Drinking Water Quality Management for Broiler Performance and Carcass Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Standards
2.2. Animals and Feeds
2.3. Sample and Analyses
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balogun, A.A.B.; Akinseye, F.M.; Agbede, J.O. Water and feed consumption in broiler birds during a typical hot weather condition in Akure, Ondo State, Nigeria. Int. J. Biol. Chem. Sci. 2013, 7, 1119–1125. [Google Scholar] [CrossRef]
- Mottet, A.; Tempio, G. Global poultry production: Current state and future outlook and challenges. World’s Poult. Sci. J. 2017, 73, 245–256. [Google Scholar] [CrossRef]
- Erdaw, M.M.; Beyene, W.T. Trends, prospects and the socio-economic contribution of poultry production in sub-Saharan Africa: A review. World’s Poult. Sci. J. 2022, 78, 835–852. [Google Scholar] [CrossRef]
- Lacy, M.P. Broiler management. In Commercial Chicken Meat and Egg Production; Springer: Boston, MA, USA, 2002; pp. 829–868. ISBN 079237200X, 9780792372004. [Google Scholar]
- Jery, A.E.; Satishkumar, P.; Abdul Jaleel Maktoof, M.; Suplata, M.; Dudic, B.; Spalevic, V. Sustainable Heat Transfer Management: Modeling of Entropy Generation Minimization and Nusselt Number Development in Internal Flows with Various Shapes of Cross-Sections Using Water and Al2O3/Water Nanofluid. Water 2023, 15, 89. [Google Scholar] [CrossRef]
- Mitre, K. The Effect of Magnetic Water on Feed Conversion Ratio, Body Weight Gain, Feed Intake and Livability of Male Broiler Chickens. Poultry Science Undergraduate Honors Theses. 2018. Available online: http://scholarworks.uark.edu/poscuht/5 (accessed on 17 November 2023).
- Mohammed, A.N.; Mohamed, D.A.; Mohamed, M.B.E.; El Bably, M.A. Assessment of Drinking Water Quality and New Disinfectants for Water Treatment in a Small Commercial Poultry Farm. J. Adv. Vet. Res. 2020, 10, 206–212. Available online: https://www.advetresearch.com/index.php/AVR/article/view/533 (accessed on 3 October 2024).
- Orakpoghenor, O.; Ogbuagu, N.E.; Sa’Idu, L. Effect of Environmental Temperature on Water Intake in Poultry. In Advances in Poultry Nutrition Research; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Di Martino, G.; Piccirillo, A.; Giacomelli, M.; Comin, D.; Gallina, A.; Capello, K.; Buniolo, F.; Montesissa, C.; Bonfanti, L. Microbiological, chemical and physical quality of drinking water for commercial turkeys: A cross-sectional study. Poult. Sci. 2018, 97, 2880–2886. [Google Scholar] [CrossRef]
- Movahednejad, E.; Shokoohi, A.; Ramezani Etedali, H. A study of Water Footprint in Poultry Products. Iran. J. Irrig. Drain. 2020, 14, 1562–1570. Available online: http://idj.iaid.ir/article_122321.html?lang=en (accessed on 3 October 2024).
- Devesa, R.; Dietrich, A.M. Guidance for optimizing drinking water taste by adjusting mineralization as measured by total dissolved solids (TDS). Desalination 2018, 439, 147–154. [Google Scholar] [CrossRef]
- Honig, V.; Procházka, P.; Obergruber, M.; Roubík, H. Nutrient Effect on the Taste of Mineral Waters: Evidence from Europe. Foods 2020, 9, 1875. [Google Scholar] [CrossRef]
- Adusei-Gyamfi, J.; Ouddane, B.; Rietveld, L.; Cornard, J.P.; Criquet, J. Natural organic matter-cations complexation and its impact on water treatment: A critical review. Water Res. 2019, 160, 130–147. [Google Scholar] [CrossRef]
- Osei, F.B.; Boamah, V.E.; Agyare, C.; Abaidoo, R.C. Physicochemical properties and microbial quality of water used in selected poultry farms in the ashanti region of Ghana. Open Microbiol. J. 2019, 13, 121–127. [Google Scholar] [CrossRef]
- Zhang, L.; Morey, A.; Bilgili, S.F.; McKee, S.R.; Garner, L.J. Effectiveness of several antimicrobials and the effect of contact time in reducing Salmonella and Campylobacter on poultry drumsticks. J. Appl. Poult. Res. 2019, 28, 1143–1149. [Google Scholar] [CrossRef]
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef] [PubMed]
- Mostashari-Mohases, M.; Sadeghi, A.A.; Ahmadi, J.; Esmaeilkhanian, S. Effect of betaine supplementation on performance parameters, betaine-homocysteine s-methyltransferase gene expression in broiler chickens consume drinking water with different total dissolved solids. Kafkas Univ. Vet. Fak. Derg. 2017, 23. [Google Scholar] [CrossRef]
- Khalilipour, G.; Maheri-Sis, N.; Shaddel-Teli, A. Effects of Saline Drinking Water on Carcass Characteristics and Litter Moisture Content of Japanese Quails (Coturnix coturnix Japonica). Egypt. J. Vet. Sci. 2019, 50, 151–157. [Google Scholar] [CrossRef]
- Hamid, H.; Shi, H.Q.; Ma, G.Y.; Fan, Y.; Li, W.X.; Zhao, L.H.; Zhang, J.Y.; Ji, C.; Ma, Q.G. Influence of acidified drinking water on growth performance and gastrointestinal function of broilers. Poult. Sci. 2018, 97, 3601–3609. [Google Scholar] [CrossRef] [PubMed]
- Abbas, G.; Ahmad, F.; Saeed, M.; Ayasan, T.; Mahmood, A.; Yasmeen, R.; Kamboh, A. Effect of dietary inclusion of sodium bicarbonate on digestibility of nutrients and immune response in caged layers during the summer. Braz. J. Poult. Sci. 2019, 21, eRBCA-2018. [Google Scholar] [CrossRef]
- Garrote, L. Managing water resources to adapt to climate change: Facing uncertainty and scarcity in a changing context. Water Resour. Manag. 2017, 31, 2951–2963. [Google Scholar] [CrossRef]
- Aviagen. 2023. Available online: https://en.aviagen.com/brands/ross/products/ross-308 (accessed on 3 October 2024).
- Aldridge, D.J.; Kidd, M.T.; Scanes, C.G. Eating, drinking and locations of broiler chickens reared under commercial conditions with supplementary feeder line lighting. J. Appl. Poult. Res. 2021, 30, 100167. [Google Scholar] [CrossRef]
- National Research Council, & Subcommittee on Poultry Nutrition. Nutrient Requirements of Poultry; National Academies Press: Cambridge, MA, USA, 1994; ISBN 0309048923, 9780309048927. [Google Scholar]
- Nobakht, A.; Nobakht, M.; Safamehr, A.R. The effect of different levels of savory medicinal plant (Satureja hortensis L.) on growth performance, carcass traits, immune cells and blood biochemical parameters of broilers. Afr. J. Agric. Res. 2012, 7, 1456–1461. [Google Scholar] [CrossRef]
- Aggrey, S.E.; Ghareeb, A.F.; Milfort, M.C.; Ariyo, O.W.; Aryal, B.; Hartono, E.; Rekaya, R. Quantitative and molecular aspects of water intake in meat-type chickens. Poult. Sci. 2023, 102, 102973. [Google Scholar] [CrossRef] [PubMed]
- Bean-Hodgins, L.; Mohammadigheisar, M.; Edwards, A.M.; Wang, C.; Barbut, S.; Kiarie, E.G. Comparative impact of conventional and alternative gut health management programs on growth performance and breast meat quality in broiler chickens raised in commercial and research settings. J. Appl. Poult. Res. 2022, 31, 100228. [Google Scholar] [CrossRef]
- Hamidi, O.; Chamani, M.; Ghahri, H.; Sadeghi, A.A.; Malekinejad, H.; Palangi, V. Effects of supplemental chromium nanoparticles on IFN-γ expression of heat stress broilers. Biol. Trace Elem. Res. 2022, 200, 339–347. [Google Scholar] [CrossRef] [PubMed]
- SAS Institute Inc. SAS/CONNECT® 9.4 User’s Guide, 4th ed.; SAS Institute Inc.: Cary, NC, USA, 2018. [Google Scholar]
- Salehi, M. Global water shortage and potable water safety; Today’s concern and tomorrow’s crisis. Environ. Int. 2022, 158, 106936. [Google Scholar] [CrossRef]
- Hale, R.C.; Seeley, M.E.; La Guardia, M.J.; Mai, L.; Zeng, E.Y. A global perspective on microplastics. J. Geophys. Res. Ocean. 2020, 125, e2018JC014719. [Google Scholar] [CrossRef]
- do Amaral, L.A. Drinking Water as a Risk Factor to Poultry Health. Braz. J. Poult. Sci. 2004, 6, 191–199. [Google Scholar] [CrossRef]
- Carawan, R.E. Water and Waste Management in Poultry Processing, U.S. Government Printing Office. 1974. Available online: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=9101RHU5.TXT (accessed on 3 October 2024).
- Akhavast, A.R.; Daneshyar, M. Effects of rosemary (Rosmarinus officinalis) Extract on Performance, Antioxidant Ability and Blood Gas Indices of Broiler Chickens Treated with Sodium Nitrate in Drinking Water. Iran. J. Appl. Anim. Sci. 2017, 7, 471–477. Available online: https://journals.iau.ir/article_533259.html (accessed on 3 October 2024).
- Hassan, A.A.; Hameed, M.S.; Al-Ezzy, A.I.A. Effect of Drinking Water Quality on Physiological Blood Parameters and Performance of Laying Hens in Diyala Province, Iraq. Biochem. Cell Arch. 2020, 20, 2649–2654. [Google Scholar] [CrossRef]
- Sheikh, I.U. Water as a Critical Nutrient in Maintenance of Poultry Health and Its Role in Production Performance. Int. J. Vet. Sci. Anim. Husb. 2019, 4, 12–15. Available online: https://www.veterinarypaper.com/pdf/2019/vol4issue4/PartA/4-3-1-362.pdf (accessed on 3 October 2024).
- Marimuthu, S.; Balasubramanian, B.; Selvam, R.; D’Souza, P. Evaluation of a polyherbal formulation for the management of wet litter in broiler chickens: Implications on performance parameters, cecal moisture level, and footpad lesions. J. Adv. Vet. Anim. Res. 2019, 6, 536. [Google Scholar] [CrossRef]
- Magnoni, L.J.; Eding, E.; Leguen, I.; Prunet, P.; Geurden, I.; Ozório, R.O.; Schrama, J.W. Hypoxia, but not an electrolyte-imbalanced diet, reduces feed intake, growth and oxygen consumption in rainbow trout (Oncorhynchus mykiss). Sci. Rep. 2018, 8, 4965. [Google Scholar] [CrossRef] [PubMed]
- Zhenzhen, J.; Xue, H.; Zhifang, S.; Lei, X.; Feile, Z. Effects of Drinking Slightly Acidic Electrolytic Water on Growth Performance and Behavior of Broilers. Anim. Husb. Feed Sci. 2020, 12, 25–29. [Google Scholar] [CrossRef]
- El-Kazaz, S.E.; Hafez, M.H. Evaluation of copper nanoparticles and copper sulfate effect on immune status, behavior, and productive performance of broilers. J. Adv. Vet. Anim. Res. 2020, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Kwiecien, M.; Winiarska-Mieczan, A.; Zawislak, K.; Sroka, S. Effect of copper glycinate chelate on biomechanical, morphometric and chemical properties of chicken femur. Ann. Anim. Sci. 2014, 14, 127. [Google Scholar] [CrossRef]
- Jiya, E.Z.; Ibrahim, A.B.; Ayanwale, B.A.; Usman, A.; Adam, J.Y.; Shehu, B.M. Effect of Soft and Moderately Hard Water Intake on Meat Quality Characteristics of Broiler Chickens. Niger. J. Anim. Sci. 2017, 19, 232–241. Available online: https://www.ajol.info/index.php/tjas/article/view/163828 (accessed on 3 October 2024).
- Hernández-Coronado, A.C.; Silva-Vázquez, R.; Rangel-Nava, Z.E.; Hernández-Martínez, C.A.; Kawas-Garza, J.R.; Hume, M.E.; Méndez-Zamora, G. Mexican oregano essential oils given in drinking water on performance, carcass traits, and meat quality of broilers. Poult. Sci. 2019, 98, 3050–3058. [Google Scholar] [CrossRef]
- Nukreaw, R.; Bunchasak, C.; Markvichitr, K.; Choothesa, A.; Prasanpanich, S.; Loongyai, W. Effects of methionine supplementation in low-protein diets and subsequent re-feeding on growth performance, liver and serum lipid profile, body composition and carcass quality of broiler chickens at 42 days of age. J. Poult. Sci. 2011, 48, 229–238. [Google Scholar] [CrossRef]
- Kamran, Z.; Sarwar, M.; Nisa, M.U.; Nadeem, M.A.; Mahmood, S. Effect of Low Levels of Dietary Crude Protein with Constant Metabolizable Energy on Nitrogen Excretion, Litter Composition and Blood Parameters of Broilers. Int. J. Agric. Biol. 2010, 12, 401–405. Available online: https://www.researchgate.net/profile/Zahid-Kamran-2/publication/236231269_Effect_of_Low_Levels_of_Dietary_Crude_Protein_with_Constant_Metabolizable_Energy_on_Nitrogen_Excretion_Litter_Composition_and_Blood_Parameters_of_Broilers/links/0c9605172df650d358000000/Effect-of-Low-Levels-of-Dietary-Crude-Protein-with-Constant-Metabolizable-Energy-on-Nitrogen-Excretion-Litter-Composition-and-Blood-Parameters-of-Broilers.pdf (accessed on 3 October 2024).
Factors | Unit | Treatments | ||||
---|---|---|---|---|---|---|
A | B | C | D | E | ||
Electrical conductivity | µs/cm | 1654 | 260 | 1650 | 1740 | 814 |
pH | 6.52 | 7.1 | 6.8 | 6.84 | 6.75 | |
Total solids at 180 °C | mg/L TDS | 1232 | 170 | 1070 | 960 | 450 |
Alkalinity to phenolphthalein | mg/L CO32− | 0 | 0 | 0 | 0 | 0 |
Alkalinity to methyl orange | mg/L HCO3− | 0 | 0 | 0 | 228.7 | 350.7 |
Total hardness | mg/L CaCO3 | 980 | 160 | 720 | 827 | 379 |
Calcium | mg/L | 37 | 24 | 160 | 228 | 128 |
Magnesium | mg/L | 65.73 | 24 | 78 | 62.64 | 14.4 |
Potassium | mg/L | 0.84 | 2 | - | 0.77 | 0.49 |
Sodium | mg/L | 10 | 10 | - | 14.03 | 10.12 |
Chloride | mg/L | 130 | 25 | 150 | 80 | 44 |
Fluorine | mg/L | 0.64 | 0.12 | 0.75 | 0 | 0 |
Nitrite | mg/L | 0 | 0 | 0 | 0 | 0 |
Nitrate | mg/L | 27.05 | 0 | 0 | 10.07 | 20.08 |
Sulfate | mg/L | 612 | 225 | 410 | 547 | 55 |
Feed Ingredients | Grower Period (11 to 24 Days) | Finisher Period (25 to 42 Days) |
---|---|---|
Corn (CP 8.9%) | 52.07 | 54.75 |
Soybean meal (CP 42%) | 40.01 | 37.44 |
Soybean oil | 4.05 | 4.38 |
Oyster shell | 0.25 | 0.27 |
Bone powder | 2.25 | 2.06 |
1* Vitamin premix | 0.25 | 0.25 |
2* Mineral premix | 0.25 | 0.25 |
Sodium chloride | 0.47 | 0.37 |
Lysine-HCl | 0.10 | 0.00 |
DL-Methionine | 0.30 | 0.23 |
Calculated composition | ||
ME (kcal/kg) | 3100 | 3150 |
CP (%) (crude protein) | 21.65 | 20.67 |
Calcium (%) | 0.89 | 0.84 |
Available P (%) | 0.44 | 0.41 |
Sodium (%) | 0.22 | 0.18 |
Lysine (%) | 1.22 | 1.07 |
Met + Cys (%) | 0.94 | 0.85 |
Tryp (%) | 0.26 | 0.25 |
Treatment | Feed Intake (gr/Bird/Day) | Weight Gain (gr/Bird/Day) | FCR | Water Consumption (mL/Bird/Day) |
---|---|---|---|---|
A | 70.53 | 46.22 | 1.52 | 130.51 |
B | 70.29 | 49.19 | 1.43 | 151.86 |
C | 69.96 | 43.44 | 1.64 | 146.3 |
D | 69.84 | 48.62 | 1.45 | 159.8 |
E | 69.24 | 45.32 | 1.54 | 135.47 |
SEM | 0.8 | 2.65 | 0.18 | 10.98 |
p-value | 0.8182 | 0.5515 | 0.4579 | 0.3773 |
Treatment | Feed Intake (gr/Bird/Day) | Weight Gain (gr/Bird/Day) | FCR | Water Consumption (mL/Bird/Day) |
---|---|---|---|---|
A | 150.84 b | 69.84 c | 2.16 a | 289.65 b |
B | 145.68 b | 86.99 ab | 1.68 c | 320.45 a |
C | 159.71 a | 82.37 b | 1.94 ab | 341.74 a |
D | 160.54 a | 82.37 b | 1.95 ab | 347.27 a |
E | 162.38 a | 93.45 a | 1.74 bc | 334.19 a |
SEM | 2.67 | 2.87 | 0.06 | 9.53 |
p-value | 0.0051 | 0.0023 | 0.0084 | 0.0109 |
Treatment | Feed Intake (gr/Bird/Day) | Weight Gain (gr/Bird/Day) | FCR | Water Consumption (mL/Bird/Day) | Production Index |
---|---|---|---|---|---|
A | 110.69 bc | 63.03 c | 1.76 a | 210.08 b | 371.01 b |
B | 107.83 c | 73.09 ab | 1.48 c | 236.15 a | 500.80 a |
C | 114.84 ab | 67.91 bc | 1.70 ab | 244.03 a | 357.42 b |
D | 115.16 a | 70.50 ab | 1.64 ab | 253.42 a | 383.23 b |
E | 115.81 a | 74.39 a | 1.56 bc | 234.83 a | 463.12 a |
SEM | 1.33 | 1.69 | 0.05 | 7.43 | 23.14 |
p-value | 0.0066 | 0.0055 | 0.0125 | 0.0214 | 0.0048 |
Treatment | Carcass | Intestine | Abdominal Fat | Gizzard | Liver | Breast | Thigh |
---|---|---|---|---|---|---|---|
A | 72.94 | 5.91 | 2.71 | 2.24 | 2.6 | 36.74 | 25.21 |
B | 74.29 | 5.86 | 2.6 | 2.27 | 2.6 | 35.31 | 25.27 |
C | 73.55 | 5.72 | 2.52 | 2.36 | 2.97 | 36.74 | 25.21 |
D | 74.09 | 6.05 | 2.58 | 2.2 | 2.61 | 36.7 | 25.06 |
E | 73.81 | 5.9 | 2.19 | 2.27 | 2.61 | 36.45 | 25.81 |
SEM | 0.86 | 0.32 | 0.31 | 0.08 | 0.1 | 0.86 | 0.32 |
p-value | 0.8255 | 0.9624 | 0.7966 | 0.654 | 0.0805 | 0.7304 | 0.532 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebrahimi, N.A.; Nobakht, A.; İnci, H.; Palangi, V.; Suplata, M.; Lackner, M. Drinking Water Quality Management for Broiler Performance and Carcass Characteristics. World 2024, 5, 952-961. https://doi.org/10.3390/world5040048
Ebrahimi NA, Nobakht A, İnci H, Palangi V, Suplata M, Lackner M. Drinking Water Quality Management for Broiler Performance and Carcass Characteristics. World. 2024; 5(4):952-961. https://doi.org/10.3390/world5040048
Chicago/Turabian StyleEbrahimi, Naser Amir, Ali Nobakht, Hakan İnci, Valiollah Palangi, Marian Suplata, and Maximilian Lackner. 2024. "Drinking Water Quality Management for Broiler Performance and Carcass Characteristics" World 5, no. 4: 952-961. https://doi.org/10.3390/world5040048
APA StyleEbrahimi, N. A., Nobakht, A., İnci, H., Palangi, V., Suplata, M., & Lackner, M. (2024). Drinking Water Quality Management for Broiler Performance and Carcass Characteristics. World, 5(4), 952-961. https://doi.org/10.3390/world5040048