for The Diagnosis of Machine Learning-Based Chronic Kidney Disease. Mach. Learn. Appl. 2022, 9, 100330. [Google Scholar] [CrossRef]
- Jain, M.; Saihjpal, V.; Singh, N.; Singh, S.B. An Overview of Variants and Advancements of PSO Algorithm. Appl. Sci. 2022, 12, 8392. [Google Scholar] [CrossRef]
- Yu, C. Design of Drug Sales Forecasting Model Using Particle Swarm Optimization Neural Networks Model. Comput. Intell. Neurosci. 2022, 2022, 6836524. [Google Scholar] [CrossRef]
- Li, X.; Ma, X.; Xiao, F.; Xiao, C.; Wang, F.; Zhang, S. Time-Series Production Forecasting Method Based on the Integration of Bidirectional Gated Recurrent Unit (Bi-GRU) Network and Sparrow Search Algorithm (SSA). J. Pet. Sci. Eng. 2022, 208, 109309. [Google Scholar] [CrossRef]
- Zhu, Z.; Dai, W.; Hu, Y.; Li, J. Speech Emotion Recognition Model Based on Bi-GRU and Focal Loss. Pattern Recognit. Lett. 2020, 140, 358–365. [Google Scholar] [CrossRef]
- Ozyegen, O.; Ilic, I.; Cevik, M. Evaluation of Interpretability Methods for Multivariate Time Series Forecasting. Appl. Intell. 2022, 52, 4727–4743. [Google Scholar] [CrossRef] [PubMed]
- Yang, T. Sales Prediction of Walmart Sales Based on OLS, Random Forest, and Xgboost Models. Highlights Sci. Eng. Technol. 2023, 49, 244–249. [Google Scholar] [CrossRef]
- Niu, Y. Walmart Sales Forecasting Using Xgboost Algorithm and Feature Engineering. In Proceedings of the 2020 International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), Chengdu, China, 23–25 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 458–461. [Google Scholar]
Specifications | Walmart | Rossmann |
---|---|---|
Time granularity | Weekly | Daily |
Window size of prediction | 6 | 12 |
Window size of input | 30 | 30 |
time covariates | 4 | 3 |
features | 8 | 7 |
time series | 2660 | 1115 |
Rossmann Dataset | |||
---|---|---|---|
Forecasting Models | Measures | Without Feature Engineering | With Feature Engineering |
Linear regression | NRMSE | 5.90 | 3.92 |
ND | 5.44 | 3.90 | |
RMSSE | 4.97 | 3.68 | |
MAE | 4.10 | 3.10 | |
MSE | 4.04 | 2.96 | |
R2 | 0.60 | 0.80 | |
LSTM | NRMSE | 3.76 | 2.96 |
ND | 3.52 | 2.92 | |
RMSSE | 3.50 | 2.54 | |
MAE | 3.42 | 2.58 | |
MSE | 3.14 | 2.32 | |
R2 | 0.64 | 0.84 | |
Bi-LSTM | NRMSE | 2.90 | 2.67 |
ND | 2.72 | 2.42 | |
RMSSE | 2.48 | 2.01 | |
MAE | 2.44 | 1.96 | |
MSE | 2.05 | 1.92 | |
R2 | 0.76 | 0.91 | |
GRU | NRMSE | 0.80 | 0.57 |
ND | 0.88 | 0.25 | |
RMSSE | 0.86 | 0.33 | |
MAE | 0.65 | 0.23 | |
MSE | 0.58 | 0.22 | |
R2 | 0.82 | 0.95 | |
Bi-GRU | NRMSE | 0.16 | 0.08 |
ND | 0.15 | 0.07 | |
RMSSE | 0.22 | 0.08 | |
MAE | 0.16 | 0.05 | |
MSE | 0.12 | 0.04 | |
R2 | 0.88 | 0.98 |
Walmart Dataset | |||
---|---|---|---|
Forecasting Models | Measures | Without Feature Engineering | With Feature Engineering |
Linear regression | NRMSE | 5.64 | 3.96 |
ND | 5.20 | 3.75 | |
RMSSE | 4.88 | 3.58 | |
MAE | 4.52 | 3.42 | |
MSE | 4.06 | 3.12 | |
R2 | 0.76 | 0.83 | |
LSTM | NRMSE | 3.96 | 2.88 |
ND | 3.68 | 2.90 | |
RMSSE | 3.52 | 2.72 | |
MAE | 3.46 | 2.50 | |
MSE | 3.32 | 2.42 | |
R2 | 0.80 | 0.88 | |
Bi-LSTM | NRMSE | 2.90 | 2.15 |
ND | 2.78 | 2.06 | |
RMSSE | 2.53 | 2.02 | |
MAE | 2.46 | 1.88 | |
MSE | 2.06 | 1.48 | |
R2 | 0.82 | 0.90 | |
GRU | NRMSE | 0.95 | 0.41 |
ND | 0.64 | 0.32 | |
RMSSE | 0.56 | 0.28 | |
MAE | 0.67 | 0.18 | |
MSE | 0.42 | 0.10 | |
R2 | 0.88 | 0.93 | |
Bi-GRU | NRMSE | 0.10 | 0.01 |
ND | 0.16 | 0.03 | |
RMSSE | 0.18 | 0.08 | |
MAE | 0.12 | 0.07 | |
MSE | 0.11 | 0.03 | |
R2 | 0.97 | 0.9 |
Citadel POS Dataset | |||
---|---|---|---|
Forecasting Models | Measures | Without Feature Engineering | With Feature Engineering |
ARIMA | NRMSE | 6.58 | 3.52 |
ND | 4.73 | 3.41 | |
RMSSE | 4.17 | 3.13 | |
MAE | 3.28 | 2.64 | |
MSE | 4.04 | 2.52 | |
R2 | 0.73 | 0.83 | |
LSTM | NRMSE | 5.29 | 2.96 |
ND | 4.91 | 2.92 | |
RMSSE | 4.53 | 2.54 | |
MAE | 4.01 | 2.58 | |
MSE | 3.88 | 2.32 | |
R2 | 0.76 | 0.84 | |
Bi-LSTM | NRMSE | 3.94 | 3.67 |
ND | 3.18 | 3.02 | |
RMSSE | 3.01 | 2.88 | |
MAE | 2.77 | 2.61 | |
MSE | 2.22 | 2.16 | |
R2 | 0.77 | 0.92 | |
GRU | NRMSE | 0.73 | 0.44 |
ND | 0.68 | 0.29 | |
RMSSE | 0.71 | 0.30 | |
MAE | 0.61 | 0.27 | |
MSE | 0.59 | 0.29 | |
R2 | 0.80 | 0.91 | |
Bi-GRU | NRMSE | 0.34 | 0.09 |
ND | 0.31 | 0.08 | |
RMSSE | 0.28 | 0.08 | |
MAE | 0.27 | 0.07 | |
MSE | 0.25 | 0.06 | |
R2 | 0.85 | 0.96 |
Feature Engineering Techniques | Measures | Rossmann | Walmart |
---|---|---|---|
Bi-GRU | |||
APSO | NRMSE | 3.78 | 3.64 |
ND | 3.42 | 3.32 | |
RMSSE | 3.30 | 3.22 | |
MAE | 3.16 | 3.08 | |
MSE | 3.02 | 2.93 | |
R2 | 0.80 | 0.88 | |
RFE | NRMSE | 2.80 | 2.72 |
ND | 2.74 | 2.62 | |
RMSSE | 2.48 | 2.31 | |
MAE | 2.40 | 2.35 | |
MSE | 2.06 | 2.12 | |
R2 | 0.88 | 0.92 | |
MRMR | NRMSE | 2.14 | 2.22 |
ND | 2.10 | 2.09 | |
RMSSE | 1.96 | 1.82 | |
MAE | 1.30 | 1.22 | |
MSE | 1.26 | 1.12 | |
R2 | 0.90 | 0.94 | |
APSO + RFE + MRMR | NRMSE | 0.08 | 0.01 |
ND | 0.07 | 0.03 | |
RMSSE | 0.08 | 0.08 | |
MAE | 0.05 | 0.07 | |
MSE | 0.04 | 0.03 | |
R2 | 0.98 | 0.99 |
Datasets | Models | NRMSE | ND |
---|---|---|---|
Rossmann | GBR [38] | 0.12 | 0.20 |
TDNN [38] | 0.15 | 0.29 | |
LSTM [38] | 0.13 | 0.25 | |
Bi-GRU | 0.08 | 0.07 | |
Walmart | GBR [38] | 0.01 | 0.10 |
TDNN [38] | 0.02 | 0.14 | |
LSTM [38] | 0.01 | 0.13 | |
Bi-GRU | 0.01 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mogarala Guruvaya, A.; Kollu, A.; Divakarachari, P.B.; Falkowski-Gilski, P.; Praveena, H.D. Bi-GRU-APSO: Bi-Directional Gated Recurrent Unit with Adaptive Particle Swarm Optimization Algorithm for Sales Forecasting in Multi-Channel Retail. Telecom 2024, 5, 537-555. https://doi.org/10.3390/telecom5030028
Mogarala Guruvaya A, Kollu A, Divakarachari PB, Falkowski-Gilski P, Praveena HD. Bi-GRU-APSO: Bi-Directional Gated Recurrent Unit with Adaptive Particle Swarm Optimization Algorithm for Sales Forecasting in Multi-Channel Retail. Telecom. 2024; 5(3):537-555. https://doi.org/10.3390/telecom5030028
Chicago/Turabian StyleMogarala Guruvaya, Aruna, Archana Kollu, Parameshachari Bidare Divakarachari, Przemysław Falkowski-Gilski, and Hirald Dwaraka Praveena. 2024. "Bi-GRU-APSO: Bi-Directional Gated Recurrent Unit with Adaptive Particle Swarm Optimization Algorithm for Sales Forecasting in Multi-Channel Retail" Telecom 5, no. 3: 537-555. https://doi.org/10.3390/telecom5030028
APA StyleMogarala Guruvaya, A., Kollu, A., Divakarachari, P. B., Falkowski-Gilski, P., & Praveena, H. D. (2024). Bi-GRU-APSO: Bi-Directional Gated Recurrent Unit with Adaptive Particle Swarm Optimization Algorithm for Sales Forecasting in Multi-Channel Retail. Telecom, 5(3), 537-555. https://doi.org/10.3390/telecom5030028