A Theoretical Study on the Photochemical Isomerization of 2,6-Dimethylpyrazine
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pavlik, J.M. Photoisomerization of some nitrogen-containing hetero-aromatic compounds. In CRC Handbook of Organic Photochemistry and Photobiology, 2nd ed.; Horspool, W., Lenci, F., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 97.1–97.22. [Google Scholar]
- Albini, A.; Fagnoni, M. Photochemistry of N-oxides. In CRC Handbook of Organic Photochemistry and Photobiology, 2nd ed.; Horspool, W., Lenci, F., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 99.1–99.21. [Google Scholar]
- Mariano, P.S. A new look at pyridinium salt photochemistry. In CRC Handbook of Organic Photochemistry and Photobiology, 2nd ed.; Horspool, W., Lenci, F., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 100.1–100.10. [Google Scholar]
- Klán, P.; Wirz, J. Photochemistry of Organic Compounds; John Wiley & Sons Ltd.: Chichester, UK, 2009; pp. 276–279. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision A.1; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Parr, R.G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Casida, M.E. Time-dependent density-functional response theory for molecules. In Recent Advances in Density Functional Methods; Chong, D.P., Ed.; World Scientific: Singapore, 1995; Volume 1, pp. 155–192. [Google Scholar]
- Casida, M.E.; Jamorski, C.; Casida, K.C.; Salahub, D.R. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 1998, 108, 4439–4449. [Google Scholar] [CrossRef]
- Becke, A.D. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Hegarty, D.; Robb, M.A. Application of unitary group-methods to configuration-interaction calculations. Mol. Phys. 1979, 38, 1795–1812. [Google Scholar] [CrossRef]
- Eade, R.H.A.; Robb, M.A. Direct minimization in MC SCF theory—The Quasi-Newton method. Chem. Phys. Lett. 1981, 83, 362–368. [Google Scholar] [CrossRef]
- Schlegel, H.B.; Robb, M.A. MC SCF gradient optimization of the H2CO → H2 + CO transition structure. Chem. Phys. Lett. 1982, 93, 43–46. [Google Scholar] [CrossRef]
- Bernardi, F.; Bottini, A.; McDougall, J.J.W.; Robb, M.A.; Schlegel, H.B. MCSCF gradient calculation of transition structures in organic reactions. Faraday Symp. Chem. Soc. 1984, 19, 137–147. [Google Scholar] [CrossRef]
- Frisch, M.J.; Ragazos, I.N.; Robb, M.A.; Schlegel, H.B. An Evaluation of 3 Direct MC-SCF Procedures. Chem. Phys. Lett. 1992, 189, 524–528. [Google Scholar] [CrossRef]
- Yamamoto, N.; Vreven, T.; Robb, M.A.; Frisch, M.J.; Schlegel, H.B. A Direct Derivative MC-SCF Procedure. Chem. Phys. Lett. 1996, 250, 373–378. [Google Scholar] [CrossRef]
- Siegbahn, P.E.M. A new direct CI method for large CI expansions in a small orbital space. Chem. Phys. Lett. 1984, 109, 417–423. [Google Scholar] [CrossRef]
- Robb, M.A.; Niazi, U. The Unitary Group Approach to Electronic Structure Computations. In Reports in Molecular Theory; Weinstein, H., Náray-Szabó, G., Eds.; CRC Press: Boca Raton, FL, USA, 1990; Volume 1, pp. 23–55. [Google Scholar]
- Klene, M.; Robb, M.A.; Frisch, M.J.; Celani, P. Parallel implementation of the CI-vector evaluation in full CI/CAS-SCF. J. Chem. Phys. 2000, 113, 5653–5665. [Google Scholar] [CrossRef]
- Lahmani, F.; Ivanoff, N. Photoisomerization of pyrazine and of its methylderivatives. Tetrahedron Lett. 1967, 8, 3913–3917. [Google Scholar] [CrossRef]
- Su, M.-D. CASCSF Study on the photochemical transposition reactions of pyrazines. J. Phys. Chem. A 2006, 110, 9420–9428. [Google Scholar] [CrossRef] [PubMed]
- D’Auria, M. The photochemical isomerization of hexatomic heterocyclic compounds. Curr. Org. Chem. 2021, 25, 1659–1685. [Google Scholar] [CrossRef]
- Available online: https://spectrabase.com/spectrum/JGriPcJDFzk (accessed on 10 January 2022).
Compound | Energy [H] |
---|---|
1 | −342.98486740 |
4 | −342.82721911 |
5 | −342.8747959 |
14 | −342.82708190 |
15 | −342.8835509 |
2 | −342.9375535 |
16 | −342.8744626 |
13 | −342.9818826 |
3 | −342.9885549 |
ST1 | −342.9843104 |
ST2 | −342.8314078 |
ST3 | −342.7664741 |
ST4 | −342.8747059 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Auria, M. A Theoretical Study on the Photochemical Isomerization of 2,6-Dimethylpyrazine. Organics 2022, 3, 95-101. https://doi.org/10.3390/org3020007
D’Auria M. A Theoretical Study on the Photochemical Isomerization of 2,6-Dimethylpyrazine. Organics. 2022; 3(2):95-101. https://doi.org/10.3390/org3020007
Chicago/Turabian StyleD’Auria, Maurizio. 2022. "A Theoretical Study on the Photochemical Isomerization of 2,6-Dimethylpyrazine" Organics 3, no. 2: 95-101. https://doi.org/10.3390/org3020007
APA StyleD’Auria, M. (2022). A Theoretical Study on the Photochemical Isomerization of 2,6-Dimethylpyrazine. Organics, 3(2), 95-101. https://doi.org/10.3390/org3020007