New Generation of Hybrid Pyrazole–Tetrazole Tetrapodal Compounds: Synthesis and Biological Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Synthesis
2.2.1. (1-((2-Ethyl-2H-tetrazol-5-yl)methyl)-5-methyl-1H-pyrazol-3-yl)methanol 2
2.2.2. 5-((3-(Chloromethyl)-5-methyl-1H-pyrazol-1-yl)methyl)-2-ethyl-2H-tetrazole 3
2.2.3. Synthesis of Tetrapodal Structures L1–L3
3-(bis((1-((2-ethyl-2H-tetrazol-5-yl)methyl)-5-methyl-1H-pyrazol-3-yl)methyl)amino)propan-1-ol L1
2-(4-(bis((1-((2-ethyl-2H-tetrazol-5-yl)methyl)-5-methyl-1H-pyrazol-3-yl)methyl)amino)phenyl)ethan-1-ol L2
N,N-bis((1-((2-ethyl-2H-tetrazol-5-yl)methyl)-5-methyl-1H-pyrazol-3-yl)methyl)propan-1-amine L3
2.3. Antifungal Activity Determination
2.4. Alpha-Amylase Inhibition Activity Determination
2.5. Molecular Docking Study
3. Results and Discussion
3.1. Synthesis
3.2. Antifungal Screening
3.3. Alpha-Amylase Inhibition Activity
3.4. Docking of Compounds L1–L3
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaur, P.; Arora, V. Pyrazole as an anti-microbial scaffold: A comprehensive review. Mini-Rev. Org. Chem. 2023, 20, 578–592. [Google Scholar] [CrossRef]
- Malek, F.; Harit, T.; Cherfi, M.; Kim, B. Insights on the synthesis of n-heterocycles containing macrocycles and their complexion and biological properties. Molecules 2022, 27, 2123. [Google Scholar] [CrossRef] [PubMed]
- Harit, T.; Abouloifa, H.; Tillard, M.; Eddike, D.; Asehraou, A.; Malek, F. New copper complexes with bipyrazolic ligands: Synthesis, characterization and evaluation of the antibacterial and catalytic propertie. J. Mol. Struct. 2018, 1163, 300–307. [Google Scholar] [CrossRef]
- Kumar, H.; Bansal, K.K.; Goyal, A. Synthetic methods and antimicrobial perspective of pyrazole derivatives: An insight. Anti-Infect. Agents 2020, 18, 207–223. [Google Scholar] [CrossRef]
- Reddy, G.M.; Garcia, J.R.; Yuvaraja, G.; Venkata Subbaiah, M.; Wen, J.C. Design, synthesis of tri-substituted pyrazole derivatives as promising antimicrobial agents and investigation of structure activity relationships. J. Heterocycl. Chem. 2020, 57, 2288–2296. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, W.; Hou, S.; Xie, D.; Yang, J.; Liu, L.; Yang, S. In vivo antiviral activity and disassembly mechanism of novel 1-phenyl-5-amine-4-pyrazole thioether derivatives against Tobacco mosaic virus. Pestic. Biochem. Physioly. 2021, 173, 104771. [Google Scholar] [CrossRef]
- Singh Jadav, S.; Nayan Sinha, B.; Pastorino, B.; De Lamballerie, X.; Hilgenfeld, R.; Jayaprakash, V. Identification of pyrazole derivative as an antiviral agent against Chikungunya through HTVS. Lett. Drug Des. Discov. 2015, 12, 292–301. [Google Scholar] [CrossRef]
- Kumar, S.; Gupta, S.; Rani, V.; Sharma, P. Pyrazole containing anti-HIV agents: An update. Med. Chem. 2022, 18, 831–846. [Google Scholar] [CrossRef]
- Kumar, R.S.; Arif, I.A.; Ahamed, A.; Idhayadhulla, A. Anti-inflammatory and antimicrobial activities of novel pyrazole analogues. Saudi J. Biol. Sci. 2016, 23, 614–620. [Google Scholar] [CrossRef]
- Hassan, G.S.; Rahman, D.E.A.; Abdelmajeed, E.A.; Refaey, R.H.; Salem, M.A.; Nissan, Y.M. New pyrazole derivatives: Synthesis, anti-inflammatory activity, cycloxygenase inhibition assay and evaluation of mPGES. Eur. J. Med. Chem. 2019, 171, 332–342. [Google Scholar] [CrossRef]
- Mantzanidou, M.; Pontiki, E.; Hadjipavlou-Litina, D. Pyrazoles and pyrazolines as anti-inflammatory agents. Molecules 2021, 26, 3439. [Google Scholar] [CrossRef]
- Kodadi, M.E.; Benamar, M.; Ibrahim, B.; Zyad, A.; Malek, F.; Touzani, R.; Ramdani, A.; Melhaoui, A. New synthesis of two tridentate bipyrazolic compounds and their cytotoxic activity tumor cell lines. Nat. Prod. Res. 2007, 21, 947–952. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, C.; Zhang, N.; Fan, R.; Ye, Y.; Xu, J. Recent advances in the development of pyrazole derivatives as anticancer agents. Int. J. Mol. Sci. 2023, 24, 12724. [Google Scholar] [CrossRef] [PubMed]
- Mor, S.; Khatri, M.; Sindhu, S. Recent progress in anticancer agents incorporating pyrazole scaffold. Mini-Rev. Org. Chem. 2022, 22, 115–163. [Google Scholar] [CrossRef]
- Malek, F.; Draoui, N.; Feron, O.; Radi, S. Tridentate bipyrazole compounds with a side-arm as a new class of antitumor agents. Res. Chem. Intermed. 2014, 40, 681–687. [Google Scholar] [CrossRef]
- Leyva-Ramos, S.; Cardoso-Ortiz, J. Recent developments in the synthesis of tetrazoles and their pharmacological relevance. Curr. Org. Chem. 2021, 25, 388–403. [Google Scholar] [CrossRef]
- Allen, F.H.; Groom, C.R.; Liebeschuetz, J.W.; Bardwell, D.A.; Olsson, T.S.; Wood, P.A. The hydrogen bond environments of 1 H-tetrazole and tetrazolate rings: The structural basis for tetrazole–carboxylic acid bioisosterism. J. Chem. Inf. Model. 2012, 52, 857–866. [Google Scholar] [CrossRef]
- Wei, C.X.; Bian, M.; Gong, G.H. Tetrazolium compounds: Synthesis and applications in medicine. Molecules 2015, 20, 5528–5553. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Liu, L.; Liu, J.; Liu, G. Bioisosteres in drug discovery: Focus on tetrazole. Future Med. Chem. 2020, 12, 91–93. [Google Scholar] [CrossRef]
- Hall, A.; Chatzopoulou, M.; Frost, J. Bioisoteres for carboxylic acids: From ionized isosteres to novel unionized replacements. Bioorg. Med. Chem. 2024, 104, 117653. [Google Scholar] [CrossRef]
- Faria, J.V.; dos Santos, M.S.; Bernardino, A.M.; Becker, K.M.; Machado, G.M.; Rodrigues, R.F.; Canto-Cavalheiro, M.M.; Leon, L.L. Synthesis and activity of novel tetrazole compounds and their pyrazole-4-carbonitrile precursors against Leishmania spp. Bioorg. Med. Chem. Lett. 2013, 23, 6310–6312. [Google Scholar] [CrossRef] [PubMed]
- Chi, X.; Zhang, H.; Wu, H.; Li, X.; Li, L.; Jiang, Y.; Ni, T. Discovery of novel tetrazoles featuring a pyrazole moiety as potent and highly selective antifungal agents. ACS Omega 2023, 8, 17103–17115. [Google Scholar] [CrossRef]
- Metre, T.V.; Kamble, R.R.; Kodasi, B.R.; Bheemayya, L.; Nadoni, V.B.; Nayak, M.R.; Shettar, A.K.; Ahmed, K.; Devarajegowda, H.C.; Joshi, S.D.; et al. Design, Synthesis and Characterization of novel 1, 5-and 2, 5-coumarin-4-yl-methyl regioisomers of 5-pyrazol-3-yl-tetrazoles as promising anticancer and antifungal agents. J. Mol. Struct. 2024, 1322, 138541. [Google Scholar] [CrossRef]
- Cherfi, M.; Harit, T.; Dib, I.; Yahyaoui, M.I.; Asehraou, A.; Yahyi, A.; Ziyyat, A.; Malek, F. Pyrazole-tetrazole hybrid compounds: Synthesis, characterization and their biological activities. Chem. Data Coll. 2023, 45, 101026. [Google Scholar] [CrossRef]
- Harit, T.; Cherfi, M.; Daoudi, N.E.; Isaad, J.; Bnouham, M.; Malek, F. Hybrid pyrazole-tetrazole derivatives with high α-amylase inhibition activity: Synthesis, biological evaluation and docking study. ChemistrySelect 2022, 7, e202203757. [Google Scholar] [CrossRef]
- Cherfi, M.; Harit, T.; Yahyaoui, M.I.; Riahi, A.; Asehraou, A.; Malek, F. Synthesis, antimicrobial activity and in-silico docking of two macrocycles based on pyrazole-tetrazole subunit. J. Mol. Struct. 2022, 1261, 132947. [Google Scholar] [CrossRef]
- Oulous, A.; Daoudi, N.E.; Harit, T.; Cherfi, M.; Bnouham, M.; Malek, F. New pyrazole-tetrazole hybrid compounds as potent α-amylase and non-enzymatic glycation inhibitors. Bioorg. Med. Chem. Lett. 2022, 69, 128785. [Google Scholar] [CrossRef]
- Cherfi, M.; Dib, I.; Harit, T.; Ziyyat, A.; Malek, F. Synthesis and characterization of new pyrazole–tetrazole derivatives as new vasorelaxant agents. Drug Dev. Res. 2021, 82, 1055–1062. [Google Scholar] [CrossRef]
- Tundis, R.; Loizzo, M.R.; Menichini, F. Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini-Rev. Org. Chem. 2010, 10, 315–331. [Google Scholar] [CrossRef]
- Yang, J.M.; Chen, C.C. GEMDOCK: A generic evolutionary method for molecular docking. Proteins Struct. Funct. Genet. 2004, 55, 288–304. [Google Scholar] [CrossRef]
- Larson, S.B.; Day, J.S.; McPherson, A. X-ray crystallographic analyses of pig pancreatic α-amylase with limit dextrin, oligosaccharide, and α-cyclodextrin. Biochemistry 2010, 49, 3101–3115. [Google Scholar] [CrossRef] [PubMed]
Compound | Geotrichum candidum | Aspergillus niger | Penicillium digitatum | Rhodotorula glutinis |
---|---|---|---|---|
L1 | 13 ± 01 | 14 ± 01 | 12 ± 01 | 15 ± 01 |
L2 | 14 ± 02 | 15 ± 01 | 14 ± 01 | 14 ± 01 |
L3 | 16 ± 00 | 13 ± 01 | 14 ± 00 | 14 ± 02 |
Cycloheximide | 30 ± 02 | 31 ± 01 | 30 ± 03 | 30 ± 02 |
DMSO | NA | NA | NA | NA |
Compound | Structure | α-Amylase IC50 (mg/mL) | Binding Energy (Kcal/mol) |
---|---|---|---|
L1 | 1.34 × 10−1 ± 1.7 × 10−2 | −115.89 | |
L2 | 6.5 × 10−2 ± 7 × 10−3 | −122.30 | |
L3 | 1.2 × 10−2 ± 8 × 10−3 | −123.01 | |
Acarbose | 2.6 × 10−1 ± 8 × 10−2 | ||
DMSO | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amanchar, M.; Harit, T.; Cherfi, M.; Idrissi Yahyaoui, M.; Daoudi, N.E.; Yahyi, A.; Asehraou, A.; Malek, F. New Generation of Hybrid Pyrazole–Tetrazole Tetrapodal Compounds: Synthesis and Biological Activities. Organics 2024, 5, 290-297. https://doi.org/10.3390/org5030016
Amanchar M, Harit T, Cherfi M, Idrissi Yahyaoui M, Daoudi NE, Yahyi A, Asehraou A, Malek F. New Generation of Hybrid Pyrazole–Tetrazole Tetrapodal Compounds: Synthesis and Biological Activities. Organics. 2024; 5(3):290-297. https://doi.org/10.3390/org5030016
Chicago/Turabian StyleAmanchar, Malika, Tarik Harit, Mounir Cherfi, Meryem Idrissi Yahyaoui, Nour Elhouda Daoudi, Abderrahmane Yahyi, Abdeslam Asehraou, and Fouad Malek. 2024. "New Generation of Hybrid Pyrazole–Tetrazole Tetrapodal Compounds: Synthesis and Biological Activities" Organics 5, no. 3: 290-297. https://doi.org/10.3390/org5030016
APA StyleAmanchar, M., Harit, T., Cherfi, M., Idrissi Yahyaoui, M., Daoudi, N. E., Yahyi, A., Asehraou, A., & Malek, F. (2024). New Generation of Hybrid Pyrazole–Tetrazole Tetrapodal Compounds: Synthesis and Biological Activities. Organics, 5(3), 290-297. https://doi.org/10.3390/org5030016