Stimuli-Induced Equilibrium Point-Based Algorithm for Motion Planning of a Heavy-Load Servo System
Abstract
:1. Introduction
2. Motion Planning Algorithm Design
2.1. Head-Eye Motion Control Theory Application in a Two-Level Heavy-Load Servo System
2.2. SIEP-MP Algorithm Design Based on Psychological Field Theory
3. Servo Control Algorithm Design
3.1. Speed Loop Design for the Second-Level System of the Heavy-Load Servo System
3.2. Position Loop Design of Second-Level System of the Heavy-Load Servo System
4. Experiment and Evaluation
4.1. Components and Parameters of the Experimental Platform
4.2. Design of Target Trajectory, SIEP-MP Algorithm, and Servo Control Algorithm
4.3. Experiment and Evaluation of the SIEP-MP Algorithm
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Zhang, H.; Gao, J.; Shi, P. Research on Secondary Stability of Optoelectronic Platform Based on Fast Mirror. In Proceedings of the 2021 International Conference on Computer, Internet of Things and Control Engineering (CITCE), Guangzhou, China, 12–14 November 2021; Volume 1, pp. 163–166. [Google Scholar]
- Yue, F.; Li, X. Adaptive sliding mode control based on friction compensation for opto-electronic tracking system using neural network approximations. Nonlinear Dyn. 2019, 96, 2601–2612. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, Y.; Ju, F.; Chen, B. An improved robot trajectory planning method considering torque saturation and modeling errors. Trans. Can. Soc. Mech. 2020, 44, 213–227. [Google Scholar] [CrossRef]
- Yao, J. Model-based nonlinear control of hydraulic servo systems: Challenges, developments, and perspectives. Trans. Can. Soc. Mech. 2018, 13, 179–210. [Google Scholar] [CrossRef]
- Jiang, X.; Fan, D.; Fan, S.; Xie, X.; Chen, N. High-precision gyro-stabilized control of a gear-driven platform with a floating gear tension device. Trans. Can. Soc. Mech. 2021, 13, 487–503. [Google Scholar] [CrossRef]
- Tang, T.; Zhang, T.; Du, J.; Ren, G. Acceleration feedback of a current-following synchronized control algorithm for telescope elevation axis. Res. Astron. Astrophys. 2016, 16, 7–12. [Google Scholar] [CrossRef]
- Kim, K.; Lee, J.; Park, B.; Kang, M. Chatter-free sliding mode control for inertial stabilization of OTM (On-the-move) antenna driven by gear and flexible shaft. Int. J. Precis. Eng. Manuf. 2012, 16, 1317–1325. [Google Scholar] [CrossRef]
- Shi, Y.; Jiu, B.; Yan, J.; Liu, H. Data-driven Radar Selection and Power Allocation Method for Target Tracking in Multiple Radar System. IEEE Sens. J. 2021, 21, 19296–19306. [Google Scholar] [CrossRef]
- Kang, C.; Hassan, R.; Kim, K. Analysis of a Generalized ZVD Shaper Using Impulse Vectors. Int. J. Control Autom. Syst. 2020, 18, 2088–2094. [Google Scholar] [CrossRef]
- Du, J.; Zhou, Y. Vibration suppression using multi-impulse robust shaping method of zero vibration and derivative. J. Sound Vib. 2019, 440, 277–290. [Google Scholar] [CrossRef]
- Ha, C.; Lee, D.; Rew, K.; Kim, K. An Impulse-time Perturbation Approach for a Symmetric Extra-insensitive Input Shaper. Int. J. Control Autom. Syst. 2018, 16, 1239–1246. [Google Scholar] [CrossRef]
- Biagiotti, L.; Melchiorri, C. FIR filters for online trajectory planning with time- and frequency-domain specifications. Control Eng. Pract. 2012, 16, 1385–1399. [Google Scholar] [CrossRef]
- Cole, M.; Shinonawanik, P.; Wongratanaphisan, T. Time-domain prefilter design for enhanced tracking and vibration suppression in machine motion control. Mech. Syst. Signal Process. 2018, 104, 106–119. [Google Scholar] [CrossRef]
- Huang, R.; Cheng, C.; Tsai, M.; Lee, A. Acceleration-based FIR filters for trajectory interpolation with different kinematic constraints and target velocities for NC systems. Control Eng. Pract. 2022, 124, 124–142. [Google Scholar] [CrossRef]
- Shen, P.; Zhang, X.; Fang, Y. Complete and Time-Optimal Path-Constrained Trajectory Planning With Torque and Velocity Constraints: Theory and Applications. IEEE/ASME Trans. Mechatron. 2018, 124, 735–746. [Google Scholar] [CrossRef]
- Fang, Y.; Qi, J.; Hu, J.; Wang, W.; Peng, Y. An approach for jerk-continuous trajectory generation of robotic manipulators with kinematical constraints. Mech. Mach. Theory 2020, 153, 103957–103989. [Google Scholar] [CrossRef]
- Lu, J.; Chang, S. A Trajectory Planning-Based Energy-Optimal Method for an EMVT System. Comput. Model. Eng. Sci. 2019, 118, 91–109. [Google Scholar] [CrossRef]
- Jin, Q.; Huang, J. The solar-tracking optimal trajectory planning research based on minimum energy consumption in SSPS. Aerosp. Sci. Technol. 2018, 76, 272–279. [Google Scholar] [CrossRef]
- Vidussi, F.; Boscariol, P.; Scalera, L.; Gasparetto, A. Local and Trajectory-Based Indexes for Task-Related Energetic Performance Optimization of Robotic Manipulators. J. Mech. Robot. Trans. ASME 2021, 2, 021018. [Google Scholar] [CrossRef]
- Son, L.; Inagami, M.; Hamada, H.; Suzuki, T.; Aoki, H. The Effect of Visual Stimulus on Voluntary Eye Movement Based on a VOR/OKR Model. Int. J. Automot. Eng. 2016, 8, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Chen, X.; Liu, X. Development Status and Key Technologies of Tactical Laser Weapon Against UAVs. Infrared Laser Eng. 2021, 50, 188–200. (In Chinese) [Google Scholar]
- Yu, D.; Long, J.; Chen, C.; Wang, Z. Bionic tracking-containment control based on smooth transition in communication. Inf. Sci. Int. J. 2022, 587, 393–407. [Google Scholar] [CrossRef]
- Song, W.; Minami, M.; Shen, L.; Zhang, Y. Bionic tracking method by hand & eye-vergence visual servoing. Adv. Manuf. 2016, 4, 157–166. [Google Scholar]
- Zhu, Z.; Zou, W.; Wang, Q.; Zhang, F. A velocity compensation visual servo method for oculomotor control of bionic eyes. Int. J. Robot. Autom. 2020, 33, 33–44. [Google Scholar] [CrossRef]
- Merfeld, D.; Sukyung, P.; Black, F.; Scott, W. Vestibular Perception and Action Employ Qualitatively Different Mechanisms. I. Frequency Response of VOR and Perceptual Responses During Translation and Tilt. J. Neurophysiol. 2005, 94, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Merfeld, D.; Sukyung, P.; Black, F.; Wood, S. Vestibular perception and action employ qualitatively different mechanisms. II. VOR and perceptual responses during combined Tilt&Translation. J. Neurophysiol. 2005, 94, 199–205. [Google Scholar] [PubMed]
- Daye, P.; Roberts, D.; Zee, D.; Optican, L. Variable Feedback Experiments Testing a Sampled Data Model for Eye Tracking Movements. J. Neurophysiol. 2015, 35, 1192–1198. [Google Scholar]
- Komogortsev, O.; Karpov, A. Automated classification and scoring of smooth pursuit eye movements in the presence of fixations and saccades. Behav. Res. Methods 2013, 45, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Wang, Q.; Zou, W.; Zhang, F. Overview of motion control on bionic eyes. IEEE Trans. Hum. Factors Electron. 2015, 1, 2389–2394. [Google Scholar]
- Wang, Q.; Zou, W.; Xu, D.; Zhu, Z. Motion Control in Saccade and Smooth Pursuit for Bionic Eye Based on Three-dimensional Coordinates. IEEE Trans. Hum. Factors Electron. 2017, 14, 336–347. [Google Scholar] [CrossRef]
- Amezquita, S.; Chen, P.; Chen, W.; Zhao, Z. The Concept of Stimuli-Induced Equilibrium Point and Its Application in Ramp-Merging Control. IEEE Trans. Intell. Transp. Syst. 2019, 21, 2814–2825. [Google Scholar] [CrossRef]
- Amezquita, S.; Pradeep, Y.; Chen, P.; Chen, W.; Zhao, Z. Experimental Evaluation of the Stimuli-Induced Equilibrium Point Concept for Automatic Ramp Merging Systems. IEEE Trans. Intell. Transp. Syst. 2019, 21, 815–827. [Google Scholar] [CrossRef]
- Yang, Y.; Amezquita, K.; Pradeep, Y.; Chen, P. 2D Stimuli-Induced Equilibrium Point based Algorithm for Real-Time Coverage Safety in Dynamic Environment. In Proceedings of the IEEE International Conference on Intelligence and Safety for Robotics, Shenyang, China, 24–27 August 2018; Volume 1, pp. 515–520. [Google Scholar]
- Muhammad, W.; Spratling, M. A Neural Model of Coordinated Head and Eye Movement Control. J. Intell. Robot. Syst. 2017, 85, 107–126. [Google Scholar] [CrossRef]
- Berthaume, A.; Romoser, M.; Collura, J.; Ni, D. Towards a Social Psychology-based Microscopic Model of Driver Behavior and Decision-making: Modifying Lewin’s Field Theory. Procedia Comput. Sci. 2014, 32, 816–821. [Google Scholar] [CrossRef]
Component | Type Number | Parameter | Numeric Value |
---|---|---|---|
Rated Power | 750 (W) | ||
Rated Torque | 2.39 (N·m) | ||
AC Motor | ASM80B1007 | Rated Speed | 3000 (r/min) |
ETC () | 0.239 | ||
Encoder-lines | 2500 | ||
Sampling Time | 1 (ms) | ||
dSPACE | ds1104 | Voltage Range | −10∼10 (v) |
Quantization Bits | 16 (bit) | ||
Resolution Ratio | 0.1 (°) | ||
Gradienter | LXR-T90 | Measuring Accuracy | ±0.1 (°) |
Measuring Range | 0∼180 (°) | ||
Absolute Encoder | CAPRO -B112050 | Protocol | RS232 |
Quantization Bits | 19 (bit) | ||
Update Frequency | 500 (Hz) | ||
Baud | 57.6 (kb/s) | ||
Electric Cylinder | DSH0506 -250-FL | Rated pressure | 3 (kN) |
Rated stroke | 230 (mm) | ||
Position accuracy | ±0.02 (mm) | ||
Screw Lead | 4 (mm) | ||
Heavy Load | Load Mass | 170 (kg) | |
Load Length | 1300 (mm) | ||
Lifting Mechanism | A Point | (573, 1074) (mm) | |
B Point | (723, 928) (mm) | ||
Start Point of C | (500, 500) (mm) | ||
Pitch Angle Range | 65 (°) |
Parameter | Scanning Mode (0∼3 s) | Following Mode (3∼6 s) | Following Mode (6∼11.8 s) | Precision Aiming Mode (11.8∼15 s) |
---|---|---|---|---|
0.2 | 0.2 | 0.2 | 4 | |
4° | 4° | 4° | 4° | |
0.1 | 0.1 | 0.1 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, Z.; Zhao, N.; Ren, G. Stimuli-Induced Equilibrium Point-Based Algorithm for Motion Planning of a Heavy-Load Servo System. Automation 2025, 6, 3. https://doi.org/10.3390/automation6010003
Wan Z, Zhao N, Ren G. Stimuli-Induced Equilibrium Point-Based Algorithm for Motion Planning of a Heavy-Load Servo System. Automation. 2025; 6(1):3. https://doi.org/10.3390/automation6010003
Chicago/Turabian StyleWan, Ziping, Nanbin Zhao, and Guang’an Ren. 2025. "Stimuli-Induced Equilibrium Point-Based Algorithm for Motion Planning of a Heavy-Load Servo System" Automation 6, no. 1: 3. https://doi.org/10.3390/automation6010003
APA StyleWan, Z., Zhao, N., & Ren, G. (2025). Stimuli-Induced Equilibrium Point-Based Algorithm for Motion Planning of a Heavy-Load Servo System. Automation, 6(1), 3. https://doi.org/10.3390/automation6010003