A New Transformer-Less Structure for a Boost DC-DC Converter with Suitable Voltage Stress
Abstract
:1. Introduction
2. The Proposed Converter Structure
- (a)
- The proposed converter is in steady state, and then the output voltage is assumed to be constant;
- (b)
- The capacitors are large enough and as a result the capacitors voltage can be assumed to be constant in each switching cycle;
- (c)
- The switches and diodes are ideal.
2.1. Operating Principle
2.1.1. The Time Intervals of in CCM and in DCM:
2.1.2. The Time Interval of in DCM:
2.1.3. The Time Intervals of in CCM and in DCM:
2.1.4. The Time Interval of in DCM:
2.2. Analysis of Proposed Converter in CCM
2.3. Analysis of the Proposed Converter in DCM
3. Critical Inductance Calculation
4. Switching Stress Calculation
4.1. Calculation of PCFS in CCM
4.2. Calculation of PCFS in DCM
5. Design Consideration
6. Efficiency Analysis
7. Comparison
8. Experimental Results
8.1. Experimental Results for Critical Mode
8.2. Experimental Results for CCM
8.3. Experimental Results for DCM
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Shahir, F.M.; Babaei, E.; Sabahi, M.; Laali, S. A new dc-dc converter based on voltage lift technique. Int. Trans. Electr. Energy Syst. (ETEP) 2016, 26, 1260–1286. [Google Scholar] [CrossRef]
- Farakhor, A.; Abapour, M.; Sabahi, M. Design, analysis, and implementation of a multiport DC–DC converter for renewable energy applications. IET Power Electron. 2019, 12, 465–475. [Google Scholar] [CrossRef]
- Shahir, F.M.; Gheisarnejad, M.; Sadabadi, M.S.; Khooban, M.-H. A New Off-board Electrical Vehicle Battery Charger: Topology, Analysis and Design. Design 2021, 30, 7. [Google Scholar]
- Saadatizadeh, Z.; Heris, P.C.; Sabahi, M.; Babaei, E. A DC-DC transformerless high voltage gain converter with low voltage stresses on switches and diodes. IEEE Trans. Power Electron. 2019, 34, 10600–10609. [Google Scholar] [CrossRef]
- Forouzesh, M.; Siwakoti, Y.P.; Gorji, S.A.; Blaabjerg, F.; Lehman, B. Step-up dc–dc converters: A comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Trans. Power Electron. 2017, 32, 9143–9178. [Google Scholar] [CrossRef]
- Shahir, F.M.; Babaei, E.; Farsadi, M. Analysis and design of voltage-lift technique based non-isolated boost dc-dc converter. IET Power Electron. 2018, 11, 1083–1091. [Google Scholar] [CrossRef]
- Wang, P.; Zhou, L.; Zhang, Y.; Li, J.; Sumner, M. Input-parallel output-series dc-dc boost converter with a wide input voltage range, for fuel cell vehicles. IEEE Trans. Veh. Tech. 2016, 62, 7771–7781. [Google Scholar] [CrossRef]
- Pajnic, M.; Pejovic, P. Zero-voltage switching control of an interleaved bi-directional buck/boost converter with variable coupled inductor. IEEE Trans. Power Electron. 2019, 34, 9562–9572. [Google Scholar] [CrossRef]
- Salvador, M.A.; Lazzarin, T.B.; Coelho, R.F. High step-up dc-dc converter with active switched-inductor and passive switched-capacitor networks. IEEE Trans. Ind. Electron. 2018, 65, 5644–5654. [Google Scholar] [CrossRef]
- Taheri, A.; Samsami, H. New topology of a switched-capacitor-based multilevel inverter with a single DC power supply. IET Power Electron. 2019, 12, 1571–1584. [Google Scholar] [CrossRef]
- Tseng, K.C.; Lin, J.T.; Huang, C.C. High step-up converter with three-winding coupled inductor for fuel cell energy source applications. IEEE Trans. Power Electron. 2014, 30, 574–581. [Google Scholar] [CrossRef]
- Pourjafar, S.; Sedaghati, F.; Shayeghi, H.; Maalandish, M. High step-up DC–DC converter with coupled inductor suitable for renewable applications. IET Power Electron. 2019, 12, 92–101. [Google Scholar] [CrossRef]
- Hsieh, Y.P.; Chen, J.F.; Liang, T.J.; Yang, L.S. A novel high step-up DC-DC converter for a microgrid system. IEEE Trans. Power Electron. 2011, 26, 1127–1136. [Google Scholar]
- Xian, R.; Liu, X.; Li, F.; Yao, Y.; Geng, N.; Yang, J.; Liu, L.; Sun, Y.; Yue, Z.; Cui, C.; et al. High step-up DC–DC converter with three-winding-coupled-inductor and output capacitor in series for clean energy. IET Power Electron. 2019, 12, 1087–1093. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, W.; He, X. Single-phase improved active clamp coupled-inductor-based converter with extended voltage doubler cell. IEEE Trans. Power Electron. 2012, 27, 2869–2878. [Google Scholar] [CrossRef]
- Seong, H.W.; Kim, H.S.; Park, K.B.; Moon, G.W.; Youn, M.J. High step-up dc-dc converters using zero-voltage switching boost integration technique and light-load frequency modulation control. IEEE Trans. Power Electron. 2012, 27, 1383–1400. [Google Scholar] [CrossRef]
- Banaei, M.R.; Sani, S.G. Analysis and implementation of a new sepic-based single-switch buck-boost dc-dc converter with continuous input current. IEEE Trans. Power Electron. 2018, 33, 10317–10325. [Google Scholar] [CrossRef]
- Babaei, E.; Maheri, H.M.; Sabahi, M.; Hosseini, S.H. Extendable nonisolated high gain dc-dc converter based on active-passive inductor cells. IEEE Trans. Ind. Electron. 2018, 65, 9478–9487. [Google Scholar] [CrossRef]
- Luo, F.L. Luo-converters, a series of new dc-dc step-up (boost) conversion circuits. Proc. Power Electron. Drive Syst. 1997, 2, 882–888. [Google Scholar] [CrossRef]
- Shahir, F.M.; Babaei, E.; Farsadi, M. Extended topology for boost dc-dc converter. IEEE Trans. Power Electron. 2019, 34, 2375–2384. [Google Scholar] [CrossRef]
- Shahir, F.M.; Babaei, E.; Farsadi, M. Voltage-lift technique based non-isolated boost dc-dc converter: Analysis and design. IEEE Trans. Power Electron. 2018, 33, 5917–5926. [Google Scholar] [CrossRef]
- Shahir, F.M.; Babaei, E.; Farsadi, M. A new structure for nonisolated boost dc-dc converter. J. Circuits Syst. Comput. 2016, 26, 1750012. [Google Scholar] [CrossRef]
- Jalilzadeh, T.; Rostami, N.; Babaei, E.; Maalandish, M. Ultra-step-up dc–dc converter with low-voltage stress on devices. IET Power Electron. 2019, 12, 245–257. [Google Scholar] [CrossRef]
Element/Time Interval | CCM | DCM | ||||
0 | 0 | |||||
0 | 0 | |||||
Element | Relation | |
---|---|---|
Element/Ref. | [7] | [9] | [17] | [18] | [20] (n = 1) | [21] | [22] | Proposed | |
---|---|---|---|---|---|---|---|---|---|
Active component | switch | 2 | 2 | 1 | 3 | 2 | 1 | 2 | 2 |
diode | 3 | 2 | 3 | 12 | 3 | 3 | 2 | 3 | |
Passive component | inductor | 2 | 3 | 4 | 6 | 2 | 2 | 2 | 2 |
capacitor | 3 | 3 | 6 | 1 | 2 | 3 | 2 | 3 | |
Input ripple current | Low | High | Low | High | Low | Low | Low | Low | |
Max. voltage stress of switches | 1 | 1 | |||||||
Max. voltage stress of diodes | 1 | ||||||||
Voltage gain in CCM | |||||||||
Voltage gain variation |
Parameters | CCM | DCM |
---|---|---|
(Powder core) | ||
(Powder core) | ||
& | & | |
Diodes | ||
N-channel MOSFET | ||
,,,, | , , , , | |
Output Power |
Parameters | CCM | Critical Mode | DCM |
---|---|---|---|
4.5 A | 8.15 A | 18 A | |
3 A | 4 A | 7.1 A | |
- | 8 A | - | |
- | 3 A | - | |
24 | - | 27 | |
24 | - | 27 | |
72 | - | 94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammadzadeh Shahir, F.; Gheisarnejad, M.; Khooban, M.-H. A New Transformer-Less Structure for a Boost DC-DC Converter with Suitable Voltage Stress. Automation 2021, 2, 220-237. https://doi.org/10.3390/automation2040014
Mohammadzadeh Shahir F, Gheisarnejad M, Khooban M-H. A New Transformer-Less Structure for a Boost DC-DC Converter with Suitable Voltage Stress. Automation. 2021; 2(4):220-237. https://doi.org/10.3390/automation2040014
Chicago/Turabian StyleMohammadzadeh Shahir, Farzad, Meysam Gheisarnejad, and Mohammad-Hassan Khooban. 2021. "A New Transformer-Less Structure for a Boost DC-DC Converter with Suitable Voltage Stress" Automation 2, no. 4: 220-237. https://doi.org/10.3390/automation2040014
APA StyleMohammadzadeh Shahir, F., Gheisarnejad, M., & Khooban, M. -H. (2021). A New Transformer-Less Structure for a Boost DC-DC Converter with Suitable Voltage Stress. Automation, 2(4), 220-237. https://doi.org/10.3390/automation2040014