Reliable and Resilient Wireless Communications in IoT-Based Smart Agriculture: A Case Study of Radio Wave Propagation in a Corn Field
Abstract
:1. Introduction
2. Radio Wave Propagation Measurements in a Corn Field
2.1. Measurement Environment
2.2. Measurement Equipment and Setup
3. Results and Discussion
3.1. Measurement Results
3.2. Model Selection and Application for Short-Range Propagation in a Corn Field
Calculation of Path Loss
- -
- PT is the transmitted power (which remains constant PT = 0 dBm);
- -
- PR (in dBm) is the received power, varying as a function of distance;
- -
- GT and GR represent the gains of the transmitting and receiving reference dipole antennas, which are both 2.15 dBi.
- -
- L is attenuation loss in dB;
- -
- F is the frequency in MHz or GHz;
- -
- d is the depth of the vegetation along the line-of-sight path in meters;
- -
- A, B, and C are model parameters. They are presented in Table 4.
- -
- F is the frequency in MHz;
- -
- d is the distance in kilometers.
- -
- L1 is a value for the basic transmission loss at the d = 1 m;
- -
- d is the distance in meters;
- -
- dbp is the breakpoint distance in meters and is given by:
- -
- λ is the wavelength in meters;
- -
- hTx is transmitting antenna height in meters;
- -
- hRx is receiving antenna height in meters;
- -
- n1 and n2 are model parameters. They are presented in Table 4.
- -
- n is the number of measurements;
- -
- LM and LMODEL represent measured and predicted path loss, respectively, and i is the index of each sample.
4. Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Population Prospects 2022 Summary of Results; United Nations: New York, NY, USA, 2022.
- Cama-Pinto, D.; Damas, M.; Holgado-Terriza, J.A.; Arrabal-Campos, F.M.; Martínez-Lao, J.A.; Cama-Pinto, A.; Manzano-Agugliaro, F.A. Deep learning model of radio wave propagation for precision agriculture and sensor system in greenhouses. Agronomy 2023, 13, 244. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Waimin, J.; Zareei, A.; Sedaghat, S.; Raghunathan, N.; Shakouri, A.; Rahimi, R. A biodegradable chipless sensor for wireless subsoil health monitoring. Sci. Rep. 2022, 12, 8011. [Google Scholar] [CrossRef]
- Kakamoukas, G.; Sarigiannidis, P.; Maropoulos, A.; Lagkas, T.; Zaralis, K.; Karaiskou, C. Towards climate smart farming—A reference architecture for integrated farming systems. Telecom 2021, 2, 52–74. [Google Scholar] [CrossRef]
- Jägermeyr, J.; Müller, C.; Ruane, A.C.; Elliot, J.; Balkovic, J.; Castillo, O.; Faye, B.; Foster, I.; Folberth, C.; Franke, J.A.; et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2021, 2, 873–885. [Google Scholar] [CrossRef]
- Atanasov, N.T.; Atanasov, B.N.; Atanasova, G.L. Flexible wearable antenna for IoT-based plant health monitoring. Electronics 2024, 13, 2956. [Google Scholar] [CrossRef]
- Kurrer, C.; Tarlton, J. Ten More Technologies Which Could Change Our Lives. In-Depth Analysis. STOA, European Union: Brussels, Belgium, 2017. Available online: https://www.europarl.europa.eu/thinktank/en/document/EPRS_IDA(2017)598626 (accessed on 14 July 2017).
- Tomaszewski, L.; Kołakowski, R. Mobile services for smart agriculture and forestry, biodiversity monitoring, and water management: Challenges for 5G/6G networks. Telecom 2023, 4, 67–99. [Google Scholar] [CrossRef]
- Novak, H.; Ratković, M.; Cahun, M.; Lešić, V. An IoT-based encapsulated design system for rapid model identification of plant development. Telecom 2022, 3, 70–85. [Google Scholar] [CrossRef]
- Di Tocco, J.; Lo Presti, D.; Massaroni, C.; Cinti, S.; Cimini, S.; De Gara, L.; Schena, E. Plant-Wear: A multi-sensor plant wearable platform for growth and microclimate monitoring. Sensors 2023, 23, 549. [Google Scholar] [CrossRef]
- Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agriculture 2022, 12, 1745. [Google Scholar] [CrossRef]
- Hakim, G.P.N.; Habaebi, M.H.; Toha, S.F.; Islam, M.R.; Yusoff, S.H.B.; Adesta, E.Y.T.; Anzum, R. Near ground pathloss propagation model using adaptive neuro fuzzy inference system for wireless sensor network communication in forest, jungle and open dirt road environments. Sensors 2022, 22, 3267. [Google Scholar] [CrossRef]
- Et-taibi, B.; Abid, M.R.; Boufounas, E.-M.; Morchid, A.; Bourhnane, S.; Hamed, T.A.; Benhaddou, D. Enhancing water management in smart agriculture: A cloud and IoT-Based smart irrigation system. Engineering 2024, 22, 102283. [Google Scholar] [CrossRef]
- Checco, A.; Fabiani, V.; Palmisano, M.; Polese, D. Network connectivity and sensor response of an OpenThread WSN platform for crop monitoring. IEEE Trans. AgriFood Electron. 2024, 2, 218–225. [Google Scholar] [CrossRef]
- Applications of Wireless Sensor Networks in Next Generation Networks; ITU-T, International Telecommunication Union: Geneva, Switzerland, 2014.
- Hidalgo-Leon, R.; Urquizo, J.; Silva, C.E.; Silva-Leon, J.; Wu, J.; Singh, P.; Soriano, G. Powering nodes of wireless sensor networks with energy harvesters for intelligent buildings: A review. Energy Rep. 2022, 8, 3809–3826. [Google Scholar] [CrossRef]
- Quy, V.K.; Hau, N.V.; Anh, D.V.; Quy, N.M.; Ban, N.T.; Lanza, S.; Randazzo, G.; Muzirafuti, A. IoT-enabled smart agriculture: Architecture, applications, and challenges. Appl. Sci. 2022, 12, 3396. [Google Scholar] [CrossRef]
- Muangprathub, J.; Boonnam, N.; Kajornkasirat, S.; Lekbangpong, N.; Wanichsombat, A.; Nillaor, P. IoT and agriculture data analysis for smart farm. Comput. Electron. Agric. 2019, 156, 467–474. [Google Scholar] [CrossRef]
- Temene, N.; Sergiou, C.; Ioannou, C.; Georgiou, C.; Vassiliou, V. A node placement algorithm utilizing mobile nodes in WSN and IoT networks. Telecom 2022, 3, 17–51. [Google Scholar] [CrossRef]
- Gao, Z.; Li, W.; Zhu, Y.; Tian, Y.; Pang, F.; Cao, W.; Ni, J. Wireless channel propagation characteristics and modeling research in rice field sensor networks. Sensors 2018, 18, 3116. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J. Path loss modeling for 2.4 GHz wireless channel in wheat fields. Trans. Chin. Soc. Agric. Mach. 2014, 45, 291–296. [Google Scholar]
- Li, Z.; Wang, N.; Hong, T. Radio path-loss modeling for a 2.4 GHz in-field wireless sensor network. Trans. ASABE 2010, 53, 615–624. [Google Scholar] [CrossRef]
- Rizky, R.; Mustafid; Mantoro, T. Improved performance on wireless sensors network using multi-channel clustering hierarchy. J. Sens. Actuator Netw. 2022, 11, 73. [Google Scholar] [CrossRef]
- Li, H.; Wang, N. Radio propagation characteristics of 2.4 GHz at specific growth stages of corn. In Proceedings of the 2013 ASABE Annual International Meeting, Kansas City, MI, USA, 21–24 July 2013. [Google Scholar]
- Li, F.; Wu, H.; Miao, Y.; Zhu, L. A research on the radio signal propagation characteristics in corn field. BTAIJ 2013, 8, 1347–1352. [Google Scholar]
- Mohsen, M.; Matolak, D.W. Vegetation attenuation for several evergreen shrubs at 31 and 5 GHz. In Proceedings of the 2018 11th Global Symposium on Millimeter Waves (GSMM), Boulder, CO, USA, 22–24 May 2018. [Google Scholar]
- Navarro, A.; Guevara, D.; Florez, G.A. An adjusted propagation model for wireless sensor networks in corn fields. In Proceedings of the URSI GASS 2020, Rome, Italy, 29 August–5 September 2020. [Google Scholar]
- Tang, W.; Ma, X.; Wei, J.; Wang, Z. Measurement and analysis of near-ground propagation models under different terrains for wireless sensor networks. Sensors 2019, 19, 1901. [Google Scholar] [CrossRef] [PubMed]
- Al-Sehemi, A.; Al-Ghamdi, A.; Dishovsky, N.; Atanasova, G.; Atanasov, N. A flexible broadband antenna for IoT applications. Int. J. Microw. Wirel. Technol. 2020, 12, 531–540. [Google Scholar] [CrossRef]
- Development Guide: NB-IoT for Agriculture, GSMA, 5 October 2018. Available online: https://www.gsma.com/solutions-and-impact/technologies/internet-of-things/gsma_resources/guide2-nbiot-agriculture/ (accessed on 5 October 2018).
- Valecce, G.; Petruzzi, P.; Strazzella, S.; Grieco, L.A. NB-IoT for smart agriculture: Experiments from the field. In Proceedings of the 2020 7th International Conference on Control, Decision and Information Technologies (CoDIT’20), Prague, Czech Republic, 29 June–2 July 2020. [Google Scholar]
- Sokullu, R. LoRa based smart agriculture network. In Proceedings of the 2022 8th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE), Ruse, Bulgaria, 30 June–2 July 2022. [Google Scholar]
- Ramos, B.; del Rosario, E.; Tovar, N. Analysis of LoRa signal characteristics at maize and cocoa crops in tropical regions. In Proceedings of the 2023 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Venice, Italy, 9–13 October 2023. [Google Scholar]
- Mowla, M.N.; Mowla, N.; Shah, A.F.M.S.; Rabie, K.M.; Shongwe, T. Internet of Things and wireless sensor networks for smart agriculture applications: A survey. IEEE Access 2023, 11, 145813–145852. [Google Scholar] [CrossRef]
- KNOX County Agricultural News OSU Extention. Available online: https://u.osu.edu/knoxcountyag/2019/08/ (accessed on 23 August 2019).
- Nleya, T.; Chungu, C.; Kleinjan, J. Corn Growth and Development; North Dakota State University: Bismarck, ND, USA, 2019; pp. 5–8. [Google Scholar]
- Plumblee, M.; Harrelson, B.; Halladay, S. Visual Guide to Corn Growth Stages. Land-Grant Press by Clemson Extension: Clemson, SC, USA, 2023; LGP 1170. [Google Scholar]
- World Economic Forum. Available online: https://www.weforum.org/agenda/2021/06/corn-industries-sustainability-food-prices/ (accessed on 2 June 2021).
- Wang, J.; Hu, X. Research on corn production efficiency and influencing factors of typical farms: Based on data from 12 cornproducing countries from 2012 to 2019. PLoS ONE 2021, 16, e0254423. [Google Scholar] [CrossRef]
- IEC/IEEE 62209-1528:2020; IEC/IEEE International Standard-Measurement Procedure for the Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-Held and Body-Mounted Wireless Communication Devices—Part 1528: Human Models, Instrumentation, and Procedures (Frequency Range of 4 MHz to 10 GHz). IEEE: New York, NY, USA, 2020.
- Neelam, M.; Mohanty, B.P. On the radiative transfer model for soil moisture across space, time and hydro-climates. Remote Sens. 2020, 12, 2645. [Google Scholar] [CrossRef]
- Barclay, L. Propagation of Radiowaves, 3rd ed.; The Institution of Engineering and Technology: London, UK, 2013; pp. 308–310. [Google Scholar]
- Barrios-Ulloa, A.; Ariza-Colpas, P.P.; Sánchez-Moreno, H.; Quintero-Linero, A.P.; De la Hoz-Franco, E. Modeling radio wave propagation for wireless sensor networks in vegetated environments: A systematic literature review. Sensors 2022, 22, 5285. [Google Scholar] [CrossRef]
- Seybold, J.S. Introduction to RF Propagation; John Wiley & Sons: Hoboken, NJ, USA, 2005; pp. 134–162. [Google Scholar]
- De Beelde, B.; De Beelde, R.; Tanghe, E.; Plets, D.; Verheyen, K.; Joseph, W. Vegetation loss at D-Band frequencies and new vegetation-dependent exponential decay model. IEEE Trans. Antennas Propag. 2022, 70, 12092–12103. [Google Scholar] [CrossRef]
- Calculation of Free-Space Attenuation; ITU-R, International Telecommunication Union: Geneva, Switzerland, 2019.
Frequency * | Length of Dipole Arms ** | Diameter of the Dipol ** | Connector Type | |S11| at Operating Frequency |
---|---|---|---|---|
0.9 | 150 | 3.6 | N | −15.1 |
2.4 | 52 | 3.6 | N | −10.3 |
Frequency * | Transmitting Antenna (Tx) Height ** | Receiving Antenna (Rx) Height ** | Maximum Communication Distance Between Tx and Rx ** |
---|---|---|---|
0.9 | 0.11 | 2.0 | 90 |
0.11 | 3.4 | 105 | |
0.50 | 2.0 | 140 | |
0.50 | 3.4 | 140 | |
2.4 | 0.04 | 2.0 | 40 |
0.04 | 3.4 | 45 | |
0.50 | 2.0 | 45 | |
0.50 | 3.4 | 65 |
Frequency * | Transmitting Antenna (Tx) Height ** | Receiving Antenna (Rx) Height ** | Maximum Communication Distance Between Tx and Rx ** |
---|---|---|---|
0.9 | 0.11 | 2.0 | 80 |
0.11 | 3.4 | 100 | |
0.50 | 2.0 | 120 | |
0.50 | 3.4 | 110 | |
2.4 | 0.04 | 2.0 | 40 |
0.04 | 3.4 | 45 | |
0.50 | 2.0 | 20 | |
0.50 | 3.4 | 65 |
Basic Input Parameters | |||||||
---|---|---|---|---|---|---|---|
Model Names | A | B | C | n1 | n2 | Frequency Units | Note |
Weissberger * | 1.33 | 0.284 | 0.588 | - | - | GHz | |
0.45 | 0.284 | - | - | - | GHz | ||
COST-235 ** | 15.6 | −0.009 | 0.26 | - | - | MHz | in leaf |
26.6 | −0.2 | 0.5 | - | - | MHz | out of leaf | |
Multi-slope model | - | - | - | 2.0 | - | - | |
- | - | - | 2.0 | 4.0 | - |
hRx * | hTx * | Frequency ** | Polarization *** | Mean Absolute Percentage Error | |||
---|---|---|---|---|---|---|---|
Basic Free-Space Loss | Multi-Slope Model | Weissberger Model | COST-235 Model | ||||
2 | λ/3 | 0.9 | H | 26.7 | 6.7 | 14.4 | 16.8 |
2.4 | H | 24.3 | 9.8 | 14.4 | 12.3 | ||
0.9 | V | 36.7 | 15.3 | 25.8 | 3.9 | ||
2.4 | V | 33.1 | 17.8 | 24.3 | 5.9 | ||
0.5 | 0.9 | H | 20.9 | 7.2 | 6.4 | 28.6 | |
2.4 | H | 23.4 | 22.9 | 12.7 | 12.8 | ||
0.9 | V | 33.6 | 20.9 | 19.4 | 10.2 | ||
2.4 | V | 31.6 | 31.6 | 24.9 | 7.62 |
hRx * | hTx * | Frequency ** | Polarization *** | Mean Absolute Percentage Error | |||
---|---|---|---|---|---|---|---|
Basic Free-Space Loss | Multi-Slope Model | Weissberger Model | COST-235 Model | ||||
3.4 | λ/3 | 0.9 | H | 24.4 | 8.3 | 10.6 | 22.9 |
2.4 | H | 25.2 | 12.2 | 14.8 | 13.5 | ||
0.9 | V | 33.8 | 14.7 | 21.0 | 9.4 | ||
2.4 | V | 32.4 | 20.2 | 22.7 | 5.7 | ||
0.5 | 0.9 | H | 17.9 | 8.2 | 6.2 | 33.7 | |
2.4 | H | 20.6 | 20.4 | 7.5 | 19.1 | ||
0.9 | V | 31.34 | 22.2 | 16.6 | 14.0 | ||
2.4 | V | 26.8 | 26.6 | 14.3 | 12.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atanasov, B.N.; Atanasov, N.T.; Atanasova, G.L. Reliable and Resilient Wireless Communications in IoT-Based Smart Agriculture: A Case Study of Radio Wave Propagation in a Corn Field. Telecom 2024, 5, 1161-1178. https://doi.org/10.3390/telecom5040058
Atanasov BN, Atanasov NT, Atanasova GL. Reliable and Resilient Wireless Communications in IoT-Based Smart Agriculture: A Case Study of Radio Wave Propagation in a Corn Field. Telecom. 2024; 5(4):1161-1178. https://doi.org/10.3390/telecom5040058
Chicago/Turabian StyleAtanasov, Blagovest Nikolaev, Nikolay Todorov Atanasov, and Gabriela Lachezarova Atanasova. 2024. "Reliable and Resilient Wireless Communications in IoT-Based Smart Agriculture: A Case Study of Radio Wave Propagation in a Corn Field" Telecom 5, no. 4: 1161-1178. https://doi.org/10.3390/telecom5040058
APA StyleAtanasov, B. N., Atanasov, N. T., & Atanasova, G. L. (2024). Reliable and Resilient Wireless Communications in IoT-Based Smart Agriculture: A Case Study of Radio Wave Propagation in a Corn Field. Telecom, 5(4), 1161-1178. https://doi.org/10.3390/telecom5040058