Optimized Hierarchical Sliding Mode Control for the Swing-Up and Stabilization of a Rotary Inverted Pendulum
Abstract
:1. Introduction
- Our research introduces a pioneering hierarchical sliding mode controller that streamlines control efforts and outperforms dual-controller methods in both the swing-up and stability control of the rotary inverted pendulum.
- In addition, our paper leverages particle swarm optimization (PSO) to fine-tune the controller’s parameters, resulting in enhanced control performance for the rotary inverted pendulum.
2. HSMC and PSO: Theoretical Foundations and Integration Strategies
2.1. Hierarchical Sliding Mode Control
2.2. Particle Swarm Optimization
3. Application to Rotary Inverted Pendulum
4. Simulations Results
4.1. Parameter-Tuning Process
4.2. Simulation Cases and Evaluations
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HSMC | Hierarchical sliding mode control |
RIP | Rotary inverted pendulum |
PSO | Particle swarm optimization |
IAE | Integral absolute error |
References
- de Jesús Rubio, J.; Hernandez, M.A.; Rosas, F.J.; Orozco, E.; Balcazar, R.; Pacheco, J. Genetic high-gain controller to improve the position perturbation attenuation and compact high-gain controller to improve the velocity perturbation attenuation in inverted pendulums. Neural Netw. 2024, 170, 32–45. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.V.A.; Dong, B.T.; Bui, N.T. Enhancing stability control of inverted pendulum using Takagi-Sugeno fuzzy model with disturbance rejection and input-output constraints. Sci. Rep. 2023, 13, 14412. [Google Scholar] [CrossRef]
- Prasad, L.B.; Tyagi, B.; Gupta, H.O. Optimal Control of Nonlinear Inverted Pendulum System Using PID Controller and LQR: Performance Analysis Without and With Disturbance Input. Int. J. Autom. Comput. 2014, 11, 661–670. [Google Scholar] [CrossRef]
- Dwivedi, P.; Pandey, S.; Junghare, A.S. Stabilization of unstable equilibrium point of rotary inverted pendulum using fractional controller. J. Frankl. Inst. 2017, 354, 7732–7766. [Google Scholar] [CrossRef]
- Saleem, O.; ul Hasan, K.M. Robust stabilisation of rotary inverted pendulum using intelligently optimised nonlinear self-adaptive dual fractional-order PD controllers. Int. J. Syst. Sci. 2019, 50, 1399–1414. [Google Scholar] [CrossRef]
- Yiğit, İ. Model free sliding mode stabilizing control of a real rotary inverted pendulum. J. Vib. Control. 2015, 23, 1645–1662. [Google Scholar] [CrossRef]
- Nguyen, N.P.; Oh, H.; Kim, Y.; Moon, J.; Yang, J.; Chen, W.H. Fuzzy-Based Super-Twisting Sliding Mode Stabilization Control for Under-Actuated Rotary Inverted Pendulum Systems. IEEE Access 2020, 8, 185079–185092. [Google Scholar] [CrossRef]
- Mofid, O.; Alattas, K.A.; Mobayen, S.; Vu, M.T.; Bouteraa, Y. Adaptive finite-time command-filtered backstepping sliding mode control for stabilization of a disturbed rotary-inverted-pendulum with experimental validation. J. Vib. Control. 2022, 29, 1431–1446. [Google Scholar] [CrossRef]
- Duong, M.D.; Pham, Q.T.; Vu, T.C.; Bui, N.T.; Dao, Q.T. Adaptive fuzzy sliding mode control of an actuator powered by two opposing pneumatic artificial muscles. Sci. Rep. 2023, 13, 8242. [Google Scholar] [CrossRef]
- García-Chávez, R.E.; Silva-Ortigoza, R.; Hernández-guzmáN, V.M.; Marciano-Melchor, M.; Orta-Quintana, Á.A.; García-Sánchez, J.R.; Taud, H. A Robust Sliding Mode and PI-Based Tracking Control for the MIMO “DC/DC Buck Converter–Inverter–DC Motor” System. IEEE Access 2023, 11, 119396–119408. [Google Scholar] [CrossRef]
- Chawla, I.; Singla, A. Real-Time Control of a Rotary Inverted Pendulum using Robust LQR-based ANFIS Controller. Int. J. Nonlinear Sci. Numer. Simul. 2018, 19, 379–389. [Google Scholar] [CrossRef]
- Susanto, E.; Wibowo, A.S.; Rachman, E.G. Fuzzy Swing Up Control and Optimal State Feedback Stabilization for Self-Erecting Inverted Pendulum. IEEE Access 2020, 8, 6496–6504. [Google Scholar] [CrossRef]
- Qian, D.; Yi, J. Hierarchical Sliding Mode Control for Under-Actuated Cranes; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Pham, D.B.; Lee, S.G. Aggregated Hierarchical Sliding Mode Control for a Spatial Ridable Ballbot. Int. J. Precis. Eng. Manuf. 2018, 19, 1291–1302. [Google Scholar] [CrossRef]
- Ouyang, H.; Wang, J.; Zhang, G.; Mei, L.; Deng, X. Novel Adaptive Hierarchical Sliding Mode Control for Trajectory Tracking and Load Sway Rejection in Double-Pendulum Overhead Cranes. IEEE Access 2019, 7, 10353–10361. [Google Scholar] [CrossRef]
- Moghanni-Bavil-Olyaei, M.R.; Keighobadi, J.; Ghanbari, A.; Zekiy, A.O. Passivity-based hierarchical sliding mode control/observer of underactuated mechanical systems. J. Vib. Control. 2022, 29, 107754632210910. [Google Scholar] [CrossRef]
- Bevrani, H.; Habibi, F.; Babahajyani, P.; Watanabe, M.; Mitani, Y. Intelligent Frequency Control in an AC Microgrid: Online PSO-Based Fuzzy Tuning Approach. IEEE Trans. Smart Grid 2012, 3, 1935–1944. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, D.; Yun, J.; Sun, Y.; Li, C.; Jiang, G.; Kong, J.; Tao, B.; Fang, Z. Self-Tuning Control of Manipulator Positioning Based on Fuzzy PID and PSO Algorithm. Front. Bioeng. Biotechnol. 2022, 9, 817723. [Google Scholar] [CrossRef]
- Rahayu, E.S.; Ma’arif, A.; Çakan, A. Particle Swarm Optimization (PSO) Tuning of PID Control on DC Motor. Int. J. Robot. Control. Syst. 2022, 2, 435–447. [Google Scholar] [CrossRef]
- Chang, W.D. PID control for chaotic synchronization using particle swarm optimization. Chaos Solitons Fractals 2009, 39, 910–917. [Google Scholar] [CrossRef]
- Qian, D.; Yi, J.; Zhao, D. Hierarchical sliding mode control for a class of SIMO under-actuated systems. Control. Cybern. 2008, 37, 243–250. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
- Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), Anchorage, AK, USA, 4–9 May 1998; pp. 69–73. [Google Scholar] [CrossRef]
- Nguyen, V.A.; Pham, D.B.; Pham, D.T.; Bui, N.T.; Dao, Q.T. A Hybrid Energy Sliding Mode Controller for the Rotary Inverted Pendulum. In Advances in Engineering Research and Application; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 34–41. [Google Scholar]
- Qiu, J.; Wang, T.; Sun, K.; Rudas, I.J.; Gao, H. Disturbance Observer-Based Adaptive Fuzzy Control for Strict-Feedback Nonlinear Systems With Finite-Time Prescribed Performance. IEEE Trans. Fuzzy Syst. 2022, 30, 1175–1184. [Google Scholar] [CrossRef]
Parameter | Symbol and Value |
---|---|
Mass of pendulum (kg) | |
Mass of arm (kg) | |
Equivalent moment of inertia of pendulum arm and gears () | |
Rotor inertia of DC motor () | |
Pendulum rod’s length to center of mass (m) | |
Length of arm (m) | |
Vicious friction coefficient of motor (Nms/rad) | |
Gravitational acceleration () | |
Motor armature resistance () | |
Gearbox efficiency | |
Gearbox ratio | |
Back EMF constant |
Iteration | k | ||||
---|---|---|---|---|---|
1 | 939.9803 | 57.66961 | 9.858246 | 5.310599 | 0.2627605 |
10 | 598.8002 | 84.27183 | 59.5794 | 3.138694 | 0.4041733 |
15 | 520.8024 | 75.55081 | 59.41921 | 2.426904 | 0.3585694 |
30 | 847.9644 | 65.81239 | 74.8689 | 2.413261 | 0.288982 |
Proposed Controller | SMC | LQR | |
---|---|---|---|
IAE = | 1.976 | 10.840 | 5.739 |
Settling time (s) | 0.216 | 0.750 | 0.719 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, D.-B.; Dao, Q.-T.; Nguyen, T.-V.-A. Optimized Hierarchical Sliding Mode Control for the Swing-Up and Stabilization of a Rotary Inverted Pendulum. Automation 2024, 5, 282-296. https://doi.org/10.3390/automation5030017
Pham D-B, Dao Q-T, Nguyen T-V-A. Optimized Hierarchical Sliding Mode Control for the Swing-Up and Stabilization of a Rotary Inverted Pendulum. Automation. 2024; 5(3):282-296. https://doi.org/10.3390/automation5030017
Chicago/Turabian StylePham, Duc-Binh, Quy-Thinh Dao, and Thi-Van-Anh Nguyen. 2024. "Optimized Hierarchical Sliding Mode Control for the Swing-Up and Stabilization of a Rotary Inverted Pendulum" Automation 5, no. 3: 282-296. https://doi.org/10.3390/automation5030017
APA StylePham, D. -B., Dao, Q. -T., & Nguyen, T. -V. -A. (2024). Optimized Hierarchical Sliding Mode Control for the Swing-Up and Stabilization of a Rotary Inverted Pendulum. Automation, 5(3), 282-296. https://doi.org/10.3390/automation5030017