Rabbits (Oryctolagus cuniculus) as a Model System for Longitudinal Experimental Opioid Treatments: Implications for Orthopedic and Biomedical Research
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Design
2.3. Data Collection
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Skin Irritation Resulting from Prolonged Patch Application
4.2. Opioid Effects on Fecal Output and Food Consumption
4.3. Limitations
4.4. Bone Remodeling and Transdermal Fentanyl Patches
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Opioid Overdose. Available online: https://www.who.int/news-room/fact-sheets/detail/opioid-overdose (accessed on 18 July 2021).
- Salmond, S.; Allread, V. A Population Health Approach to America’s Opioid Epidemic. Orthop. Nurs. 2019, 38, 95–108. [Google Scholar] [CrossRef]
- Hernandez, A.; Branscum, A.J.; Li, J.; MacKinnon, N.J.; Hincapie, A.L.; Cuadros, D.F. Epidemiological and geospatial profile of the prescription opioid crisis in Ohio, United States. Sci. Rep. 2020, 10, 4341. [Google Scholar] [CrossRef] [Green Version]
- Center for Disease Control and Prevention: Drug Overdose Deaths. Available online: https://www.cdc.gov/drugoverdose/data/statedeaths.html (accessed on 21 July 2021).
- Morris, B.J.; Mir, H.R. The Opioid Epidemic: Impact on Orthopaedic Surgery. JAAOS—J. Am. Acad. Orthop. Surg. 2015, 23, 267–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, P.D.; Walman, T.; Concepcion, M.; Sheskey, M.; Patterson, M.K.; Cullen, D.; Covino, B.G. Epidural Morphine Provides Postoperative Pain Relief in Peripheral Vascular and Orthopedic Surgical Patients: A Dose—Response Study. Anesth. Analg. 1986, 65, 165–170. [Google Scholar] [PubMed]
- Hadley, G.; Derry, S.; Moore, R.A.; Wiffen, P.J. Transdermal fentanyl for cancer pain. Cochrane Database Syst. Rev. 2013, 10, CD010270. [Google Scholar] [CrossRef]
- Tassinari, D.; Sartori, S.; Tamburini, E.; Scarpi, E.; Raffaeli, W.; Tombesi, P.; Maltoni, M. Adverse Effects of Transdermal Opiates Treating Moderate-Severe Cancer Pain in Comparison to Long-Acting Morphine: A Meta-Analysis and Systematic Review of the Literature. J. Palliat. Med. 2008, 11, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Tassinari, D.; Sartori, S.; Tamburini, E.; Scarpi, E.; Tombesi, P.; Santelmo, C.; Maltoni, M. Transdermal fentanyl as a front-line approach to moderate-severe pain: A meta-analysis of randomized clinical trials. J. Palliat. Care 2009, 25, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Trasolini, N.A.; McKnight, B.M.; Dorr, L.D. The Opioid Crisis and the Orthopedic Surgeon. J. Arthroplast. 2018, 33, 3379–3382.e1. [Google Scholar] [CrossRef] [PubMed]
- Ben-Ari, A.; Chansky, H.; Rozet, I. Preoperative Opioid Use Is Associated with Early Revision After Total Knee Arthroplasty: A Study of Male Patients Treated in the Veterans Affairs System. JBJS 2017, 99, 1–9. [Google Scholar] [CrossRef]
- Goplen, C.M.; Verbeek, W.; Kang, S.H.; Jones, C.A.; Voaklander, D.C.; Churchill, T.A.; Beaupre, L.A. Preoperative opioid use is associated with worse patient outcomes after Total joint arthroplasty: A systematic review and meta-analysis. BMC Musculoskelet. Disord. 2019, 20, 234. [Google Scholar] [CrossRef]
- Kiyatkin, E.A. Respiratory depression and brain hypoxia induced by opioid drugs: Morphine, oxycodone, heroin, and fentanyl. Neuropharmacology 2019, 151, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Bobeck, E.N.; Schoo, S.M.; Ingram, S.L.; Morgan, M.M. Lack of Antinociceptive Cross-Tolerance with Co-Administration of Morphine and Fentanyl into the Periaqueductal Gray of Male Sprague-Dawley Rats. J. Pain 2019, 20, 1040–1047. [Google Scholar] [CrossRef] [Green Version]
- Zubrzycki, M.; Janecka, A.; Liebold, A.; Ziegler, M.; Zubrzycka, M. Effects of centrally administered endocannabinoids and opioids on orofacial pain perception in rats. Br. J. Pharmacol. 2017, 174, 3780–3789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefevre, E.M.; Pisansky, M.T.; Toddes, C.; Baruffaldi, F.; Pravetoni, M.; Tian, L.; Kono, T.J.Y.; Rothwell, P.E. Interruption of continuous opioid exposure exacerbates drug-evoked adaptations in the mesolimbic dopamine system. Neuropsychopharmacology 2020, 45, 1781–1792. [Google Scholar] [CrossRef] [PubMed]
- Recker, R.R.; Kimmel, D.B.; Dempster, D.; Weinstein, R.S.; Wronski, T.J.; Burr, D.B. Issues in modern bone histomorphometry. Bone 2011, 49, 955–964. [Google Scholar] [CrossRef] [Green Version]
- Pazzaglia, U.E.; Bonaspetti, G.; Rodella, L.F.; Ranchetti, F.; Azzola, F. Design, morphometry and development of the secondary osteonal system in the femoral shaft of the rabbit. J. Anat. 2007, 211, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Pazzaglia, U.E.; Congiu, T.; Raspanti, M.; Ranchetti, F.; Quacci, D. Anatomy of the Intracortical Canal System: Scanning Electron Microscopy Study in Rabbit Femur. Clin. Orthop. Relat. Res. 2009, 467, 2446–2456. [Google Scholar] [CrossRef] [Green Version]
- Pazzaglia, U.E.; Zarattini, G.; Giacomini, D.; Rodella, L.; Menti, A.M.; Feltrin, G. Morphometric Analysis of the Canal System of Cortical Bone: An Experimental Study in the Rabbit Femur Carried Out with Standard Histology and Micro-CT. Anat. Histol. Embryol. 2010, 39, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Izakovicova, P.; Borens, O.; Trampuz, A. Periprosthetic joint infection: Current concepts and outlook. EFORT Open Rev. 2019, 4, 482–494. [Google Scholar] [CrossRef]
- Bottagisio, M.; Coman, C.; Lovati, A.B.Y. 2019: Animal models of orthopaedic infections. A review of rabbit models used to induce long bone bacterial infections. J. Med. Microbiol. 2021, 68, 506–537. [Google Scholar] [CrossRef]
- Chae, K.; Jang, W.Y.; Park, K.; Lee, J.; Kim, H.; Lee, K.; Lee, C.K.; Lee, Y.; Lee, S.H.; Seo, J. Antibacterial infection and immune-evasive coating for orthopedic implants. Sci. Adv. 2020, 6, eabb0025. [Google Scholar] [CrossRef] [PubMed]
- Radha, R.; Sreekanth, D. Insight of magnesium alloys and composites for orthopedic implant applications—A review. J. Magnes. Alloys 2017, 5, 286–312. [Google Scholar] [CrossRef]
- Antoniac, I.; Adam, R.; Biță, A.; Miculescu, M.; Trante, O.; Petrescu, I.M.; Pogărășteanu, M. Comparative Assessment of In Vitro and In Vivo Biodegradation of Mg-1Ca Magnesium Alloys for Orthopedic Applications. Materials 2020, 14, 84. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Fan, B.; Yu, X.; Liu, W.; Wu, J.; Shi, L.; Yang, D.; Tan, L.; Wan, P.; Hao, Y.; et al. Biofunctional magnesium coated Ti6Al4V scaffold enhances osteogenesis and angiogenesis in vitro and in vivo for orthopedic application. Bioact. Mater. 2020, 5, 680–693. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Xue, J.; Yu, X.; Zhai, D.; Lin, R.; Zhang, M.; Xia, L.; Wang, X.; Yao, Q.; Chang, J.; et al. Co-inspired hydroxyapatite-based scaffolds for vascularized bone regeneration. Acta Biomater. 2021, 119, 419–431. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Lu, J.; Li, F.; Yang, G.; Ji, G.; Wang, F. Changes in cartilage and subchondral bone in a growing rabbit experimental model of developmental trochlear dysplasia of the knee. Connect. Tissue Res. 2021, 62, 299–312. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, H.; Feng, M.; Wang, B.; Su, Q.; Li, J. Assessment of whether the rabbit subscapularis tendon model is suitable for studying the human chronic rotator cuff pathology: Discovery of a new ligament connecting the glenoid and subscapularis tendon. Acta Orthop. Traumatol. Turc. 2020, 54, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Hirose, T.; Mae, T.; Ishibashi, Y.; Suzuki, T.; Ohori, T.; Murase, T.; Nakata, K. Comparison of tendon-bone healing between a newly developed ultrasound device and the conventional metallic drill in a rabbit MCL reconstruction model. J. Orthop. Sci. 2021, 26, 908–914. [Google Scholar] [CrossRef]
- Huang, K.; Cai, H.; Zhang, P.; Wu, L. Comparison between two rabbit models of posttraumatic osteoarthritis: A longitudinal tear in the medial meniscus and anterior cruciate ligament transection. J. Orthop. Res. 2020, 38, 2721–2730. [Google Scholar] [CrossRef]
- Li, Y.; Feng, R.; Liu, X.; Wang, G.; Wang, W.; Lu, Q.; Huang, W.; Wu, H.; Cai, X. A Post-Traumatic Osteoarthritic Model of Hip Following Fracture of Acetabulum in Rabbit: A Preliminary Study by Macroscopic and Radiographic Assessment. Orthop. Surg. 2021, 13, 296–305. [Google Scholar] [CrossRef]
- Liu, X.; Chen, R.; Jiang, L.; Li, X.; Sun, Z. Effect of infusion irrigation with different irrigating solutions on transient receptor potential vanilloid 5 and intra-articular inflammation in a post-traumatic osteoarthritis rabbit model. Eur. J. Med. Res. 2021, 26, 24. [Google Scholar] [CrossRef]
- Pinho, R.H.; Leach, M.C.; Minto, B.W.; Rocha, F.D.L.; Luna, S.P.L. Postoperative pain behaviours in rabbits following orthopaedic surgery and effect of observer presence. PLoS ONE. 2020, 15, e0240605. [Google Scholar] [CrossRef]
- Jain, N.; Himed, K.; Toth, J.M.; Briley, K.C.; Phillips, F.M.; Khan, S.N. Opioids delay healing of spinal fusion: A rabbit posterolateral lumbar fusion model. Spine J. 2018, 18, 1659–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirschberger, V.; von Deimling, C.; Heider, A.; Spadavecchia, C.; Rohrbach, H.; Zeiter, S. Fentanyl Plasma Concentrations after Application of a Transdermal Patch in Three Different Locations to Refine Postoperative Pain Management in Rabbits. Animals 2020, 10, 1778. [Google Scholar] [CrossRef] [PubMed]
- Baofeng, L.; Zhi, Y.; Bei, C.; Guolin, M.; Qingshui, Y.; Jian, L. Characterization of a rabbit osteoporosis model induced by ovariectomy and glucocorticoid. Acta Orthop. 2010, 81, 396–401. [Google Scholar] [CrossRef] [Green Version]
- Castañeda, S.; Calvo, E.; Largo, R.; González-González, R.; de la Piedra, C.; Díaz-Curiel, M.; Herrero-Beaumont, G. Characterization of a new experimental model of osteoporosis in rabbits. J. Bone Miner. Metab. 2008, 26, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Castañeda, S.; Largo, R.; Calvo, E.; Rodríguez-Salvanés, F.; Marcos, M.E.; Díaz-Curiel, M.; Herrero-Beaumont, G. Bone mineral measurements of subchondral and trabecular bone in healthy and osteoporotic rabbits. Skelet. Radiol. 2006, 35, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lei, W.; Wu, Z.; Cui, Y.; Han, B.; Fu, S.; Jiang, C. Effects of glucocorticoid on BMD, micro-architecture and biomechanics of cancellous and cortical bone mass in OVX rabbits. Med. Eng. Phys. 2011, 34, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.-X.; Xu, C.; Wang, F.-Q.; Feng, Y.-F.; Zhao, X.; Yan, Y.-B.; Lei, W. Temporal Changes of Microarchitectural and Mechanical Parameters of Cancellous Bone in the Osteoporotic Rabbit. BioMed Res. Int. 2015, 2015, 263434. [Google Scholar] [CrossRef] [PubMed]
- Foley, P.L.; Henderson, A.L.; Bissonette, E.A.; Wimer, G.R.; Feldman, S.H. Evaluation of Fentanyl Transdermal Patches in Rabbits: Blood Concentrations and Physiologic Response. Comp. Med. 2001, 51, 239–244. [Google Scholar] [PubMed]
- Moore, J. Final Report on the Safety Assessment of Myristyl Myristate and Isopropyl Myristate. J. Am. Coll. Toxicol. 1982, 1, 55–80. [Google Scholar] [CrossRef]
- Weaver, L.A.; Blaze, C.A.; Linder, D.E.; Andrutis, K.A.; Karas, A.Z. A Model for Clinical Evaluation of Perioperative Analgesia in Rabbits (Oryctolagus Cuniculus). J. Am. Assoc. Lab. Anim. Sci. JAALAS 2010, 49, 845–851. [Google Scholar]
- Jeal, W.; Benfield, P. Transdermal fentanyl. A review of its pharmacological properties and therapeutic efficacy in pain control. Drugs 1997, 53, 109–138. [Google Scholar] [CrossRef] [PubMed]
- Perry, C.R.; Rice, S.; Ritterbusch, J.K.; Burdge, R.E. Local administration of antibiotics with an implantable osmotic pump. Clin. Orthop. Relat. Res. 1985, 192, 284–290. [Google Scholar] [CrossRef]
- Du, J.; Yang, J.; He, Z.; Cui, J.; Yang, Y.; Xu, M.; Qu, X.; Zhao, N.; Yan, M.; Li, H.; et al. Osteoblast and Osteoclast Activity Affect Bone Remodeling Upon Regulation by Mechanical Loading-Induced Leukemia Inhibitory Factor Expression in Osteocytes. Front. Mol. Biosci. 2020, 7, 347. [Google Scholar] [CrossRef]
- Coluzzi, F.; Scerpa, M.S.; Centanni, M. The Effect of Opiates on Bone Formation and Bone Healing. Curr. Osteoporos. Rep. 2020, 18, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Shenoda, Y.; Ward, M.P.; McKeegan, D.; Fawcett, A. “The Cone of Shame”: Welfare Implications of Elizabethan Collar Use on Dogs and Cats as Reported by their Owners. Animals 2020, 10, 333. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andronowski, J.M.; Schuller, A.J.; Cole, M.E.; LaMarca, A.R.; Davis, R.A.; Tubo, G.R. Rabbits (Oryctolagus cuniculus) as a Model System for Longitudinal Experimental Opioid Treatments: Implications for Orthopedic and Biomedical Research. Osteology 2021, 1, 225-237. https://doi.org/10.3390/osteology1040021
Andronowski JM, Schuller AJ, Cole ME, LaMarca AR, Davis RA, Tubo GR. Rabbits (Oryctolagus cuniculus) as a Model System for Longitudinal Experimental Opioid Treatments: Implications for Orthopedic and Biomedical Research. Osteology. 2021; 1(4):225-237. https://doi.org/10.3390/osteology1040021
Chicago/Turabian StyleAndronowski, Janna M., Adam J. Schuller, Mary E. Cole, Abigail R. LaMarca, Reed A. Davis, and Gina R. Tubo. 2021. "Rabbits (Oryctolagus cuniculus) as a Model System for Longitudinal Experimental Opioid Treatments: Implications for Orthopedic and Biomedical Research" Osteology 1, no. 4: 225-237. https://doi.org/10.3390/osteology1040021
APA StyleAndronowski, J. M., Schuller, A. J., Cole, M. E., LaMarca, A. R., Davis, R. A., & Tubo, G. R. (2021). Rabbits (Oryctolagus cuniculus) as a Model System for Longitudinal Experimental Opioid Treatments: Implications for Orthopedic and Biomedical Research. Osteology, 1(4), 225-237. https://doi.org/10.3390/osteology1040021