Multiple Indicator Vulnerability to Energy Poverty: Assessing Spatial Variability Across Chile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Access
2.2. Affordability
2.3. Flexibility
Energy End-Use | Technology | Cost of Implementation | Cost of Fuel | Efficiency of System (η) |
---|---|---|---|---|
Space heating | Wood-burning | 635 USD | 0.06 USD/kWh | 0.62 |
Gas | 238 USD | 0.13 USD/kWh | 0.9 | |
Electricity | 289 USD | 0.18 USD/kWh | 0.99 | |
Kerosene | 543 USD | 0.08 USD/kWh | 0.85 | |
Water heating | Gas | 200 USD | 0.13 USD/kWh | 0.9 |
Wood | 150 USD | 0.06 USD/kWh | 0.62 | |
Electricity | ||||
Cooking | Gas | 317 USD | 0.13 USD/kWh | 0.9 |
Electricity | 556 USD | 0.22 USD/kWh | 0.98 | |
Wood | 556 USD | 0.06 USD/kWh | 0.62 |
2.4. Efficiency
2.5. Needs
2.6. Combined Vulnerability to Energy Poverty
3. Results
3.1. Spatial Distribution of Drivers of Energy Poverty
3.2. Combined Risk of Energy Poverty
3.3. Population Vulnerability to Energy Poverty
4. Discussion
Challenges and Opportunities for Improvement
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Development Programme Sustainable Development Goals. In Climate Change 2013–The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2015; pp. 1–30.
- González-Eguino, M. Energy Poverty: An Overview. Renew. Sustain. Energy Rev. 2015, 47, 377–385. [Google Scholar] [CrossRef]
- MDS. Base de Datos Archivo Histórico CASEN. 2017. Available online: https://observatorio.ministeriodesarrollosocial.gob.cl/encuesta-casen-2017 (accessed on 16 May 2024).
- Reyes, R.; Schueftan, A.; Ruiz, C.; González, A.D. Controlling Air Pollution in a Context of High Energy Poverty Levels in Southern Chile: Clean Air but Colder Houses? Energy Policy 2019, 124, 301–311. [Google Scholar] [CrossRef]
- Porras-Salazar, J.A.; Contreras-Espinoza, S.; Cartes, I.; Piggot-Navarrete, J.; Pérez-Fargallo, A. Energy Poverty Analyzed Considering the Adaptive Comfort of People Living in Social Housing in the Central-South of Chile. Energy Build. 2020, 223, 110081. [Google Scholar] [CrossRef]
- Ministerio de Energía. Energia 2050; Ministerio de Energía Gobierno de Chile: Santiago, Chile, 2014. [Google Scholar]
- Horta, A.; Gouveia, J.P.; Schmidt, L.; Sousa, J.C.; Palma, P.; Simões, S. Energy Poverty in Portugal: Combining Vulnerability Mapping with Household Interviews. Energy Build. 2019, 203, 109423. [Google Scholar] [CrossRef]
- The World Bank Annual Report 2020; World Bank: Washington, DC, USA, 2020; ISBN 978-1-4648-1619-2.
- World Health Organization. Health in 2015: From MDGs, Millennium Development Goals to SDGs, Sustainable Development Goals; World Health Organisation: Geneva, Switzerland, 2015. [Google Scholar]
- Siksnelyte-Butkiene, I.; Streimikiene, D.; Lekavicius, V.; Balezentis, T. Energy Poverty Indicators: A Systematic Literature Review and Comprehensive Analysis of Integrity. Sustain. Cities Soc. 2021, 67, 102756. [Google Scholar] [CrossRef]
- Teixeira, I.; Ferreira, A.C.; Rodrigues, N.; Teixeira, S. Energy Poverty and Its Indicators: A Multidimensional Framework from Literature. Energies 2024, 17, 3445. [Google Scholar] [CrossRef]
- Abbas, K.; Li, S.; Xu, D.; Baz, K.; Rakhmetova, A. Do Socioeconomic Factors Determine Household Multidimensional Energy Poverty? Empirical Evidence from South Asia. Energy Policy 2020, 146, 111754. [Google Scholar] [CrossRef]
- Hou, X.; Wu, H.; Wang, W. Identification and Measurement of Multidimensional Relative Poverty of Chinese Rural Adults Considering Climate Factors. Front. Environ. Sci. 2022, 10, 891077. [Google Scholar] [CrossRef]
- Taltavull de La Paz, P.; Juárez Tárrega, F.; Su, Z.; Monllor, P. Sources of Energy Poverty: A Factor Analysis Approach for Spain. Front. Energy Res. 2022, 10, 847845. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, C.; Yang, F.; Che, L.; Wang, B.; Sun, D. Spatio-Temporal Evolution and the Influencing Factors of PM2.5 in China between 2000 and 2015. J. Geogr. Sci. 2019, 29, 253–270. [Google Scholar] [CrossRef]
- Taylor, L. Fuel Poverty: From Cold Homes to Affordable Warmth | by B. Boardman Belhaven Press, 1991, £38. Energy Policy 1993, 21, 1071–1072. [Google Scholar] [CrossRef]
- Nwozor, A.; Olanrewaju, J.S.; Ake, M.B. National Insecurity and the Challenges of Food Security in Nigeria. Acad. J. Interdiscip. Stud. 2019, 8, 9–20. [Google Scholar] [CrossRef]
- Deller, D.; Turner, G.; Waddams Price, C. Energy Poverty Indicators: Inconsistencies, Implications and Where Next? Energy Econ. 2021, 103, 105551. [Google Scholar] [CrossRef]
- Karpinska, L.; Śmiech, S. Breaking the Cycle of Energy Poverty. Will Poland Make It? Energy Econ. 2021, 94, 105063. [Google Scholar] [CrossRef]
- Che, X.; Zhu, B.; Wang, P. Assessing Global Energy Poverty: An Integrated Approach. Energy Policy 2021, 149, 112099. [Google Scholar] [CrossRef]
- Sy, S.A.; Mokaddem, L. Energy Poverty in Developing Countries: A Review of the Concept and Its Measurements. Energy Res. Soc. Sci. 2022, 89, 102562. [Google Scholar] [CrossRef]
- Karpinska, L.; Śmiech, S.; Gouveia, J.P.; Palma, P. Mapping Regional Vulnerability to Energy Poverty in Poland. Sustainability 2021, 13, 10694. [Google Scholar] [CrossRef]
- Mardones, C. Economic, Environmental, and Social Assessment of the Replacement of Coal-Fired Thermoelectric Plants for Solar and Wind Energy in Chile. J. Clean. Prod. 2023, 411, 137343. [Google Scholar] [CrossRef]
- Bouzarovski, S.; Petrova, S. A Global Perspective on Domestic Energy Deprivation: Overcoming the Energy Poverty–Fuel Poverty Binary. Energy Res. Soc. Sci. 2015, 10, 31–40. [Google Scholar] [CrossRef]
- Thomson, H.; Bouzarovski, S.; Snell, C. Rethinking the Measurement of Energy Poverty in Europe: A Critical Analysis of Indicators and Data. Indoor Built Environ. 2017, 26, 879–901. [Google Scholar] [CrossRef]
- Ministerio de Energía. Balance Nacional de Energía; Ministerio de Energía Gobierno de Chile: Santiago, Chile, 2019. [Google Scholar]
- C.N.E. Anuario Estadístico de Energía 2018; Comisión Nacional de Energía. Available online: https://www.cne.cl/wp-content/uploads/2019/04/Anuario-CNE-2018.pdf (accessed on 16 May 2024).
- Labraña, J.; Urquiza, A.; Cortés, J.; Álamos, N.; Amigo, C.; Chahuan, J. Caracterización Del Mercado de Leña: Un Abordaje Integral; Red de Pobreza Energética–RedPE: Santiago, Chile, 2019; Available online: https://pobrezaenergetica.cl/wp-content/uploads/2023/01/DT7.-Caracterizacion-mercado-de-la-lena-en-Chile.pdf (accessed on 16 May 2024).
- CDT. Estudio de usos Finales y Curva de Oferta de la Conservación de la Energía en el Sector Residencial; Corporación de Desarrollo Tecnológico: Santiago, Chile, 2010. [Google Scholar]
- Ramos, N.P.R. Consumo de Energía a Nivel Residencial en Chile y Análisis de Eficiencia Energética en Calefacción; Universidad de Chile: Santiago, Chile, 2011. [Google Scholar]
- Boso, A.; Hofflinger, A.; Garrido, J.; Álvarez, B. Breathing Clean Air or Cheaply Heating Your Home: An Environmental Justice Dilemma in Chilean Patagonia. Geogr. Rev. 2022, 112, 667–687. [Google Scholar] [CrossRef]
- Pokhrel, A.K.; Bates, M.N.; Acharya, J.; Valentiner-Branth, P.; Chandyo, R.K.; Shrestha, P.S.; Raut, A.K.; Smith, K.R. PM 2.5 in Household Kitchens of Bhaktapur, Nepal, Using Four Different Cooking Fuels. Atmos. Environ. 2015, 113, 159–168. [Google Scholar] [CrossRef]
- Energía Abierta, Comisión Nacional de Energía (CNE). Available online: http://energiaabierta.cl/ (accessed on 16 May 2024).
- MIDESO. Ingresos de los Hogares. Síntesis de Resultados Casen 2017; MIDESO: Santiago, Chile, 2018. [Google Scholar]
- INE. Boletín Estadístico: Empleo Trimestral Regional; Instituto Nacional de Estadísticas: Santiago, Chile, 2019. [Google Scholar]
- CNE Mapa Precio de Combustibles. Comisión Nacional de Energía. 2018. Available online: http://energiaabierta.cl/visualizaciones/mapa-precio-de-combustibles/ (accessed on 16 May 2024).
- Ministerio de Energía. Encuesta Nacional de Energía; Ministerio de Energía: Santiago, Chile, 2016. [Google Scholar]
- Clark, J.; Kearns, A. Housing Improvements, Perceived Housing Quality and Psychosocial Benefits from the Home. Hous. Stud. 2012, 27, 915–939. [Google Scholar] [CrossRef]
- Pérez-Fargallo, A.; Bienvenido-Huertas, D.; Rubio-Bellido, C.; Trebilcock, M. Energy Poverty Risk Mapping Methodology Con-Sidering the User’s Thermal Adaptability: The Case of Chile. Energy Sustain. Dev. 2020, 58, 63–77. [Google Scholar] [CrossRef]
- Santiago, C.M.; Raggi, J.P.F.; Erices, L.V. Urban Growth Trends in Midsize Chilean Cities: The Case of Temuco. Urbe 2016, 8, 375–389. [Google Scholar] [CrossRef]
- Sarricolea, P.; Herrera-Ossandon, M.; Meseguer-Ruiz, Ó. Climatic Regionalisation of Continental Chile. J. Maps 2017, 13, 66–73. [Google Scholar] [CrossRef]
- Recalde, M.; Peralta, A.; Oliveras, L.; Tirado-Herrero, S. Structural Energy Poverty Vulnerability and Excess Winter Mortality in the European Union: Exploring the Association between Structural Determinants and Health. Energy Policy 2019, 133, 110869. [Google Scholar] [CrossRef]
- Martinez-Soto, A.; Jentsch, M.F. Quantifizierung der langfristigen Entwicklung des Nutzungsgrades von Anlagen und Geräten im Wohnungssektor in Deutschland und Bestimmung zukünftiger Energieeinsparpotenziale im Hinblick auf die Klimaschutz-ziele der Bundesregierung. In Proceedings of the Bauphysiktage Kaiserslautern 2015, Kaiserslautern, Germany, 21–22 October 2015; pp. 137–142. [Google Scholar]
- Encinas, F.; Truffello, R.; Aguirre-Nuñez, C.; Puig, I.; Vergara-Perucich, F.; Freed, C.; Rodríguez, B. Mapping Energy Poverty: How Much Impact Do Socioeconomic, Urban and Climatic Variables Have at a Territorial Scale? Land 2022, 11, 1449. [Google Scholar] [CrossRef]
- Mutani, G.; Alehasin, M.; Yang, H.; Zhang, X.; Felmer, G. Urban Building Energy Modeling to Support Climate-Sensitive Planning in the Suburban Areas of Santiago de Chile. Buildings 2024, 14, 185. [Google Scholar] [CrossRef]
- Villalobos, C.; Chávez, C.; Uribe, A. Energy Poverty Measures and the Identification of the Energy Poor: A Comparison between the Utilitarian and Capability-Based Approaches in Chile. Energy Policy 2021, 152, 112146. [Google Scholar] [CrossRef]
- Martinez-Soto, A.; Jimenez-Gallardo, C.; Villarroel-Lopez, A.; Reyes-Riveros, A.; Höhl, J. Toward Sustainable Indoor Environments: Assessing the Impact of Thermal Insulation Measures on Air Quality in Buildings—A Case Study in Temuco, Chile. Sustainability 2024, 16, 547. [Google Scholar] [CrossRef]
- Aristondo, O.; Onaindia, E. Inequality of Energy Poverty between Groups in Spain. Energy 2018, 153, 431–442. [Google Scholar] [CrossRef]
- Reicks, M.; Kocher, M.; Reeder, J. Impact of Cooking and Home Food Preparation Interventions Among Adults: A Systematic Review (2011–2016). J. Nutr. Educ. Behav. 2018, 50, 148–172.e1. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, M. Energy Efficiency, the Overlooked Climate Emergency Solution. Ekon. Polit. 2020, 2020, 48–67. [Google Scholar] [CrossRef]
- Ruiz-Rivas, U.; Tirado-Herrero, S.; Castaño-Rosa, R.; Martínez-Crespo, J. Disconnected, yet in the Spotlight: Emergency Research on Extreme Energy Poverty in the Cañada Real Informal Settlement, Spain. Energy Res. Soc. Sci. 2023, 102, 103182. [Google Scholar] [CrossRef]
- Tvinnereim, E.; Liu, X.; Jamelske, E.M. Public Perceptions of Air Pollution and Climate Change: Different Manifestations, Similar Causes, and Concerns. Clim. Change 2017, 140, 399–412. [Google Scholar] [CrossRef]
- Vurro, G.; Santamaria, V.; Chiarantoni, C.; Fiorito, F. Climate Change Impact on Energy Poverty and Energy Efficiency in the Public Housing Building Stock of Bari, Italy. Climate 2022, 10, 55. [Google Scholar] [CrossRef]
- Ehsanullah, S.; Tran, Q.H.; Sadiq, M.; Bashir, S.; Mohsin, M.; Iram, R. How Energy Insecurity Leads to Energy Poverty? Do Environmental Consideration and Climate Change Concerns Matters. Environ. Sci. Pollut. Res. 2021, 28, 55041–55052. [Google Scholar] [CrossRef]
- Haddad, S.; Paolini, R.; Ulpiani, G.; Synnefa, A.; Hatvani-Kovacs, G.; Garshasbi, S.; Fox, J.; Vasilakopoulou, K.; Nield, L.; Santamouris, M. Holistic Approach to Assess Co-Benefits of Local Climate Mitigation in a Hot Humid Region of Australia. Sci. Rep. 2020, 10, 14216. [Google Scholar] [CrossRef]
- Liu, S.; Kwok, Y.T.; Lau, K.K.L.; Ouyang, W.; Ng, E. Effectiveness of Passive Design Strategies in Responding to Future Climate Change for Residential Buildings in Hot and Humid Hong Kong. Energy Build. 2020, 228, 110469. [Google Scholar] [CrossRef]
- Zeleňáková, M.; Labant, S.; Zvijáková, L.; Weiss, E.; Čepelová, H.; Weiss, R.; Fialová, J.; Minďaš, J. Methodology for Environmental Assessment of Proposed Activity Using Risk Analysis. Environ. Impact Assess. Rev. 2020, 80, 106333. [Google Scholar] [CrossRef]
- Primc, K.; Dominko, M.; Slabe-Erker, R. 30 Years of Energy and Fuel Poverty Research: A Retrospective Analysis and Future Trends. J. Clean. Prod. 2021, 301, 127003. [Google Scholar] [CrossRef]
- INE. Migración Interna en Chile; INE: Santiago, Chile, 2017. [Google Scholar]
- Bouzarovski, S.; Simcock, N. Spatializing Energy Justice. Energy Policy 2017, 107, 640–648. [Google Scholar] [CrossRef]
- Bouzarovski, S.; Petrova, S.; Sarlamanov, R. Energy Poverty Policies in the EU: A Critical Perspective. Energy Policy 2012, 49, 76–82. [Google Scholar] [CrossRef]
- Montenegro, E.R.; Palavecino, M.A. Impacto del Plan de Prevención y Descontaminación Atmosférica Sobre la Contaminación de Santiago. RIAT Rev. Interam. Medioambiente Tur. 2011, 7, 10–17. [Google Scholar]
- Acuña, H.; Easton, P.; Ramos, C.; Torres, C. El Sector de la Construcción Ante el Desafío Climático Global; Cámara Chilena de la Construcción: Las Condes, Santiago, 2019; Volume 45, Available online: https://catalogo.extension.cchc.cl/documentos/documentos/44024-2.pdf (accessed on 16 May 2024).
- Minsterio de Desarrollo Social Sintesis de Resultados, Casen 2017. Ministerio de Desarrollo Social y Familia, 2017. Available online: https://www.dipres.gob.cl/597/w3-multipropertyvalues-14837-23712.html (accessed on 16 May 2024).
- Sanhueza, C. Casen 2009. Obs. Econ. 2010, 43, 4–6. [Google Scholar] [CrossRef]
- Park, K.B. A Study on the Small-Scale Housing Improvement. J. Archit. Inst. Korea 2023, 39, 87–94. [Google Scholar] [CrossRef]
- Thomson, H.; Thomas, S.; Sellstrom, E.; Petticrew, M. Housing Improvements for Health and Associated Socio-Economic Outcomes. Cochrane Database Syst. Rev. 2013, 28, CD008657. [Google Scholar] [CrossRef]
- Castaño-Rosa, R.; Sherriff, G.; Thomson, H.; Guzmán, J.S.; Marrero, M. Transferring the Index of Vulnerable Homes: Application at the Local-Scale in England to Assess Fuel Poverty Vulnerability. Energy Build. 2019, 203, 109458. [Google Scholar] [CrossRef]
- Gouveia, J.P.; Palma, P.; Simoes, S.G. Energy Poverty Vulnerability Index: A Multidimensional Tool to Identify Hotspots for Local Action. Energy Rep. 2019, 5, 187–201. [Google Scholar] [CrossRef]
- Best, R.; Sinha, K. Fuel Poverty Policy: Go Big or Go Home Insulation. Energy Econ. 2021, 97, 105195. [Google Scholar] [CrossRef]
- Calvo, R.; Álamos, N.; Huneeus, N.; O’Ryan, R. Energy Poverty Effects on Policy-Based PM2.5 Emissions Mitigation in Southern and Central Chile. Energy Policy 2022, 161, 112762. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014 Synthesis Report Summary Chapter for Policymakers; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Brolan, C.E. Looking Back—Australia’s Sustainable Development and Climate Change Policy Agendas. Sustainability 2023, 15, 5688. [Google Scholar] [CrossRef]
- Mohamad Taghvaee, V.; Assari Arani, A.; Nodehi, M.; Khodaparast Shirazi, J.; Agheli, L.; Neshat Ghojogh, H.M.; Salehnia, N.; Mirzaee, A.; Taheri, S.; Mohammadi Saber, R.; et al. Sustainable Development Goals: Transportation, Health and Public Policy. Rev. Econ. Political Sci. 2023, 8, 134–161. [Google Scholar] [CrossRef]
- Bienvenido-Huertas, D.; Sánchez-García, D.; Marín-García, D.; Rubio-Bellido, C. Is the Analysis Scale Crucial to Assess Energy Poverty? Analysis of Yearly and Monthly Assessments Using the 2 M Indicator in the South of Spain. Energy Build. 2023, 285, 112889. [Google Scholar] [CrossRef]
- Sánchez-Torija, J.G.; Nieto, M.A.F. Energy Consumption of Buildings and Urban Energy Poverty Assessment: Case Study of a Madrid Neighbourhood. Energy Effic. 2022, 15, 53. [Google Scholar] [CrossRef]
- Cedano, K.G.; Robles-Bonilla, T.; Santillán, O.S.; Martínez, M. Assessing Energy Poverty in Urban Regions of Mexico: The Role of Thermal Comfort and Bioclimatic Context. Sustainability 2021, 13, 10646. [Google Scholar] [CrossRef]
- März, S. Assessing the Fuel Poverty Vulnerability of Urban Neighbourhoods Using a Spatial Multi-Criteria Decision Analysis for the German City of Oberhausen. Renew. Sustain. Energy Rev. 2018, 82, 1701–1711. [Google Scholar] [CrossRef]
- Rani, E.; Kaushik, S.; Goyat, B. Poverty Assessment of Rural Households through Multidimensional Indicators in Haryana. Ann. Agri Bio Res. 2015, 20, 121–130. [Google Scholar]
- Cortes, A.; Rismanchi, B. Residential Energy Efficiency in Chile. Policies to Reduce Firewood Dependency. Estoa 2020, 9, 86–106. [Google Scholar] [CrossRef]
- Pérez-Fargallo, A.; Marín-Restrepo, L.; Contreras-Espinoza, S.; Bienvenido-Huertas, D. Do We Need Complex and Multidimensional Indicators to Assess Energy Poverty? The Case of the Chilean Indicator. Energy Build. 2023, 295, 113314. [Google Scholar] [CrossRef]
- Cortés, A.; Amigo, C. Energy Culture and the Dynamics of Energy Poverty in South Chile: A Blind Spot for Decontamination Energy Efficiency Policies. People Place Policy Online 2022, 16. [Google Scholar] [CrossRef]
Factor | Driving Forces | Measurable Drivers | Data Available | Source |
---|---|---|---|---|
Access | Poor availability of energy carriers appropriate to meet household needs. | Choice and availability of carriers | Access fuel type of each region and climate zone Power supply reliability SAIDI | [3,26] |
Affordability | High ratio between the cost of fuels and household incomes, including the role of tax systems or assistance schemes. Inability to invest in the construction of new energy infrastructures. | Household income Energy costs—actual and theoretical | Average household income Percentage of unemployment Cost for each fuel type | [3,27,28] |
Flexibility | Inability to move to a form of energy service provision that is appropriate to household needs. | Tenure type | Tenure type of equipment to heating, hot water provision, cooking, lighting and appliances | [29] |
Energy efficiency | Disproportionately high loss of useful energy during energy conversions in the home. | Energy efficiency rating of built fabric and equipment | Efficiency of the equipment | [29] |
Needs | Mismatch between household energy requirements and available energy services for social, cultural, economic or health reasons. | Household type Additional energy needs | Climate zone and percentage of household with heating/cooling Percentage of household with refrigeration and hot water system System of cooking | [29,30] |
Thermal Zone | Space Heating (% Use) | Water Heating | Cooking | Lighting and Appliances |
---|---|---|---|---|
Zone 1 | No system (87%)/Gas (5.5%), Electricity (6.5%) | No system (31%)/Wood (6%), gas (52%), electricity (3%), kerosene (8%) | Wood (8%), gas (92%) | Electricity (100%) |
Zone 2 | No system (34%)/Wood (11%), gas (34), electricity (20%), kerosene (1%) | No system (14%)/Wood (11%), gas (68%), electricity (6%), kerosene (1%) | Wood (13%), gas (87%) | Electricity (100%) |
Zone 3 | No system (12%)/Wood (13%), gas (41%), electricity (30%), kerosene (4%) | No system (8%)/Wood (9%), gas (68%), electricity (11%), kerosene (3%) | Wood (5%), gas (32%), electricity (63%) | Electricity (100%) |
Zone 4 | No system (6%)/Wood (61%), gas (16), electricity (15%), kerosene (2%) | No system (23%)/Wood (9%), gas (17%), electricity (48%), kerosene (3%) | Wood (49%), gas (51%) | Electricity (100%) |
Zone 5 | Wood (86%), gas (7%), electricity (4%), kerosene (1%) | No system (49%)/Wood (36%), gas (5%), electricity (9%), | Wood (86%), gas (14%) | Electricity (100%) |
Zone 6 | Wood (90%), gas (4%), electricity (2%), kerosene (1%) | No system (37%)/Wood (52%), gas (5%), electricity (5%), | Wood (90%), gas (10%) | Electricity (100%) |
Zone 7 | Wood (31%), gas (66%), electricity (1%) | No system (26%)/Wood (43%), gas (28%), electricity (3%), kerosene (1%) | Wood (63%), gas (37%) | Electricity (100%) |
Risk Level | Factor | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Access | AP | Affordability | AP | Flexibility | AP | Energy Efficiency | AP | Needs | AP | Combined | AP | |
Very low risk | 0% | 0 | 0% | 0 | 44.88% | 7,764,240 | 0% | 0 | 26.64% | 4,608,720 | 44.90% | 7,767,700 |
Low risk | 58.42% | 10,106,660 | 5.35% | 925,550 | 23.85% | 4,126,050 | 5.20% | 899,600 | 73.36% | 12,691,280 | 20.90% | 3,615,700 |
Moderate risk | 25.17% | 4,354,410 | 63.08% | 10,912,840 | 14.06% | 2,432,380 | 56.65% | 9,800,450 | 0% | 0 | 10.30% | 1,781,900 |
High risk | 14.11% | 2,441,030 | 31.57% | 5,461,610 | 17.21% | 2,977,330 | 35.95% | 6,219,350 | 0% | 0 | 18.50% | 3,200,500 |
Very high risk | 2.30% | 397,900 | 0% | 0 | 0% | 0 | 2.19% | 378,870 | 0% | 0 | 5.40% | 934,200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez-Soto, A.; Nix, E.; Saldias-Lagos, Y.; Sanhueza-Catalán, D.I. Multiple Indicator Vulnerability to Energy Poverty: Assessing Spatial Variability Across Chile. World 2024, 5, 1404-1420. https://doi.org/10.3390/world5040071
Martinez-Soto A, Nix E, Saldias-Lagos Y, Sanhueza-Catalán DI. Multiple Indicator Vulnerability to Energy Poverty: Assessing Spatial Variability Across Chile. World. 2024; 5(4):1404-1420. https://doi.org/10.3390/world5040071
Chicago/Turabian StyleMartinez-Soto, Aner, Emily Nix, Yarela Saldias-Lagos, and Daniel Ignacio Sanhueza-Catalán. 2024. "Multiple Indicator Vulnerability to Energy Poverty: Assessing Spatial Variability Across Chile" World 5, no. 4: 1404-1420. https://doi.org/10.3390/world5040071
APA StyleMartinez-Soto, A., Nix, E., Saldias-Lagos, Y., & Sanhueza-Catalán, D. I. (2024). Multiple Indicator Vulnerability to Energy Poverty: Assessing Spatial Variability Across Chile. World, 5(4), 1404-1420. https://doi.org/10.3390/world5040071