A Comparative Review of Alternative Fuels for the Maritime Sector: Economic, Technology, and Policy Challenges for Clean Energy Implementation
Abstract
:1. Introduction
1.1. Methane
1.2. Hydrogen
1.3. Biodiesel
1.4. Methanol
1.5. Ammonia
1.6. Shore Power and Plug-in Battery-Powered Ship (Electricity)
2. Methodology
3. Utilisation Technologies
4. Environmental Performance of Marine Alternative Fuels
4.1. Greenhouse Gas Emissions
4.2. Other Regulated Emissions
Emission Factor (g/MJ) | L1 | L2 | M1 | M2 | H1 | H2 | A1 | A2 | B1 | B2 |
---|---|---|---|---|---|---|---|---|---|---|
Emission to Air Well-to-Tank | ||||||||||
CO | 0.0027 | 0.0096 | 0.0063 | 0.025 | 0.01- 0.074 | 0.0075 | 0.0037 | |||
CO2 (fossil fuel origin) | 8.3–26.73 | 27 | 20 | 17 | 77.98–84.16 | 7.90–9.66 | 64.89–84.44 | 18.57–29.78 | 19 | 15 |
CO2 (biogenic carbon uptake) | - | 97 | 120 | 67 | 67 | |||||
SOx | 0.00083–0.0233 | 0.073 | 0.0021 | 0.048 | 0.038–0.07 | 0.051–0.064 | 0.00044 | 0.04 | 0.03 | |
N2O | 0.00016 | 0.00033 | 0.00029 | 0.00022 | 0.00025–0.0025 | 0.00041 | 0.00045 | 0.00045 | 0.087 | 0.001 |
NOx | 0.0095–0.091 | 0.053 | 0.046 | 0.056 | 0.034–0.098 | 0.030–0.039 | 0.044 | 0.044 | 0.06 | 0.15 |
CH4 | 0.033 | 0.018 | 0.011 | 0.042 | 0.15-0.49 | 0.0025–0.0031 | 0.0053 | 0.03 | 0.02 | |
Emission to Air Tank-to-Water | ||||||||||
CO | 0.13–0.27 | 0.13–0.27 | ||||||||
CO2 (fossil fuel origin) | 54–58 | 69 | ||||||||
CO2 (biomass origin) | 52–58 | 69 | 73 | 77 | ||||||
SOx | 0.00056–0.57 | 0.00056–0.57 | 0.0002–0.1 | 0.0001–0.1 | ||||||
N2O | 0 | 0 | Need further research | Need further research | 0.003 | 0.003 | ||||
NOx | 1.22 (HPDF) 0.11–0.37 (LPDF) | 1.22 (HPDF) 0.11–0.37 (LPDF) | 0.28–0.4 | 0.28–0.4 | Need further research | Need further research | Need further research | 0.17–1.7 | 0.17–1.7 | |
CH4 | 0.00139 (HPDF) 0.71 (LPDF) | 0.00139 (HPDF) 0.79 (LPDF) | 0.01 | 0.01 |
5. Economic Performance
5.1. Fuel Price
Fuel Pathway | Feed Stock | Estimated Fuel Production Costs/Import Price ($/MJ) | Fossil Fuel Price ($/MJ) | Price Multiple |
---|---|---|---|---|
LNG | Natural gas | 0.0022–0.0092 | 0.014 | 0.16–0.66 |
LBG | Biomass | 0.0081–0.032 | 0.57–2.29 | |
Biodiesel | Soybean, palm oil, rapeseed | 0.013–0.027 | 0.92–1.93 | |
Methanol | Biomass | 0.021–0.037 | 1.50–2.64 | |
Methanol | Natural gas | 0.006–0.022 | 0.43–1.57 | |
Hydrogen SMR | Natural gas | 0.0063–0.035 | 0.45–2.5 | |
Hydrogen electrolysis | Wind-power, water | 0.025–0.08 | 1.78–5.71 | |
Hydrogen electrolysis | Nuclear energy, water | 0.019–0.045 | 1.36–3.21 | |
Ammonia | Natural gas | 0.0093–0.036 | 0.66–2.57 | |
Ammonia | Wind-power | 0.021–0.037 | 1.50–2.64 |
5.2. Capital Investment Costs for Propulsion and Fuel Storage System
5.2.1. ICE
5.2.2. Fuel Cell
5.2.3. Fuel Storage
Component | Retrofit Cost (US$/kW) | New Build Cost (US$/kW) | Lifetime |
---|---|---|---|
Propulsion systems | |||
ICE Diesel, Biodiesel | - | 240/460 a | 30 years |
ICE, Methanol | 328 | 265/505 a | 30 years |
ICE, Ammonia | 370/600 a | 30 years | |
ICE, LNG, LBG, Hydrogen | 900 | 387/850 a | 30 years |
Fuel cell, SOFC | - | 4000–9000 | 7–12 years |
Fuel cell, PEMFC | - | 730–2860 | 7–12 years |
Electrical and generator, LNG, LBG, Hydrogen | - | 400 | 30 years |
Electric motor | - | 250 | 30 years |
Fuel storage system | |||
Gas supply system + tank, LNG, LBG (USD$/kg) | 270–420 | 270–420 | 30 years |
Gas supply system + high pressure tank (700 bar), Hydrogen (USD$/kg) | 576–868 | 30 years | |
Battery, Nickel manganese cobalt oxide (NMC) (USD/kWh) | - | 400–1000, and expected to fall to 124 in 2030 | 3000–4000 cycles (8–11 years) |
Battery, lithium–iron–phosphate (LPF) (USD/kWh) | - | 210–1000, and expected to fall to 70 in 2030 | 2000–5000 cycles (7–13 years) |
6. Current Challenges and Future Policy Trends
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNCTAD. Review of Maritime Transportation 2020. 2020. Available online: https://unctad.org/system/files/official-document/rmt2020_en.pdf (accessed on 22 May 2020).
- Balcombe, P.; Brierley, J.; Lewis, C.; Skatvedt, L.; Speirs, J.; Hawkes, A.; Staffell, L.; Adam, H.; Iain, S. How to decarbonise international shipping: Options for fuels, technologies and policies. Energy Convers. Manag. 2019, 182, 72–88. [Google Scholar] [CrossRef]
- ICCT. Greenhouse Gas Emissions from Global Shipping, 2013–2015. 2017. Available online: https://theicct.org/sites/default/files/publications/Global-shipping-GHG-emissions-2013-2015_ICCT-Report_17102017_vF.pdf (accessed on 25 March 2021).
- Chen, J.; Fei, Y.; Wan, Z. The relationship between the development of global maritime fleets and GHG emission from shipping. J. Environ. Manag. 2019, 242, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Sardain, A.; Sardain, E.; Leung, B. Global forecasts of shipping traffic and biological invasions to 2050. Nat. Sustain. 2019, 2, 274–282. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, N.; Lang, J.; Zhou, Y.; Wang, X.; Li, Y.; Zhao, Y.; Guo, X. Contribution of ship emissions to the concentration of PM2.5: A comprehensive study using AIS data and WRF/Chem model in Bohai Rim Region, China. Sci. Total Environ. 2018, 610–611, 1476–1486. [Google Scholar] [CrossRef]
- Psaraftis, H.N. Decarbonization of maritime transport: To be or not to be? Marit. Econ. Logist. 2019, 21, 353–371. [Google Scholar] [CrossRef]
- Ytreberg, E.; Åström, S.; Fridell, E. Valuating environmental impacts from ship emissions—The marine perspective. J. Environ. Manag. 2021, 282, 111958. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, Y.; Song, M.; Zhao, R. Analyzing the decoupling relationship between marine economic growth and marine pollution in China. Ocean Eng. 2017, 137, 1–12. [Google Scholar] [CrossRef]
- Mallouppas, G.; Yfantis, E.A. Decarbonization in Shipping Industry: A Review of Research, Technology Development, and Innovation Proposals. J. Mar. Sci. Eng. 2021, 9, 415. [Google Scholar] [CrossRef]
- Kuczyński, S.; Łaciak, M.; Szurlej, A.; Włodek, T. Impact of Liquefied Natural Gas Composition Changes on Methane Number as a Fuel Quality Requirement. Energies 2020, 13, 5060. [Google Scholar] [CrossRef]
- Li, H.; Mehmood, D.; Thorin, E.; Yu, Z. Biomethane production via anaerobic digestion and biomass gasification. Energy Procedia 2017, 105, 1172–1177. [Google Scholar] [CrossRef]
- Gissén, C.; Prade, T.; Kreuger, E.; Nges, I.A.; Rosenqvist, H.; Svensson, S.E.; Lantz, M.; Mattsson, J.E.; Börjesson, P.; Björnsson, L. Comparing energy crops for biogas production—Yields, energy input and costs in cultivation using digestate and mineral fertilisation. Biomass Bioenergy 2014, 64, 199–210. [Google Scholar] [CrossRef]
- Cano, Z.P.; Banham, D.; Ye, S.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289. [Google Scholar] [CrossRef]
- Andujar, J.M.; Segura, F. Fuel cells: History and updating. A walk along two centuries. Renew. Sustain. Energy Rev. 2009, 13, 2309–2322. [Google Scholar] [CrossRef]
- Bockris, J.O.M. The hydrogen economy: Its history. Int. J. Hydrogen Energy 2013, 38, 2579–2588. [Google Scholar] [CrossRef]
- Kalamaras, C.M.; Efstathiou, A.M. Hydrogen Production Technologies: Current State and Future Developments. In Proceedings of the Power Options for the Eastern Mediterranean Region, Limassol, Cyprus, 19–21 November 2012. [Google Scholar]
- Holladay, J.D.; Hu, J.; King, D.L.; Wang, Y. An overview of hydrogen production technologies. Catal. Today 2009, 139, 244–260. [Google Scholar] [CrossRef]
- Qyyum, M.A.; Dickson, R.; Shah, S.F.A.; Niaz, H.; Khan, A.; Liu, J.J.; Lee, M. Availability, versatility, and viability of feedstocks for hydrogen production: Product space perspective. Renew. Sustain. Energy Rev. 2021, 145, 110843. [Google Scholar] [CrossRef]
- IEA. The Future of Hydrogen. 2019. Available online: https://www.iea.org/reports/the-future-of-hydrogen (accessed on 25 May 2021).
- IRENA. Global Energy Transformation: A Roadmap to 2050. 2018. Available online: https://www.irena.org/publications/2019/Apr/Global-energy-transformation-A-roadmap-to-2050-2019Edition (accessed on 25 May 2021).
- Mofijur, M.; Masjuki, H.H.; Kalam, M.A.; Atabani, A.E.; Rizwanul Fattah, I.M.; Mobarak, H.M. Comparative evaluation of performance and emission characteristics of Moringa oleifera and Palm oil based biodiesel in a diesel engine. Ind. Crops Prod. 2014, 53, 78–84. [Google Scholar] [CrossRef]
- Silitonga, A.S.; Masjuki, H.H.; Mahlia, T.M.I.; Ong, H.C.; Chong, W.T. Experimental study on performance and exhaust emissions of a diesel engine fuelled with Ceiba pentandra biodiesel blends. Energy Convers. Manag. 2013, 76, 828–836. [Google Scholar] [CrossRef]
- Demirbas, A. Importance of biodiesel as transportation fuel. Energy Policy 2007, 35, 4661–4670. [Google Scholar] [CrossRef]
- Hasan, M.M.; Rahman, M.M. Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review. Renew. Sustain. Energy Rev. 2017, 74, 938–948. [Google Scholar] [CrossRef] [Green Version]
- Knothe, G. Designer biodiesel: Optimizing fatty ester composition to improve fuel properties. Energy Fuels 2008, 22, 1358–1364. [Google Scholar] [CrossRef]
- Correa, D.F.; Beyer, H.L.; Fargione, J.E.; Hill, J.D.; Possingham, H.P.; Thomas-Hall, S.R.; Schenk, P.M. Towards the implementation of sustainable biofuel production systems. Renew. Sustain. Energy Rev. 2019, 107, 250–263. [Google Scholar] [CrossRef]
- Immerzeel, D.J.; Verweij, P.; Hilst, F.; Faaij, A.P. Biodiversity impacts of bioenergy crop production: A state of the art review. GCB Bioenergy 2014, 6, 183–209. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Sharma, D.; Soni, S.L.; Sharma, S.; Sharma, P.K.; Jhalani, A. A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel 2020, 262, 116553. [Google Scholar] [CrossRef]
- Pinto, A.C.; Guarieiro, L.L.N.; Rezende, M.J.C.; Ribeiro, N.M.; Torres, E.A.; Lopes, W.A.; Pereira, P.A.P.; Andrade, J.B. Biodiesel: An overview. J. Braz. Chem. Soc. 2005, 16, 1313–1330. [Google Scholar] [CrossRef] [Green Version]
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Fazal, M.; Haseeb, A.; Masjuki, H. Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability. Renew. Sustain. Energy Rev. 2011, 15, 1314–1324. [Google Scholar] [CrossRef]
- Mahlia, T.M.I.; Syazmi, Z.A.H.S.; Mofijur, M.; Pg Abas, A.E.; Bilad, M.R.; Ong, H.C.; Silitonga, A.S. Patent landscape review on biodiesel production: Technology updates. Renew. Sustain. Energy Rev. 2020, 118, 109526. [Google Scholar] [CrossRef]
- Tabatabaei, M.; Aghbashlo, M.; Dehhaghi, M.; Panahi, H.K.S.; Mollahosseini, A.; Hosseini, M.; Soufiyan, M.M. Reactor technologies for biodiesel production and processing: A review. Prog. Energy Combust. Sci. 2019, 74, 239–303. [Google Scholar] [CrossRef]
- ATSM. ASTM D6751-15a. Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels. 2015. Available online: https://www.astm.org/DATABASE.CART/HISTORICAL/D6751-15A.htm (accessed on 30 March 2021).
- BSI. BS EN 14214:2012+A1:2014. Liquid Petroleum Products—Fatty Acid Methyl Esters (FAME) for Use in Diesel Engines and Heating Applications—Requirements and Test Methods. 2014. Available online: https://infostore.saiglobal.com/preview/98708742874.pdf?sku= (accessed on 30 March 2021).
- Shimamoto, G.G.; Tubino, M. Alternative methods to quantify biodiesel in standard diesel-biodiesel blends and samples adulterated with vegetable oil through UV–Visible spectroscopy. Fuel 2016, 186, 199–203. [Google Scholar] [CrossRef]
- Ellis, J. Methanol—An Alternative Fuel for Shipping? In Workshop: Marine Fuels beyond LNG—Methanol as an Alternative? SSPA: Goteborg, Sweden, 2016; Available online: https://www.sspa.se/alternative-fuels/methanol-alternative-fuel-greener-shipping (accessed on 8 April 2021).
- Zincir, B.; Deniz, C.; Tunér, M. Investigation of environmental, operational and economic performance of methanol partially premixed combustion at slow speed operation of a marine engine. J. Clean. Prod. 2019, 235, 1006–1019. [Google Scholar] [CrossRef]
- Chen, C.; Yao, A.; Yao, C.; Wang, B.; Lu, H.; Feng, J.; Feng, L. Study of the characteristics of PM and the correlation of soot and smoke opacity on the diesel methanol dual fuel engine. Appl. Therm. Eng. 2019, 148, 391–403. [Google Scholar] [CrossRef]
- Wei, L.; Yao, C.; Wang, Q.; Pan, W.; Han, G. Combustion and emission characteristics of a turbocharged diesel engine using high premixed ratio of methanol and diesel fuel. Fuel 2015, 140, 156–163. [Google Scholar] [CrossRef]
- Pan, W.; Yao, C.; Han, G.; Wei, H.; Wang, Q. The impact of intake air temperature on performance and exhaust emissions of a diesel methanol dual fuel engine. Fuel 2015, 162, 101–110. [Google Scholar] [CrossRef]
- Valera, H.; Agarwal, A.K. Methanol as an Alternative Fuel for Diesel Engines. In Methanol and the Alternate Fuel Economy. Energy, Environment, and Sustainability; Agarwal, A., Gautam, A., Sharma, N., Singh, A., Eds.; Springer: Singapore, 2019. [Google Scholar]
- Chen, Z.; Chen, H.; Wang, L.; Geng, L.; Zeng, K. Parametric study on effects of excess air/fuel ratio, spark timing, and methanol injection timing on combustion characteristics and performance of natural gas/methanol dual-fuel engine at low loads. Energy Convers. Manag. 2020, 210, 112742. [Google Scholar] [CrossRef]
- ETIP Bioenergy. Use of Biofuels in Shipping. Biofuelstp.eu. 2020. Available online: https://www.etipbioenergy.eu/?option=com_content&view=article&id=294 (accessed on 8 April 2021).
- Frei, M.S.; Mondelli, C.; García-Muelas, R.; Kley, K.S.; Puértolas, B.; López, N.; Safonova, O.V.; Stewart, J.A.; Ferré, D.C.; Pérez-Ramírez, J. Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation. Nat. Commun. 2019, 10, 3377. [Google Scholar] [CrossRef] [Green Version]
- Dalena, F.; Senatore, A.; Marino, A.; Gordano, A.; Basile, M.; Basile, A. Chapter 1—Methanol Production and Applications: An Overview. In Methanol; Basile, A., Dalena, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 3–28. [Google Scholar]
- Bellotti, D.; Rivarolo, M.; Magistri, L.; Massardo, A.F. Feasibility study of methanol production plant from hydrogen and captured carbon dioxide. J. CO2 Util. 2017, 21, 132–138. [Google Scholar] [CrossRef]
- Petersen, A.M.; Farzad, S.; Görgens, J.F. Techno-economic assessment of integrating methanol or Fischer-Tropsch synthesis in a South African sugar mill. Bioresour. Technol. 2015, 183, 141–152. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Gupta, R.K.; Kalia, V.C.; Lee, J. Integrating anaerobic digestion of potato peels to methanol production by methanotrophs immobilized on banana leaves. Bioresour. Technol. 2021, 323, 124550. [Google Scholar] [CrossRef]
- Ishak, N.A.I.M.; Kamarudin, S.K.; Timmiati, S.N.; Karim, N.A.; Basri, S. Biogenic platinum from agricultural wastes extract for improved methanol oxidation reaction in direct methanol fuel cell. J. Adv. Res. 2021, 28, 63–75. [Google Scholar] [CrossRef]
- Yadav, P.; Athanassiadis, D.; Yacout, D.M.M.; Tysklind, M.; Upadhyayula, V.K.K. Environmental Impact and Environmental Cost Assessment of Methanol Production from wood biomass. Environ. Pollut. 2020, 265, 114990. [Google Scholar] [CrossRef] [PubMed]
- Lythcke-Jørgensen, C.E.; Clausen, L.R.; Algren, L.; Bavnhøj Hansen, A.; Münster, M.; Gadsbøll, R.Ø.; Haglind, F. Optimization of a flexible multi-generation system based on wood chip gasification and methanol production. Appl. Energy 2017, 192, 337–359. [Google Scholar] [CrossRef] [Green Version]
- Laloui-Carpentier, W.; Li, T.; Vigneron, V.; Mazéas, L.; Bouchez, T. Methanogenic diversity and activity in municipal solid waste landfill leachates. Antonie Van Leeuwenhoek 2006, 89, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Niziolek, A.M.; Onel, O.; Hasan, M.M.F.; Floudas, C.A. Municipal solid waste to liquid transportation fuels—Part II: Process synthesis and global optimization strategies. Comput. Chem. Eng. 2015, 74, 184–203. [Google Scholar] [CrossRef]
- Kiss, A.A.; Pragt, J.J.; Vos, H.J.; Bargeman, G.; De-Groot, M.T. Novel efficient process for methanol synthesis by CO2 hydrogenation. Chem. Eng. J. 2016, 284, 260–269. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Fortes, M.; Schöneberger, J.C.; Boulamanti, A.; Tzimas, E. Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment. Appl. Energy 2016, 161, 718–732. [Google Scholar] [CrossRef]
- Leonzio, G.; Zondervan, E.; Foscolo, P.U. Methanol production by CO2 hydrogenation: Analysis and simulation of reactor performance. Int. J. Hydrogen Energy 2019, 44, 7915–7933. [Google Scholar] [CrossRef]
- Enerkem. Reducing Greenhouse Gas Emissions and Making Everyday Products Greener While Offering a Sustainable Alternative to Landfilling, Incineration, and Other Technologies. 2021. Available online: https://enerkem.com/process-technology/technology-comparison/ (accessed on 9 April 2021).
- Södra. Refuelling the Future. 2020. Available online: https://www.sodra.com/en/global/Bioproducts/biomethanol/ (accessed on 9 April 2021).
- Christensen, C.H.; Johannessen, T.; Sorensen, R.Z.; Norskov, J.K. Towards an ammonia-mediated hydrogen economy? Catal. Today 2006, 111, 140–144. [Google Scholar] [CrossRef]
- Zamfirescu, C.; Dincer, I. Using ammonia as a sustainable fuel. J. Power Source 2008, 185, 459–465. [Google Scholar] [CrossRef]
- NIST: National Institute of Standards and Technology. Chemistry WebBook, SRD 69, Thermophysical Properties of Fluid Systems. 2020. Available online: http://webbook.nist.gov/chemistry/fluid/ (accessed on 9 April 2021).
- Zamfirescu, C.; Dincer, I. Ammonia as a green fuel and hydrogen source for vehicular applications. Fuel Process. Technol. 2009, 90, 729–737. [Google Scholar] [CrossRef]
- Aziz, M.; Putranto, A.; Biddinika, M.K.; Wijayanta, A.T. Energy-saving combination of N2 production, NH3 synthesis, and power generation. Int. J. Hydrogen Energy 2017, 42, 27174–27183. [Google Scholar] [CrossRef]
- Ozturk, M.; Dincer, I. An integrated system for ammonia production from renewable hydrogen: A case study. Int. J. Hydrogen Energy 2021, 46, 5918–5925. [Google Scholar] [CrossRef]
- Liu, X.; Elgowainya, A.; Wanga, M. Life cycle energy use and greenhouse gas emissions of ammonia production from renewable resources and industrial by-products. Green Chem. 2020, 22, 5751–5761. [Google Scholar] [CrossRef]
- Baltrusaitis, J. Sustainable Ammonia Production. ACS Sustain. Chem. Eng. 2017, 5, 9527. [Google Scholar] [CrossRef] [Green Version]
- Bicer, Y.; Dincer, I.; Vezina, G.; Raso, F. Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes. Environ. Manag. 2017, 59, 842–855. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Herle, J.V.; Maréchal, F.; Desideri, U. Techno-economic comparison of green ammonia production processes. Appl. Energy 2020, 259, 114135. [Google Scholar] [CrossRef]
- Giddey, S.; Badwal, S.P.S.; Kulkarni, A. Review of electrochemical ammonia production technologies and materials. Int. J. Hydrogen Energy 2013, 38, 14576–14594. [Google Scholar] [CrossRef]
- Frattini, D.; Cinti, G.; Bidini, G.; Desideri, U.; Cioffi, R.; Jannelli, E. A system approach in energy evaluation of different renewable energies sources integration in ammonia production plants. Renew. Energy 2016, 99, 472–482. [Google Scholar] [CrossRef]
- Braissant, O.; McLin, V.A.; Cudalbu, C. Ammonia toxicity to the brain. J. Inherit. Metab. Dis. 2013, 36, 595–612. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Li, M.; Wang, R.; Qian, Y. Effects of acute ammonia toxicity on oxidative stress, immune response and apoptosis of juvenile yellow catfish Pelteobagrus fulvidraco and the mitigation of exogenous taurine. Fish Shellfish Immunol. 2018, 79, 313–320. [Google Scholar] [CrossRef]
- Kojima, Y.; Yamaguchi, M. Ammonia storage materials for nitrogen recycling hydrogen and energy carriers. Int. J. Hydrogen Energy 2020, 45, 10233–10246. [Google Scholar] [CrossRef]
- Lu, B.; Jin, Q.; Chu, L.; Pan, Y.; Tao, X.; Yang, L.; Shen, Y. Ammonia storage/release characteristics of CeSnWBaOx/TiO2 catalyst in solving the problem of ammonia slip. Process Saf. Environ. Prot. 2020, 138, 67–75. [Google Scholar] [CrossRef]
- Lamb, K.E.; Dolan, M.D.; Kennedy, D.F. Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification. Int. J. Hydrogen Energy 2019, 44, 3580–3593. [Google Scholar] [CrossRef]
- Cardoso, J.S.; Silva, V.; Rocha, R.C.; Hall, M.J.; Costa, M.; Eusébio, D. Ammonia as an energy vector: Current and future prospects for low-carbon fuel applications in internal combustion engines. J. Clean. Prod. 2021, 296, 126562. [Google Scholar] [CrossRef]
- Comotti, M.; Frigo, S. Hydrogen generation system for ammonia–hydrogen fuelled internal combustion engines. Int. J. Hydrogen Energy 2015, 40, 10673–10686. [Google Scholar] [CrossRef]
- Lee, D.; Song, H.H. Development of combustion strategy for the internal combustion engine fueled by ammonia and its operating characteristics. J. Mech. Sci. Technol. 2018, 32, 1905–1925. [Google Scholar] [CrossRef]
- Peng, Y.; Li, X.; Wang, W.; Wei, Z.; Bing, X.; Song, X. A method for determining the allocation strategy of on-shore power supply from a green container terminal perspective. Ocean Coast. Manag. 2019, 167, 158–175. [Google Scholar] [CrossRef]
- Sciberras, E.A.; Zahawi, B.; Atkinson, D.J.; Juandó, A.; Sarasquete, A. Cold ironing and onshore generation for airborne emission reductions in ports. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2016, 230, 67–82. [Google Scholar] [CrossRef] [Green Version]
- IEA. Global Electricity Generation Mix by Scenario, 2018, Stated Policies and Sustainable Development Scenarios 2040. 2019. Available online: https://www.iea.org/data-and-statistics/charts/global-electricity-generation-mix-by-scenario-2018-stated-policies-and-sustainable-development-scenarios-2040 (accessed on 12 April 2021).
- IEA. Global Energy Review 2020. 2020. Available online: https://www.iea.org/reports/global-energy-review-2020/electricity (accessed on 12 April 2021).
- Hsieh, I.; Pan, M.S.; Chiang, Y.; Green, W.H. Learning only buys you so much: Practical limits on battery price reduction. Appl. Energy 2019, 239, 218–224. [Google Scholar] [CrossRef]
- Eurostate. Wind and Water Provide Most Renewable Electricity. 2020. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/DDN-20200129-1 (accessed on 12 April 2021).
- The Danish Ministry of Climate. Our Future Energy: The Danish Government 2011; The Danish Ministry of Climate: Copenhagen, Denmark, 2012. Available online: http://www.ens.dk/sites/en.sdk/files/policy/danish-climate-energy-policy/our_future_energy.pdf (accessed on 13 April 2021).
- DNV. Decarbonization in Shipping. 2021. Available online: https://www.dnv.com/maritime/insights/topics/decarbonization-in-shipping/regulatory-overview.html (accessed on 19 May 2021).
- Hansson, J.; Månsson, S.; Brynolf, S.; Grahn, M. Alternative marine fuels: Prospects based on multi-criteria decision analysis involving Swedish stakeholders. Biomass Bioenergy 2016, 126, 159–173. [Google Scholar] [CrossRef]
- Kim, K.; Roh, G.; Kim, W.; Chun, K. A Preliminary Study on an Alternative Ship Propulsion System Fueled by Ammonia: Environmental and Economic Assessments. J. Mar. Sci. Eng. 2020, 8, 183. [Google Scholar] [CrossRef] [Green Version]
- Thiam, H.S.; Daud, W.R.W.; Kamarudin, S.K.; Mohamad, A.B.; Kadhum, A.A.H.; Loh, K.S.; Majlan, E.H. Performance of direct methanol fuel cell with a palladium–silica nanofibre/Nafion composite membrane. Energy Convers. Manag. 2013, 75, 718–726. [Google Scholar] [CrossRef]
- Sharaf, O.Z.; Orhan, M.F. An overview of fuel cell technology: Fundamentals and applications. Renew. Sustain. Energy Rev. 2014, 32, 810–853. [Google Scholar] [CrossRef]
- Tse, L.K.C.; Wilkins, S.; McGlashan, N.; Urban, B.; Martinez-Botas, R. Solid oxide fuel cell/gas turbine trigeneration system for marine applications. J. Power Sources 2011, 196, 3149–3162. [Google Scholar] [CrossRef]
- Welaya, Y.M.A.; Mosleha, M.; Ammar, N.R. Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications. Int. J. Naval Arch. Ocean Eng. 2013, 5, 529–545. [Google Scholar] [CrossRef] [Green Version]
- DimopoulosIason, G.G.; Nikolaos, C.S.; Kakalis, M.P. Exergy analysis and optimisation of a marine molten carbonate fuel cell system in simple and combined cycle configuration. Energy Convers. Manag. 2016, 107, 10–21. [Google Scholar] [CrossRef]
- Nakajima, H.; Kitahara, T. Real-time electrochemical impedance spectroscopy diagnosis of the solid oxide fuel cell for marine power applications. Heat Mass Transf. 2018, 54, 2551–2558. [Google Scholar] [CrossRef]
- Leo, T.J.; Durango, J.A.; Navarro, E. Exergy analysis of PEM fuel cells for marine applications. Energy 2010, 35, 1164–1171. [Google Scholar] [CrossRef]
- Mekhilef, S.; Saidur, R.; Safaria, A. Comparative study of different fuel cell technologies. Renew. Sustain. Energy Rev. 2013, 16, 981–989. [Google Scholar] [CrossRef]
- Berit, L.V.; Godjevac, M.; Visser, K.; Aravind, P.V. A review of fuel cell systems for maritime applications. J. Power Sources 2016, 327, 356–364. [Google Scholar]
- Nordregio. Ampere, the World’s First Electric Ferry. Ship Technology. 2021. Available online: https://archive.nordregio.se/en/Publications/Publications-2016/GREEN-GROWTH-IN-NORDIC-REGIONS-50-ways-to-make-/Clean-tech-and-renewable-energy--/Amper/index.html (accessed on 14 April 2021).
- Macola, I.G. Electric Ships: The World’s Top Five Projects by Battery Capacity. Ship Technology. 2020. Available online: https://www.ship-technology.com/features/electric-ships-the-world-top-five-projects-by-battery-capacity/ (accessed on 14 April 2021).
- Alnes, O.; Eriksen, S.; Vartdal, B.J. Battery-powered ships: A class society perspective. IEEE Electrif. Mag. 2017, 5, 10–21. [Google Scholar] [CrossRef]
- Stančin, H.; Mikulčić, H.; Wang, X.; Duić, N. A review on alternative fuels in future energy system. Renew. Sustain. Energy Rev. 2020, 128, 109927. [Google Scholar] [CrossRef]
- Vandebroek, L.; Berghman, J. Safety Aspects of the use of LNG for Marine Propulsion. Procedia Eng. 2012, 45, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Veldhuis, I.J.S.; Richardson, R.N.; Stone, H.B.J. Hydrogen fuel in a marine environment. Int. J. Hydrogen Energy 2007, 32, 2553–2566. [Google Scholar] [CrossRef]
- Kobayashi, H.; Hayakawa, A.; Somarathne, K.D.K.A.; Okafor, E.C. Science and technology of ammonia combustion. Proc. Combust. Inst. 2019, 37, 109–133. [Google Scholar] [CrossRef]
- Ghorbani, A. A comparative study of combustion performance and emission of biodiesel blends and diesel in an experimental boiler. Appl. Energy 2011, 88, 4725–4732. [Google Scholar] [CrossRef]
- Coronado, C.R.; Carvalho, J.A.; Yoshioka, J.T.; Silveira, J.L. Determination of ecological efficiency in internal combustion engines: The use of biodiesel. Appl. Therm. Eng. 2009, 29, 1887–1892. [Google Scholar] [CrossRef]
- Siddiqui, O.; Ishaq, H.; Dincer, I. Experimental investigation of improvement capability of ammonia fuel cell performance with addition of hydrogen. Energy Convers. Manag. 2020, 205, 112372. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, Y.; Zhang, H.; Yang, J.; Wang, J.; Guan, W.; Chen, J.; Chi, B.; Jia, L.; Muroyama, H.; et al. Efficient and durable ammonia power generation by symmetric flat-tube solid oxide fuel cells. Appl. Energy 2020, 270, 115185. [Google Scholar] [CrossRef]
- Ye, F.; Wang, Z.; Xu, C.; Yuan, M.; Liu, P.; Yang, W.; Liu, G. Mechanism and kinetic study of pulse electrodeposition process of Pt/C catalysts for fuel cells. Renew. Energy 2020, 145, 514–520. [Google Scholar] [CrossRef]
- Huo, S.; Jiao, K.; Park, J.W. On the water transport behavior and phase transition mechanisms in cold start operation of PEM fuel cell. Appl. Energy 2019, 233–234, 776–788. [Google Scholar] [CrossRef]
- DNV. Maritime Forecast to 2050—Energy Transition Outlook. 2018. Available online: https://eto.dnv.com/2018/maritime (accessed on 18 May 2021).
- Gallucci, M. Why the Shipping Industry Is Betting Big on Ammonia. IEEE Spectrum. 2021. Available online: https://spectrum.ieee.org/transportation/marine/why-the-shipping-industry-is-betting-big-on-ammonia (accessed on 28 April 2021).
- Andersson, K.; Salazar, C.M.; Methanol as a Marine Fuel. FCBI Energy. 2015. Available online: https://www.methanol.org/wp-content/uploads/2018/03/FCBI-Methanol-Marine-Fuel-Report-Final-English.pdf (accessed on 27 May 2021).
- Noor, C.W.; Noor, M.M.; Mamat, R. Biodiesel as alternative fuel for marine diesel engine applications: A review. Renew. Sustain. Energy Rev. 2018, 94, 127–142. [Google Scholar] [CrossRef]
- Thomson, H.; Corbett, J.J.; Winebrake, J.J. Natural gas as a marine fuel. Energy Policy 2015, 87, 153–167. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Fifth Assessment Report. 2014. Available online: https://www.ipcc.ch/assessment-report/ar5/ (accessed on 28 May 2021).
- Perčić, M.; Ančić, I.; Vladimir, N. Life-cycle cost assessments of different power system configurations to reduce the carbon footprint in the Croatian short-sea shipping sector. Renew. Sustain. Energy Rev. 2020, 131, 11002. [Google Scholar] [CrossRef]
- Lombardi, L.; Tribioli, L.; Cozzolino, R.; Bella, G. Comparative environmental assessment of conventional, electric, hybrid, and fuel cell powertrains based on LCA. Int. J. Life Cycle Assess. 2017, 22, 1989–2006. [Google Scholar] [CrossRef]
- Pereira, L.; Posen, I.D. Lifecycle greenhouse gas emissions from electricity in the province of Ontario at different temporal resolutions. J. Clean. Prod. 2020, 270, 122514. [Google Scholar] [CrossRef]
- Barros, M.V.; Salvador, R.; Piekarski, C.M.; Francisco, A.C.; Freire, F.M.C.S. Life cycle assessment of electricity generation: A review of the characteristics of existing literature. Int. J. Life Cycle Assess. 2020, 25, 36–54. [Google Scholar] [CrossRef]
- Hoekman, S.K.; Robbins, C. Review of the effects of biodiesel on NOx emissions. Fuel Process. Technol. 2012, 96, 237–249. [Google Scholar] [CrossRef]
- Palash, S.M.; Kalam, M.A.; Masjuki, H.H.; Masum, B.M.; Rizwanul Fattah, I.M.; Mofijur, M. Impacts of biodiesel combustion on NOx emissions and their reduction approaches. Renew. Sustain. Energy Rev. 2013, 23, 473–490. [Google Scholar] [CrossRef]
- Agarwal, D.; Sinha, S.; Agarwal, A.K. Experimental investigation of control of NOx emissions in biodiesel-fueled compression ignition engine. Renew. Energy 2006, 31, 2356–2369. [Google Scholar] [CrossRef]
- Varatharajan, K.; Cheralathan, M. Influence of fuel properties and composition on NOx emissions from biodiesel powered diesel engines: A review. Renew. Sustain. Energy Rev. 2012, 16, 3702–3710. [Google Scholar] [CrossRef]
- Gokalp, B.; Buyukkaya, E.; Soyhan, H. Performance and emissions of a diesel tractor engine fueled with marine diesel and soybean methyl ester. Biomass Bioenergy 2011, 35, 3575–3583. [Google Scholar] [CrossRef]
- Stenersen, D.; Thonstad, O. GHG and NOx Emissions from Gas Fuelled Engines; SINTEF: Trondheim, Norway, 2017; Available online: https://midc.be/wp-content/uploads/2018/06/methane-slip-from-gas-engines-mainreport-1492296.pdf (accessed on 4 May 2021).
- Sharafian, A.; Blomerus, P.; Mérida, W. Natural gas as a ship fuel: Assessment of greenhouse gas and air pollutant reduction potential. Energy Policy 2019, 131, 332–346. [Google Scholar] [CrossRef]
- Jang, H.; Jeong, B.; Zhou, P.; Ha, S.; Nam, D. Demystifying the lifecycle environmental benefits and harms of LNG as marine fuel. Appl. Energy 2021, 292, 116869. [Google Scholar] [CrossRef]
- Gonzalez-Fernandez, C.; Barreiro-Vescovo, S.; de Godos, I.; Fernandez, M.; Zouhayr, A.; Ballesteros, M. Biochemical methane potential of microalgae biomass using different microbial inocula. Biotechnol. Biofuels 2018, 11, 184. [Google Scholar] [CrossRef] [PubMed]
- Lerner, A.; Brear, M.J.; Lacey, J.S.; Gordon, R.L.; Webley, P.A. Webley, Life cycle analysis (LCA) of low emission methanol and di-methyl ether (DME) derived from natural gas. Fuel 2018, 220, 871–878. [Google Scholar] [CrossRef]
- Svanberg, M.; Ellis, J.; Lundgren, J.; Landälv, I. Renewable methanol as a fuel for the shipping industry. Renew. Sustain. Energy Rev. 2018, 94, 1217–1228. [Google Scholar] [CrossRef]
- Verhelst, S.; Turner, J.; Sileghem, L.; Vancoillie, J. Methanol as a fuel for internal combustion engines. Prog. Energy Combust. Sci. 2019, 70, 43–88. [Google Scholar] [CrossRef] [Green Version]
- Ammar, N.R. An environmental and economic analysis of methanol fuel for a cellular container ship. Transp. Res. Part D Transp. Environ. 2019, 69, 66–76. [Google Scholar] [CrossRef]
- Eggemann, L.; Escobar, N.; Peters, R.; Burauel, P.; Stolten, D. Life cycle assessment of a small-scale methanol production system: A Power-to-Fuel strategy for biogas plants. J. Clean. Prod. 2020, 271, 122476. [Google Scholar] [CrossRef]
- Salkuyeh, Y.K.; Saville, B.A.; MacLean, H.L. Techno-economic analysis and life cycle assessment of hydrogen production from natural gas using current and emerging technologies. Int. J. Hydrogen Energy 2017, 42, 18894–18909. [Google Scholar] [CrossRef]
- Wang, Z.; Li, L.; Zhang, G. Life cycle greenhouse gas assessment of hydrogen production via chemical looping combustion thermally coupled steam reforming. J. Clean. Prod. 2018, 179, 335–346. [Google Scholar] [CrossRef]
- Siddiqui, O.; Dincer, I. A well to pump life cycle environmental impact assessment of some hydrogen production routes. Int. J. Hydrogen Energy 2019, 44, 5773–5786. [Google Scholar] [CrossRef]
- Valente, A.; Iribarren, D.; Dufour, J. Comparative life cycle sustainability assessment of renewable and conventional hydrogen. Sci. Total Environ. 2021, 756, 144132. [Google Scholar] [CrossRef] [PubMed]
- Cetinkaya, E.; Dincer, I.; Naterer, G.F. Life cycle assessment of various hydrogen production methods. Int. J. Hydrogen Energy 2012, 37, 2071–2080. [Google Scholar] [CrossRef]
- Cox, B.; Treyer, K. Environmental and economic assessment of a cracked ammonia fuelled alkaline fuel cell for off-grid power applications. J. Power Sources 2015, 275, 322–335. [Google Scholar] [CrossRef]
- Arora, P.; Hoadley, A.F.A.; Mahajani, S.M.; Ganesh, A. Multi-objective optimization of biomass based ammonia production—Potential and perspective in different countries. J. Clean. Prod. 2017, 148, 363–374. [Google Scholar] [CrossRef]
- Bicer, Y.; Dincer, I.; Zamfirescu, C.; Vezina, G.; Raso, F. Comparative life cycle assessment of various ammonia production methods. J. Clean. Prod. 2016, 135, 1379–1395. [Google Scholar] [CrossRef]
- Gilbert, P.; Alexander, S.; Thornley, P.; Brammer, J. Assessing economically viable carbon reductions for the production of ammonia from biomass gasification. J. Clean. Prod. 2014, 64, 581–589. [Google Scholar] [CrossRef]
- Arora, P.; Hoadley, A.; Mahajani, S. Sustainability Assessment of the Biomass Gasification Process for Production of Ammonia. In Coal and Biomass Gasification; De, S., Agarwal, A., Moholkar, V., Thallada, B., Eds.; Springer: Singapore, 2018; pp. 351–367. [Google Scholar]
- Bengtsson, S.; Fridell, E.; Andersson, K. Environmental assessment of two pathways towards the use of biofuels in shipping. Energy Policy 2012, 44, 451–463. [Google Scholar] [CrossRef]
- Tanzer, S.E.; Posada, J.; Geraedts, S.; Ramírez, A. Lignocellulosic marine biofuel: Technoeconomic and environmental assessment for production in Brazil and Sweden. J. Clean. Prod. 2019, 239, 117845. [Google Scholar] [CrossRef]
- ICCT. The Potential of Liquid Biofuels in Reducing Ship Emissions. 2020. Available online: https://theicct.org/sites/default/files/publications/Marine-biofuels-sept2020.pdf (accessed on 24 May 2021).
- Yegorov, Y. Socio-economic influences of population density. Chin. Bus. Rev. 2009, 8, 1–12. [Google Scholar]
- EIA. Henry Hub Natural Gas Spot Price. 2021. Available online: https://www.eia.gov/dnav/ng/hist/rngwhhdm.htm (accessed on 11 May 2021).
- Algelli, J.; Bakosch, A.; Forsman, B. Feasibility Study on LNG Fuelled Short Sea and Coastal Shipping in the Wider Caribbean Region; SSPA: Goteborg, Sweden, 2012; Available online: http://www.wpci.nl/lng/sites/default/files/2012,%20SSPA%20Feasibility%20study%20on%20LNG%20fuelled%20short%20sea%20and%20coastal%20shipping%20in%20the%20wider%20Caribbean%20Region.pdf (accessed on 13 May 2021).
- Cloete, S.; Hirth, L. Flexible power and hydrogen production: Finding synergy between CCS and variable renewables. Energy 2020, 192, 116671. [Google Scholar] [CrossRef]
- Hydrogen Council. Path to Hydrogen Competitiveness: A Cost Perspective. 2020. Available online: https://hydrogencouncil.com/wp-content/uploads/2020/01/Path-to-Hydrogen-Competitiveness_Full-Study-1.pdf (accessed on 11 May 2021).
- IEA. World Energy Outlook 2020. 2020. Available online: https://www.iea.org/reports/world-energy-outlook-2020 (accessed on 12 April 2021).
- IEA. Outlook for Biogas and Biomethane: Prospects for Organic Growth. 2020. Available online: https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth/sustainable-supply-potential-and-costs (accessed on 12 May 2021).
- Gaurav, A.; Ng, F.T.T.; Rempel, G.L. A new green process for biodiesel production from waste oils via catalytic distillation using a solid acid catalyst—Modeling, economic and environmental analysis. Green Energy Environ. 2016, 1, 62–74. [Google Scholar] [CrossRef] [Green Version]
- Apostolakou, A.A.; Kookos, I.K.; Marazioti, C.; Angelopoulos, K.C. Techno-economic analysis of a biodiesel production process from vegetable oils. Fuel Process. Technol. 2009, 90, 1023–1031. [Google Scholar] [CrossRef]
- Colombo, K.; Ender, L.; Barros, A.A.C. The study of biodiesel production using CaO as a heterogeneous catalytic reaction. Egypt. J. Pet. 2017, 26, 341–349. [Google Scholar] [CrossRef] [Green Version]
- Mizik, T.; Gyarmati, G. Economic and Sustainability of Biodiesel Production—A Systematic Literature Review. Clean Technol. 2021, 3, 19–36. [Google Scholar] [CrossRef]
- Cremonez, P.A.; Feroldi, M.; Nadaleti, W.C.; de Rossi, E.; Feiden, A.; de Camargo, M.P.; Cremonez, F.E.; Klajn, F.F. Biodiesel production in Brazil: Current scenario and perspectives. Renew. Sustain. Energy Rev. 2015, 42, 415–428. [Google Scholar] [CrossRef]
- European Commission. Directive (EU) 2015/1513 of the European Parliament and of the council of 9 September 2015 amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewable sources. Off. J. Eur. Union 2015, 239, 1–29. [Google Scholar]
- OECD/FAO. OECD-FAO Agricultural Outlook 2020–2029. 2020. Available online: https://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook-2020-2029_1112c23b-en (accessed on 11 May 2021).
- Ship & Bunker. Global Average 20 Ports Bunker Prices. Available online: https://shipandbunker.com/prices/emea/nwe/nl-rtm-rotterdam#MGO (accessed on 27 May 2021).
- Fulwood, M. Asia LNG Price Spike: Perfect Storm or Structural Failure? Oxford Institute for Energy Studies: Oxford, UK, 2021; Available online: https://www.oxfordenergy.org/publications/asia-lng-price-spike-perfect-storm-or-structural-failure/ (accessed on 27 May 2021).
- Steuer, C. Outlook for Competitive LNG Supply; Oxford Institute for Energy Studies: Oxford, UK, 2019; Available online: https://www.oxfordenergy.org/wpcms/wp-content/uploads/2019/03/Outlook-for-Competitive-LNG-Supply-NG-142.pdf (accessed on 27 May 2021).
- Auburger, S.; Petig, E.; Bahrs, E. Assessment of grassland as biogas feedstock in terms of production costs and greenhouse gas emissions in exemplary federal states of Germany. Biomass Bioenergy 2017, 101, 44–52. [Google Scholar] [CrossRef]
- Blumberg, T.; Tsatsaronis, G.; Morosuk, T. On the economics of methanol production from natural gas. Fuel 2019, 256, 115824. [Google Scholar] [CrossRef]
- Li, J.; Ma, S.; Liu, H.; Zhang, X. Life cycle assessment and economic analysis of methanol production from coke oven gas compared with coal and natural gas routes. J. Clean. Prod. 2018, 185, 299–308. [Google Scholar] [CrossRef]
- Pellegrini, L.A.; Soave, G.; Gamba, S.; Langè, S. Economic analysis of a combined energy–methanol production plant. Appl. Energy 2011, 88, 4891–4897. [Google Scholar] [CrossRef]
- Lemus, R.G.; Duart, J.M.M. Updated hydrogen production costs and parities for conventional and renewable technologies. Int. J. Hydrogen Energy 2010, 35, 3929–3936. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Poullikkas, A. A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 2017, 67, 597–611. [Google Scholar] [CrossRef]
- Jechura, J. Hydrogen from Natural Gas via Steam Methane Reforming; Colorado School of Mines: Golden, CO, USA, 2015; Available online: https://inside.mines.edu/~jjechura/EnergyTech/07_Hydrogen_from_SMR.pdf (accessed on 12 May 2021).
- Lee, B.; Chae, H.; Choi, N.H.; Moon, C.; Moon, S.; Lim, H. Economic evaluation with sensitivity and profitability analysis for hydrogen production from water electrolysis in Korea. Int. J. Hydrogen Energy 2017, 42, 6462–6471. [Google Scholar] [CrossRef]
- Fasihi, M.; Weiss, R.; Savolainen, J.; Breyer, C. Global potential of green ammonia based on hybrid PV-wind power plants. Appl. Energy 2021, 294, 116170. [Google Scholar] [CrossRef]
- Boulamanti, A.; Moya, J.A. Production costs of the chemical industry in the EU and other countries: Ammonia, methanol and light olefins. Renew. Sustain. Energy Rev. 2017, 68, 1205–1212. [Google Scholar] [CrossRef]
- Armijo, J.; Philibert, C. Flexible production of green hydrogen and ammonia from variable solar and wind energy: Case study of Chile and Argentina. Int. J. Hydrogen Energy 2020, 45, 1541–1558. [Google Scholar] [CrossRef]
- Nayak-Luke, R.; Alcántara, R.B. Techno-economic viability of islanded green ammonia as a carbon-free energy vector and as a substitute for conventional production. Energy Environ. Sci. 2020, 13, 2957–2966. [Google Scholar] [CrossRef]
- Nayak-Luke, R.; Alcántara, R.B.; Wilkinson, I. “Green” Ammonia: Impact of Renewable Energy Intermittency on Plant Sizing and Levelized Cost of Ammonia. Ind. Eng. Chem. Res. 2018, 57, 14607–14616. [Google Scholar] [CrossRef] [Green Version]
- Faber, J.; Nelissen, D.; Ahdour, S.; Harmsen, J.; Toma, S.; Lebesque, L. Study on the Completion of an EU Framework on LNG-Fuelled Ships and Its Relevant Fuel Provision Infrastructure; European Commission: Bruxelles, Belgium, 2015; Available online: https://ec.europa.eu/transport/sites/transport/files/2015-12-lng-lot3.pdf (accessed on 17 May 2021).
- Baldi, F.; Brynolf, S.; Maréchal, F. The cost of innovative and sustainable future ship energy systems. In Proceedings of the ECOS 2019—32nd International Conference of Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Wroclaw, Poland, 23–28 June 2019. [Google Scholar]
- Kryshtopa, S.; Górski, K.; Longwic, R.; Smigins, R.; Kryshtopa, L. Increasing Parameters of Diesel Engines by Their Transformation for Methanol Conversion Products. Energies 2021, 14, 1710. [Google Scholar] [CrossRef]
- Lloyd’s Register. Techno-Economic Assessment of Zero-Carbon Fuels. Lloyd’s Register. 2020. Available online: https://www.lr.org/en/insights/global-marine-trends-2030/techno-economic-assessment-of-zero-carbon-fuels/ (accessed on 19 May 2021).
- Xing, H.; Stuart, C.; Spence, S.; Chen, H. Fuel Cell Power Systems for Maritime Applications: Progress and Perspectives. Sustainability 2021, 13, 1213. [Google Scholar] [CrossRef]
- Troya, J.J.; Álvarez, C.; Fernández-Garrido, C.; Carral, L. Analysing the possibilities of using fuel cells in ships. Int. J. Hydrogen Energy 2016, 41, 2853–2866. [Google Scholar] [CrossRef]
- Kim, H.; Koo, K.Y.; Joung, T. A study on the necessity of integrated evaluation of alternative marine fuels. J. Int. Marit. Saf. Environ. Aff. Shipp. 2020, 4, 26–31. [Google Scholar]
- Horvath, S.; Fasihi, M.; Breyer, C. Techno-economic analysis of a decarbonized shipping sector: Technology suggestions for a fleet in 2030 and 2040. Energy Convers. Manag. 2018, 164, 230–241. [Google Scholar] [CrossRef]
- Vora, S.D. U.S. DOE Office of Fossil Energy Solid Oxide Fuel Cell Program. Available online: https://netl.doe.gov/coal/fuel-cells (accessed on 25 May 2021).
- Korberg, A.D.; Brynolf, S.; Grahn, M.; Skov, I.R. Techno-economic assessment of advanced fuels and propulsion systems in future fossil-free ships. Renew. Sustain. Energy Rev. 2021, 142, 110861. [Google Scholar] [CrossRef]
- Jensen, J.O.; Vestbø, A.P.; Li, Q.; Bjerrum, N.J. The energy efficiency of onboard hydrogen storage. J. Alloys Compd. 2007, 446–447, 723–728. [Google Scholar] [CrossRef] [Green Version]
- Ananthachar, V.; Duffy, J.J. Efficiencies of hydrogen storage systems onboard fuel cell vehicles. Sol. Energy 2005, 78, 687–694. [Google Scholar] [CrossRef]
- James, B.D.; Houchins, C.; Huya-Kouadio, J.M.; DeSantis, D.A. Final Report: Hydrogen Storage System Cost Analysis. Available online: https://www.osti.gov/servlets/purl/1343975 (accessed on 18 May 2021).
- Houchins, C.; James, B.D. 2020 DOE Hydrogen and Fuel Cells Program Review. Strategic Analysis. 2020. Available online: https://www.hydrogen.energy.gov/pdfs/review20/st100_houchins_2020_o.pdf (accessed on 18 May 2021).
- Wang, Y.; Wright, L.; Zhang, P. Economic feasibility of LNG fuel for trans ocean-going ships: A case study of container ships. Marit. Technol. Res. 2021, 3, 202–222. [Google Scholar] [CrossRef]
- EMSA. Study on Electrical Energy Storage for Ships. 2020. Available online: file:///C:/Users/tune/Downloads/study%20electrical%20energy%20storage%20for%20ships%20(2).pdf (accessed on 22 May 2021).
- MDA, A.; Coleiro, J.; Jayasinghe, S.D.G.; Enshaei, H.; Garaniya, V.; Baguley, C.; Madawala, U. Techno-Economic Feasibility Study of Battery- Powered Ferries. In Proceedings of the 4th Southern Power Electronics Conference (SPEC 2018), Singapore, 10–13 December 2018; pp. 1–7. [Google Scholar]
- DOE. Manufacturing Cost Analysis of 100 and 250 kW Fuel Cell Systems for Primary Power and Combined Heat and Power Applications. 2016. Available online: https://www.energy.gov/sites/prod/files/2016/07/f33/fcto_battelle_mfg_cost_analysis_pp_chp_fc_systems.pdf (accessed on 27 May 2021).
- Haidl, P.; Buchroithner, A.; Schweighofer, B.; Bader, M.; Wegleiter, H. Lifetime Analysis of Energy Storage Systems for Sustainable Transportation. Sustainability 2019, 11, 6731. [Google Scholar] [CrossRef] [Green Version]
- Hasanuzzaman, H.; Zubir, U.S.; Ilham, N.I.; Che, H. Global electricity demand, generation, grid system, and renewable energy polices: A review. Wiley Interdiscip. Rev. Energy Environ. 2017, 6, e222. [Google Scholar] [CrossRef]
- Penisa, X.N.; Castro, M.T.; Pascasio, J.D.A.; Esparcia, E.A., Jr.; Schmidt, O.; Ocon, J.D. Projecting the Price of Lithium-Ion NMC Battery Packs Using a Multifactor Learning Curve Model. Energies 2020, 13, 5276. [Google Scholar] [CrossRef]
- Wang, Z.; Carriveau, R.; Ting, D.S.K.; Xiong, W.; Wang, Z. A review of marine renewable energy storage. Spec. Issue Prog. Energy Storage Syst. 2019, 43, 6108–6150. [Google Scholar] [CrossRef]
- Lee, T.; Nam, H.A. Study on Green Shipping in Major Countries: In the View of Shipyards, Shipping Companies, Ports, and Policies. Asian J. Shipp. Logist. 2017, 33, 253–262. [Google Scholar] [CrossRef]
- Traut, M.; Larkin, A.; Anderson, K.; McGlade, C.; Sharmina, M.; Smith, T. CO2 abatement goals for international shipping. Clim. Policy 2018, 18, 1066–1075. [Google Scholar] [CrossRef] [Green Version]
- Guerin, K. Property Rights and Environmental Policy: A New Zealand Perspective. 2003. Available online: https://ideas.repec.org/p/nzt/nztwps/03-02.html (accessed on 18 May 2021).
- Puja, S. Environmental Regulations: Lessons from the Command-and-Control Approach. Available online: https://www.econstor.eu/bitstream/10419/182229/1/1030541922.pdf (accessed on 20 May 2020).
- IMO. Efficiency Incentive Scheme (EIS) Submitted by Japan and the World Shipping Council. 2011. Available online: https://www.worldshipping.org/industry-issues/environment/air-emissions/Efficiency_Incentive_Scheme_-EIS-_-Japan_and_WSC-_MEPC_63-5-3.pdf (accessed on 20 May 2021).
- ICS. Shipping Industry Welcomes IMO Decision to Give Further Consideration to USD 5 Billion Fund to Accelerate Decarbonisation. 2021. Available online: https://www.ics-shipping.org/press-release/shipping-industry-welcomes-imo-decision-to-give-further-consideration-to-usd-5-billion-fund-to-accelerate-decarbonisation/ (accessed on 27 May 2021).
- European Commission. Reducing Emissions from the Shipping Sector. Available online: https://ec.europa.eu/clima/policies/transport/shipping_en (accessed on 27 May 2021).
- Psaraftis, H.N. Speed optimization versus speed reduction: Are speed limits better than a bunker levy? Marit. Econ. Logist. 2019, 21, 524–542. [Google Scholar] [CrossRef]
- Chai, K.H.; Lee, X.N.; Gaudin, A.A. Systems Perspective to Market–Based Mechanisms (MBM) Comparison for International Shipping; National University of Singapore: Singapore, 2019; Available online: https://www.researchgate.net/profile/Antoine-Gaudin/publication/331366907_A_Systems_Perspective_to_Market_-_Based_Mechanisms_MBM_Comparison_for_International_Shipping/links/602f36624585158939b48217/A-Systems-Perspective-to-Market-Based-Mechanisms-MBM-Comparison-for-International-Shipping.pdf (accessed on 21 May 2021).
- Kosmas, V.; Acciaro, M. Bunker levy schemes for greenhouse gas (GHG) emission reduction in international shipping. Transp. Res. Part D Transp. Environ. 2017, 57, 195–206. [Google Scholar] [CrossRef]
- Shi, Y. Reducing greenhouse gas emissions from international shipping: Is it time to consider market-based measures? Mar. Policy 2016, 64, 123–134. [Google Scholar] [CrossRef]
- Gritsenko, D. Regulating GHG Emissions from shipping: Local, global, or polycentric approach? Mar. Policy 2017, 84, 130–133. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Wallace, S.W.; Wang, X. Can an Emission Trading Scheme really reduce CO2 emissions in the short term? Evidence from a maritime fleet composition and deployment model. Transp. Res. Part D Transp. Environ. 2019, 74, 318–338. [Google Scholar] [CrossRef] [Green Version]
Fuel Type | Calorific Value (MJ/kg) | Storage Requirement Onboard | Utilisation Efficiency | Utilisation by-Products | Availability of Utilisation Technologies in Commercial Use | |
---|---|---|---|---|---|---|
FC (Electric Efficiency) | ICE | |||||
Natural Gas (liquefied) | 50–55 | −163 °C (Pressurised or unpressurised) | 45–60% (SOFC) 35–45%(PEMFC) | 35–40% | CO2, H2O, NOx(ICE) | ICE: Yes, available for wide commercial use FC: Underdevelopment, no commercial case in marine application |
Hydrogen | 120–140 | 350–700 bar (gases), −252.8 °C (liquefied), Material-based storage | 50–60% (PEMFC/SOFC) | 30–35% | H2O, NOx(ICE) | ICE: Yes, available for commercial use FC: Yes, available for commercial use |
Ammonia | 22.5 | 21 °C under 8.8 bar or −33 °C under atmospheric pressure | 30–60% (SOFC) 15–30%(AFC) | 35–40% | H2O, N2, NOx(ICE) | ICE: underdevelopment FC: underdevelopment, no commercial case in marine application |
Methanol | 22.7 | liquid at ambient temperature | 30–50%(SOFC) 20–30%(DMFC) | Up to 40% | CO2, H2O, CO(ICE), NOx(ICE) | ICE: Yes, available for wide commercial use FC: Underdevelopment, no commercial case in marine application |
Bio-diesel | 38–46 | liquid at ambient temperature | 10–30% (SOFC) | Varies | CO2, H2O, CO(ICE), NOx(ICE) | ICE: Yes, available for wide commercial use FC: Underdevelopment, no commercial case in marine application |
Electricity | _ | High energy density battery systems such as: NMC, LFP, NCA and solid state battery | _ | _ | _ | Yes, currently only available for small size shore-based ship |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wright, L.A. A Comparative Review of Alternative Fuels for the Maritime Sector: Economic, Technology, and Policy Challenges for Clean Energy Implementation. World 2021, 2, 456-481. https://doi.org/10.3390/world2040029
Wang Y, Wright LA. A Comparative Review of Alternative Fuels for the Maritime Sector: Economic, Technology, and Policy Challenges for Clean Energy Implementation. World. 2021; 2(4):456-481. https://doi.org/10.3390/world2040029
Chicago/Turabian StyleWang, Yifan, and Laurence A. Wright. 2021. "A Comparative Review of Alternative Fuels for the Maritime Sector: Economic, Technology, and Policy Challenges for Clean Energy Implementation" World 2, no. 4: 456-481. https://doi.org/10.3390/world2040029
APA StyleWang, Y., & Wright, L. A. (2021). A Comparative Review of Alternative Fuels for the Maritime Sector: Economic, Technology, and Policy Challenges for Clean Energy Implementation. World, 2(4), 456-481. https://doi.org/10.3390/world2040029