Data-Driven Strategic Approaches to Road Safety Management: Truth and Lies of Official Statistics
Abstract
:1. Introduction
2. Design of This Research
3. Review of Strategic Approaches to Road Safety Management and Road Safety Indicators
3.1. Strategic Approaches to Road Safety Management
3.2. Indicators of Road Safety (RS)
- ND—is the number of deaths in road traffic accidents (RTA);
- P—is the population.
- NVh—is the fleet of vehicles.
3.3. Official Data on Road Safety Indicators
4. Statistical Errors
4.1. Types of Errors
4.2. Principal Approaches to Assessing the Quality of Data on Road Safety
5. Causes and Level of Incorrect Statistics on Road Traffic Accidents
- N—is the total road traffic deaths (of a country per year);
- C—is a constant term;
- Xi—is a set of explanatory covariates;
- Pop—is the population of the country per year;
- ε—is the negative binomial error term.
- (a)
- Road accident databases;
- (b)
- Travel/mobility survey results;
- (c)
- Other exposure databases (e.g., vehicle fleet).
6. Investigation of the Reliability of State Statistics on Road Safety
6.1. Assessing the Quality of Data on Road Safety in the Russian Federation
6.2. Assessing the Quality of Data on Road Safety in African Countries
7. Expert Opinions on the Issue of the Correctness of Statistical Data on Road Safety in Different Countries of the World
8. Data-Driven Strategic Approaches to Road Safety Management: How Can Significant Progress Be Made in Improving Road Safety? The Case of Russia
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keating, C.B.; Fernandez, A.A.; Jacobs, D.A.; Kauffmann, P. A methodology for analysis of complex sociotechnical processes. Bus. Process Manag. J. 2001, 7, 33–50. [Google Scholar] [CrossRef]
- Bhatt, G.D. Knowledge management in organizations: Examining the interaction between technologies, techniques, and people. J. Knowl. Manag. 2001, 5, 68–75. [Google Scholar] [CrossRef]
- Gupta, S.; Mateu, J.; Degbelo, A.; Pebesma, E. Quality of life, big data and the power of statistics. Stat. Probab. Lett. 2018, 136, 101–104. [Google Scholar] [CrossRef]
- Kinyondo, A.A.; Pelizzo, R. Poor Quality of Data in Africa: What Are the Issues? Politics Policy 2018, 46, 851–877. [Google Scholar] [CrossRef]
- Asongu, S.A.; Nwachukwu, J.C. Law, Politics, and the Quality of Government in Africa. Politics Policy 2016, 44, 916–944. [Google Scholar] [CrossRef]
- Pyankova, A.I.; Fattakhov, T.A.; Bakanov, K.S.; Yurasova, E.D. Mortality from road traffic accidents in Moscow: Analysis of related police data and state statistical accounting of the deceased. Demogr. Rev. 2019, 6, 151–176. (In Russian) [Google Scholar]
- Melnikova, I.S.; Shkatova, E.Y. The discrepancy of statistics on the number of road traffic deaths and injured according to official documents of various departments. RUDN J. Med. 2019, 23, 211–218. [Google Scholar] [CrossRef]
- Brown, A.W.; Kaiser, K.A.; Allison, D.B. Issues with data and analyses: Errors, underlying themes, and potential solutions. Proc. Natl. Acad. Sci. USA 2018, 115, 2563–2570. [Google Scholar] [CrossRef]
- Gadbury, G.L.; Allison, D.B. Inappropriate Fiddling with Statistical Analyses to Obtain a Desirable P-value: Tests to Detect its Presence in Published Literature. PLoS ONE 2012, 7, e46363. [Google Scholar] [CrossRef] [PubMed]
- Chong, D.; Druckman, J.N. A Theory of Framing and Opinion Formation in Competitive Elite Environments. J. Commun. 2007, 57, 99–118. [Google Scholar] [CrossRef]
- Ecker, U.K.H.; Lewandowsky, S.; Swire, B.; Chang, D. Correcting false information in memory: Manipulating the strength of misinformation encoding and its retraction. Psychon. Bull. Rev. 2011, 18, 570–578. [Google Scholar] [CrossRef] [PubMed]
- Blinkin, M.Y.; Reshetova, E.M. Road Safety: The History of the Issue, International Experience, Basic Institutions; Publishing House of the Higher School of Economics: Moscow, Russia, 2013; 240p. (In Russian) [Google Scholar]
- Road Safety Management Capacity Review. 2018. Available online: https://road-safety.transport.ec.europa.eu/system/files/2021-07/road_safety_management.pdf (accessed on 20 August 2024).
- Koornstra, M.; Lynam, D.; Nilsson, G.; Noordzij, P.; Petterson, H.-E.; Wegman, F.; Wouters, P. SUNflower: A Comparative Study of the Development of Road Safety in Sweden, the United Kingdom, and the Netherlands; SWOV: Leidschendam, The Netherlands, 2002. [Google Scholar]
- Haddon, W. The changing approach to the epidemiology, prevention, and amelioration of trauma: The transition to approaches etiologically rather than descriptively based. Am. J. Public Health Nations Health 1968, 58, 1431–1438. [Google Scholar] [CrossRef] [PubMed]
- Bliss, T. Implementing the Recommendations of the World Report on Road Traffic Injury Prevention. In Transport Notes Series; № TRN 1; World Bank Group: Washington, DC, USA, 2004; Available online: http://documents.worldbank.org/curated/en/751991468782171868/Implementing-the-recommendations-of-the-World-Report-on-Road-Traffic-Injury-Prevention (accessed on 25 August 2024).
- Wegman, F. Sharing responsibility: Central and local government partnership. In Proceedings of the Road Safety Conference of the European Transport, Brussels, Belgium, 12 September 2000; Available online: https://swov.nl/system/files/publication-downloads/D-2001-07.pdf (accessed on 25 August 2024).
- Bliss, T.; Breen, J. Implementing the Recommendations of the World Report on Road Traffic Injury Prevention Country Guidelines for the Conduct of Road Safety Management Capacity Reviews and the Related Specification of Lead Agency Reforms, Investment Strategies and Safety Programs and Projects; World Bank Group: Washington, DC, USA, 2009; Available online: https://www.aprso.org/sites/default/files/document/2020-07/country-guidelines-conduct-road-safety-management.pdf (accessed on 25 August 2024).
- WHO. Available online: https://www.who.int/ (accessed on 10 June 2024).
- The International Transport Forum. Available online: https://www.itf-oecd.org/ (accessed on 29 May 2024).
- Smeed, R.J. Some Statistical Aspects of Road Safety Research. J. R. Stat. Soc. Ser. A Gen. 1949, 112, 1–34. [Google Scholar] [CrossRef]
- Smeed, R.J. The usefulness of formulae in traffic engineering and road safety. Accid. Anal. Prev. 1972, 3, 303–312. [Google Scholar] [CrossRef]
- ITF. Road Safety Annual Report 2023; OECD Publishing: Paris, France, 2023; Available online: https://www.itf-oecd.org/road-safety-annual-report-2023 (accessed on 27 August 2024).
- Scientific Center of the State Road Safety Inspectorate of the Russian Federation 2023. Available online: https://нцбдд.мвд.рф/ (accessed on 3 July 2023).
- Ahmed, A.; Sadullah, A.F.M.; Yahya, A.S. Errors in accident data, its types, causes and methods of rectification-analysis of the literature. Accid. Anal. Prev. 2019, 130, 3–21. [Google Scholar] [CrossRef]
- Olszewski, P.; Osińska, B.; Szagała, P.; Skoczyński, P.; Zielińska, A. Problems with assessing safety of vulnerable road users based on traffic accidents data. Arch. Civ. Eng. 2016, 62, 149–168. [Google Scholar] [CrossRef]
- Derriks, H.M.; Mak, P.M. 1994 IRTAD Special Report on “Underreporting of Road Traffic Accidents Reported by the Police at the International Level”; OECD Publishing: Paris, France, 2007. [Google Scholar]
- Derriks, H.M.; Mak, P.M. Underreporting of road traffic casualties. In IRTAD Special Report; OECD Publishing: Paris, France, 2007; Available online: https://www.itf-oecd.org/sites/default/files/docs/repndl2007.pdf (accessed on 16 July 2024).
- Fife, D. Matching fatal accident reporting system cases with National Center for Health Statistics motor vehicle deaths. Accid. Anal. Prev. 1989, 21, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.E. Development of a statewide trauma registry using multiple linked sources of data. In Proceedings of the Symposium on Computer Applications in Medical Care; American Medical Informatics Association: Bethesda, MD, USA, 1993; pp. 654–658. [Google Scholar]
- Rosman, D.L.; Rnuiman, M.W. A comparison of hospital and police road injury data. Accid. Anal. Prev. 1994, 26, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.E. Practical introduction to record linkage for injury research. Inj. Prev. 2004, 10, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Boufous, S.; Finch, C. Record linkage: A tool for injury prevention research. Int. J. Inj. Control. Saf. Promot. 2006, 13, 267–269. [Google Scholar] [CrossRef]
- Petridou, E.T.; Yannis, G.; Terzidis, A.; Dessypris, N.; Germeni, E.; Evgenikos, P.; Tselenti, N.; Chaziris, A.; Skalkidis, I. Linking emergency medical department and road traffic police casualty data: A tool in assessing the burden of injuries in less resourced countries. Traffic Inj. Prev. 2009, 10, 37–43. [Google Scholar] [CrossRef]
- WHO. Global Status Report on Road Safety 2015; WHO: Geneva, Switzerland, 2015; Available online: https://apps.who.int/iris/handle/10665/189242 (accessed on 5 June 2024).
- The International Statistical Classification of Diseases and Related Health Problems. 10th Revision (ICD-10). Available online: https://icd.who.int/browse10/2019/en (accessed on 16 June 2024).
- Chung, Y.; Chang, I. How accurate is accident data in road safety research? An application of vehicle black box data regarding pedestrian-to-taxi accidents in Korea. Accid. Anal. Prev. 2015, 84, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kudryavtsev, A.V.; Kleshchinov, N.; Ermolina, M.; Lund, J.; Grjibovski, A.M.; Nilssen, O.; Ytterstad, B. Road traffic fatalities in Arkhangelsk, Russia in 2005–2010: Reliability of police and healthcare data. Accid. Anal. Prev. 2013, 53, 46–54. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, G.M.; Gabbe, B.; Cameron, P.A. Trauma registry methodology: A survey of trauma registry custodians to determine current approaches. Injury 2015, 46, 201–206. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Status Report on Road Safety 2018; WHO: Geneva, Switzerland, 2018; Available online: https://www.who.int/publications/i/item/9789241565684 (accessed on 28 August 2024).
- Global Status Report on Road Safety 2023. Road Safety Russian Federation Country Profile. Available online: https://cdn.who.int/media/docs/default-source/country-profiles/road-safety/road-safety-2023-rus.pdf?sfvrsn=3efae2d7_3&download=true (accessed on 29 August 2024).
- Order of the Ministry of Health of the Russian Federation № 18 Dated 26.01.09 «On Approval of Statistical Tools for Recording Victims of Road Accidents». (In Russian). Available online: https://minzdrav.gov.ru/documents/7683-prikaz-minzdravsotsrazvitiya-rossii-18-ot-26-yanvarya-2009-g (accessed on 9 July 2024).
- Hilbe, J.M. Negative Binomial Regression; Cambridge University Press: Cambridge, UK, 2007; 263p, Available online: http://nzdr.ru/data/media/biblio/kolxoz/M/MV/MVsa/Hilbe%20J.M.%20Negative%20Binomial%20Regression%20(CUP,%202007)(ISBN%209780521857727)(O)(263s)_MVsa_.pdf?ysclid=lkq9gjqlwg287891004 (accessed on 18 July 2024).
- Law, T.H.; Nolan, R.B.; Evans, A.W. The source of the Kuznets relationship between road fatalities and economic growth. J. Transp. Geogr. 2011, 19, 355–365. [Google Scholar] [CrossRef]
- WHO. Global Status Report on Road Safety 2023; WHO: Geneva, Switzerland, 2023; Available online: https://cdn.who.int/media/docs/default-source/country-profiles/road-safety/road-safety-2023 (accessed on 29 August 2024).
- WHO. Official Press Release Dated 4.08.2020; WHO: Geneva, Switzerland, 2020; Available online: https://apps.who.int/iris/bitstream/handle/10665/333642/WHO-2019-nCoV-Sci_Brief-Mortality-2020.1-rus.pdf?sequence=5&isAllowed=y (accessed on 11 May 2024).
- Mavromatis, S.; Laiou, A.; Yannis, G.; Tripodi, A.; Persia, L. Assessing Road Safety Data Collection Systems and Definitions in Africa. Advances in Transportation. XLV—July. 2018; pp. 93–106. Available online: https://www.nrso.ntua.gr/geyannis/wp-content/uploads/geyannis-pc271.pdf (accessed on 17 July 2023).
- Road Safety Strategy in the Russian Federation for 2018–2024. Available online: http://static.government.ru/media/files/g6BXGgDI4fCEiD4xDdJUwlxudPATBC12.pdf (accessed on 28 June 2023).
- Petrov, A.; Evtyukov, S. Analysis of possibilities for achieving targets of Russian Road Safety Strategy. Transp. Res. Procedia 2020, 50, 518–527. [Google Scholar] [CrossRef]
- Petrov, A. Dynamics and Forecast of Road Traffic Safety Management in Russia until 2030. Stud. Russ. Econ. Dev. 2024, 35, 716–724. [Google Scholar] [CrossRef]
- Petrov, A.; Kolesov, V. Entropy and risks in regional road traffic safety systems. Transp. Res. Procedia 2020, 50, 262–272. [Google Scholar] [CrossRef]
- Petrov, A.I.; Evtyukov, S.A.; Kolesov, V.I.; Petrova, D.A. Informational—Entropic Analysis of Dynamics of Road Safety Orderliness. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 582, p. 012021. [Google Scholar] [CrossRef]
- Vaisman, D.S.; Dubrovina, E.V.; Redko, A.N. Information support of research on mortality problems in Russia. Public Health Dis. Prev. 2006, 6, 31–38. (In Russian) [Google Scholar]
- Semenova, V.G.; Gavrilova, N.S.; Evdokushkina, G.N.; Gavrilov, L.A. The quality of medical and statistical data as a problem of modern Russian healthcare. Public Health Dis. Prev. 2004, 2, 11–19. (In Russian) [Google Scholar]
- Gavrilova, N.S.; Semyonova, V.G.; Dubrovina, E.V.; Evdokushkina, G.N.; Ivanova, A.E.; Gavrilov, L.A. Russian Mortality Crisis and the Quality of Vital Statistics. Popul. Res. Policy Rev. 2008, 27, 551–574. [Google Scholar] [CrossRef]
- Ivanova, A.E.; Sabgaida, T.P.; Semenova, V.G.; Zaporozhchenko, V.G.; Zemlyanova, E.V.; Nikitina, S.Y. Factors distorting the structure of causes of mortality of the able-bodied population of Russia. Soc. Asp. Public Health 2013, 4, 1–36. (In Russian) [Google Scholar]
- Ivanova, A.E.; Semenova, V.G. New phenomena of Russian mortality. Population 2004, 3, 85–92. (In Russian) [Google Scholar]
- Ministry of Internal Affairs of the Russian Federation. Available online: https://мвд.рф/?%EF=&ysclid=lk8bfhp3cd534034891 (accessed on 6 July 2024).
- SSATP. Africa Status Report on Road Safety 2020; SSATP: Kigali, Rwanda, 2020; Available online: https://www.ssatp.org/publication/africa-status-report-road-safety-2020 (accessed on 16 April 2024).
- Adeloye, D.; Thompson, J.Y.; Akanbi, M.A.; Azuh, D.; Samuel, V.; Omoregbe, N.; Ayo, C.K. The burden of road traffic crashes, injuries and deaths in Africa: A systematic review and meta-analysis. Bull. World Health Organ. 2016, 94, 510–521A. [Google Scholar] [CrossRef]
- Elvik, R. Democracy, governance, and road safety. Accid. Anal. Prev. 2021, 15, 106067. [Google Scholar] [CrossRef] [PubMed]
- Larsson, P.; Dekker, S.W.A.; Tingvall, C. The need for a systems theory approach to road safety. Saf. Sci. 2010, 48, 1167–1174. [Google Scholar] [CrossRef]
- WHO. Estimated Number of Road Traffic Deaths Dated 2019; WHO: Geneva, Switzerland, 2021; Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/estimated-number-of-road-traffic-deaths (accessed on 8 May 2024).
- Baker, A. Mathematical Explanation in Science. Br. J. Philos. Sci. 2009, 60, 611–633. [Google Scholar] [CrossRef]
- United Nation (UN). World Population Prospects 2019 Data Booklet. Available online: https://www.un.org/development/desa/pd/content/world-population-prospects-2019-data-booklet (accessed on 5 May 2024).
- Elvik, R.; Mysen, A.B. Incomplete accident reporting: Meta-analysis of studies made in 13 countries. Transp. Res. Rec. 1999, 1965, 133–140. [Google Scholar] [CrossRef]
- Paixão, L.M.M.M.; Gontijo, E.D.; Mingoti, S.A.; Costa, D.A.S.; Friche, A.A.L.; Caiaffa, W.T. Urban road traffic deaths: Data linkage and identification of high-risk population sub-groups|Óbitos no trânsito urbano: Qualificação da informação e caracterização de grupos vulneráveis. Cad. De Saúde Pública 2015, 31, S92–S106. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.; Watson, B.; Vallmuur, K. Estimating under-reporting of road crash injuries to police using multiple linked data collections. Accid. Anal. Prev. 2015, 83, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Giorgi Rossi, P.; Farchi, S.; Chini, F.; Camilloni, L.; Borgia, P.; Guasticchi, G. Road traffic injuries in Lazio, Italy: A descriptive analysis from an emergency department-based surveillance system. Ann. Emerg. Med. 2005, 46, 152–157. [Google Scholar] [CrossRef]
- Ma, S.; Li, Q.; Zhou, M.; Duan, L.; Bishai, D. Road traffic injury in China: A review of national data sources. Traffic Inj. Prev. 2012, 13, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Medina, Y.R.; Espitia-Hardeman, V.; Dellinger, A.M.; Loayza, M.; Leiva, R.; Cisneros, G. A road traffic injury surveillance system using combined data sources in Peru. Rev. Panam Salud Publica 2011, 29, 191–197. Available online: https://iris.paho.org/bitstream/handle/10665.2/9553/07.pdf?sequence=1 (accessed on 17 July 2023).
- Russian State Automobile Inspection of the Russian Federation. Indicators of Road Safety. Available online: http://stat.gibdd.ru/ (accessed on 6 September 2024).
Aspects | Road Safety Paradigms | ||||
---|---|---|---|---|---|
First | Second | Third | Fourth | Fifth | |
Level of motorization in the United States, vehicles/ 1000 people (years) | 0.1…180 (1900–1925) | 181…480 (1925–1965) | 481…690 (1965–1980) | 690…840 (1980–2010) | >841 (2010–2024) |
Level of motorization in European countries, vehicles/ 1000 people (years) | 0.1…40 (1900–1935) | 41…200 (1935–1970) | 201…290 (1970–1985) | 291…550 (1985–2010) | >551 (2010–2024) |
General characteristics of the data used for accidents analysis | Basic statistics used to answer the question | Multidimensional data | Multidimensional data | ||
«what»? | «why»? | «how»? | |||
Basic scientific practices | Law enforcement | Automotive and road engineering disciplines | Theory of traffic management | Sociology of behavior and system analysis | Disciplines related to the use of artificial intelligence |
African Country | Road Traffic Death—2016 | ||
---|---|---|---|
Reported Number of Road Traffic Deaths | Modelled Number of Road Traffic Deaths | ||
Point Estimate | 95% Confidence Interval | ||
Algeria | No data | No data | No data |
Angola | 2845 | 6797 | 5304–8289 |
Benin | 637 | 2986 | 2458–3514 |
Botswana | 450 | 535 | 465–606 |
Burkina Faso | 878 | 5686 | 499–6872 |
Burundi | 112 | 3651 | 2926–4376 |
Cabo Verde | 41 | 135 | 118–152 |
Cameroon | 1879 | 7066 | 5670–8463 |
Central African Republic | 193 | 1546 | 1209–1884 |
… | … | … | … |
Zimbabwe | 1721 | 5601 | 4602–6599 |
African Country | Road Traffic Death—2021 | ||
---|---|---|---|
Reported Number of Road Traffic Deaths | Modelled Number of Road Traffic Deaths | ||
Point Estimate | 95% Confidence Interval | ||
Algeria | 3322 | 8106 | 7119–9094 |
Angola | No data | No data | No data |
Benin | 1124 | 3225 | 2645–3804 |
Botswana | 413 | 426 | 376–475 |
Burkina Faso | 1272 | 6137 | 5032–7242 |
Burundi | 592 | 1546 | 1236–1857 |
Cabo Verde | 39 | 97 | 86–107 |
Cameroon | 930 | 2870 | 2322–3419 |
Central African Republic | 1370 | 1412 | 1129–1696 |
… | … | … | … |
Zimbabwe | 1902 | 4782 | 3874–5691 |
African Country | Road Traffic Deaths—2021 | ||
---|---|---|---|
Reported Number of Road Traffic Deaths | Estimated Modeled Number of Road Traffic Deaths | Discrepancy Between Official and Model Data, % | |
Algeria | 3322 | 8106 | 144 |
Angola | No data | No data | - |
Benin | 1124 | 3225 | 187 |
Botswana | 413 | 426 | 3 |
Burkina Faso | 1272 | 6137 | 382 |
Burundi | 592 | 1546 | 161 |
Cabo Verde | 39 | 97 | 149 |
Cameroon | 930 | 2870 | 209 |
Central African Republic | 1370 | 1412 | 3 |
Chad | 254 | 4533 | 1685 |
Comoros | 32 | 238 | 644 |
Congo | 223 | 488 | 119 |
Côte d’Ivoire | 1614 | 5670 | 251 |
DR of the Congo | 3364 | 15,615 | 364 |
Equatorial Guinea | No data | No data | - |
Eritrea | 100 | 640 | 540 |
Eswatini | 229 | 295 | 29 |
Ethiopia | 3971 | 21,258 | 435 |
Gabon | 89 | 293 | 229 |
Gambia | 200 | 582 | 191 |
Ghana | 2890 | 8494 | 194 |
Guinea | 682 | 5061 | 642 |
Guinea-Bissau | 100 | 629 | 529 |
Kenya | 4579 | 14,926 | 226 |
Lesotho | 282 | 492 | 74 |
Liberia | 232 | 794 | 242 |
Madagascar | 300 | 6512 | 2071 |
Malawi | 1444 | 4023 | 179 |
Mali | 736 | 4429 | 502 |
Mauritania | 99 | 438 | 342 |
Mauritius | 108 | 126 | 17 |
Mozambique | 944 | 6451 | 583 |
Namibia | 540 | 557 | 3 |
Niger | 1152 | 6278 | 445 |
Nigeria | 6205 | 36,722 | 492 |
Rwanda | 655 | 1563 | 139 |
Sao Tome and Principe | 25 | 26 | 4 |
Senegal | 877 | 3502 | 299 |
Seychelles | 7 | 7 | 0 |
Sierra Leone | 336 | 1165 | 247 |
South Africa | 12,541 | 14,528 | 16 |
South Sudan | 350 | 2500 | 614 |
Togo | 680 | 1961 | 188 |
Uganda | No data | No data | - |
United Republic of Tanzania | 1368 | 10,052 | 635 |
Zambia | 2163 | 3338 | 54 |
Zimbabwe | 1902 | 4782 | 151 |
Category of Those Killed in an RTA | Statistics by Years, % of the Total | ||||||||
---|---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | |
Pedestrians | 31.0 | 29.0 | 28.2 | 27.6 | 27.3 | 26.6 | 26.2 | 25.0 | 23.5 |
Others | 2.0 | 2.0 | 4.4 | 3.6 | 3.7 | 0.5 | 0.4 | 0.5 | 0.4 |
Russian Region | Рopulation Density, Persons/km2 | Statistics by Years, % Pedestrians of the Total Deaths per RTA | ||
---|---|---|---|---|
2021 | 2022 | 2023 | ||
Moscow Oblast (Region) | 193.8 | 29.3 | 31.3 | 30.6 |
Krasnodarskii krai | 77.1 | 31.1 | 26.3 | 25.9 |
Republic of Tuva | 2.0 | 21.4 | 22.2 | 20.5 |
Republic of Sakha (Yakutia) | 0.3 | 14.0 | 14.8 | 13.5 |
Country | Human Risk HR (2019), Deaths per 100 Thous. People | ||
---|---|---|---|
Female | All Population | Male | |
Algeria | 13.58 | 20.90 | 28.06 |
Angola | 18.16 | 26.13 | 34.28 |
Benin | 16.33 | 26.80 | 37.30 |
Botswana | 17.82 | 26.41 | 35.59 |
Burkina Faso | 21.25 | 31.02 | 40.80 |
Burundi | 21.42 | 35.46 | 49.74 |
Cabo Verde | 11.07 | 26.78 | 42.37 |
Cameroon | 12.47 | 30.18 | 47.88 |
Central African Republic | 23.66 | 37.72 | 52.02 |
Chad | 21.62 | 32.43 | 43.27 |
Comoros | 16.38 | 26.57 | 36.58 |
Congo | 21.39 | 29.70 | 38.04 |
Côte d’Ivoire | 14.61 | 24.12 | 33.45 |
DR of the Congo | 24.35 | 34.86 | 45.41 |
Equatorial Guinea | 16.50 | 26.17 | 35.70 |
Eritrea | 20.95 | 37.92 | 54.81 |
Eswatini | 13.17 | 33.47 | 54.59 |
Ethiopia | 16.16 | 28.16 | 40.15 |
Gabon | 12.08 | 23.86 | 35.21 |
Gambia | 15.64 | 29.62 | 43.77 |
Ghana | 11.22 | 25.67 | 39.72 |
Guinea | 20.42 | 29.66 | 39.56 |
Guinea-Bissau | 29.99 | 32.23 | 43.99 |
Kenya | 14.42 | 28.31 | 42.37 |
Lesotho | 13.72 | 31.92 | 50.64 |
Liberia | 24.93 | 38.90 | 52.72 |
Madagascar | 20.04 | 29.22 | 38.44 |
Malawi | 15.35 | 33.40 | 51.95 |
Mali | 16.35 | 22.71 | 29.05 |
Mauritania | 20.51 | 25.60 | 30.65 |
Mauritius | 3.49 | 12.23 | 21.19 |
Mozambique | 15.02 | 31.02 | 45.92 |
Namibia | 15.44 | 34.81 | 55.41 |
Niger | 17.37 | 25.51 | 33.57 |
Nigeria | 13.11 | 20.75 | 28.18 |
Rwanda | 16.14 | 29.45 | 43.22 |
Sao Tome and Principe | 12.30 | 27.90 | 43.48 |
Senegal | 13.00 | 23.51 | 34.56 |
Seychelles | 4.54 | 11.26 | 17.64 |
Sierra Leone | 22.98 | 33.04 | 43.14 |
South Africa | 9.87 | 22.22 | 34.94 |
South Sudan | 24.48 | 36.73 | 48.95 |
Togo | 17.84 | 28.65 | 39.58 |
Uganda | 13.28 | 29.39 | 45.99 |
United Republic of Tanzania | 19.07 | 31.12 | 43.20 |
Zambia | 10.31 | 20.46 | 30.81 |
Zimbabwe | 16.90 | 41.22 | 67.91 |
Estimated Human Risk HR, (2019) Deaths per 100 Thous. People | |||
---|---|---|---|
Data | The Best Example | The Worst Example | Mathematical Expectation M(HR) for All African Countries |
All Population | Seychelles 11.26 | Zimbabwe 41.22 | Africa in general 30.94 |
Male | Seychelles 17.64 | Zimbabwe 67.91 | Africa in general 44.63 |
Female | Seychelles 4.54 | Zimbabwe 16.90 | Africa in general 18.39 |
Country | Mid-Year Population, Thous. People [65] | Reported Deaths (2019), Deaths [63] | Calculated Value of the Indicator HR, Deaths/100 Thous. People | Calculated Value of the Indicator “Severity of an Accident” | Calculated Value of the Indicator “Deaths/Road Accident” |
---|---|---|---|---|---|
Benin | 11,801 | 810 | 6.86 | 15.77 | 0.255 |
Burkina Faso | 20,321 | 978 | 4.81 | No data | No data |
Cameroon | 25,876 | 1140 | 4.41 | No data | No data |
DR Congo | 86,791 | 266 | 0.31 | 8.25 | 1.502 |
Côte d’Ivoire | 25,717 | 1465 | 5.70 | 6.47 | 0.114 |
Ethiopia | 112,079 | 5118 | 4.57 | 99.73 | 0.330 |
Madagascar | 26,969 | 229 | 0.85 | 3.93 | 0.135 |
Morocco | 36,472 | 3622 | 9,93 | 2.37 | 0.035 |
Niger | 23,311 | 929 | 3.99 | 3.75 | 0.141 |
Nigeria | 200,964 | 5483 | 2.73 | 40.14 | 0.152 |
Senegal | 16,296 | 745 | 4.57 | 2.64 | 0.043 |
South Africa | 58,558 | 12,503 | 21.35 | No data | No data |
Uganda | 44,270 | 3880 | 8.76 | 99.74 | 0.359 |
Zambia | 17,861 | 1746 | 9.78 | 99.26 | 0.173 |
Country | Estimated (2019) Human Risk HR, Deaths/100 Thous. People [40] | Сalculated (2019) Human Risk HR, Deaths/100 Thous. People [59] | Ratio (2019) ”Estimated HR/Сalculated HR” |
---|---|---|---|
Benin | 26.80 | 6.86 | 3.91 |
Burkina Faso | 31.02 | 4.81 | 6.45 |
Cameroon | 30.18 | 4.41 | 6.84 |
DR Congo | 34.86 | 0.31 | 112.45 |
Côte d’Ivoire | 24.12 | 5.70 | 4.23 |
Ethiopia | 28.16 | 4.57 | 6.16 |
Madagascar | 29.22 | 0.85 | 34.37 |
Morocco | No data | 9.93 | - |
Niger | 25.51 | 3.99 | 6.39 |
Nigeria | 20.75 | 2.73 | 7.60 |
Senegal | 23.51 | 4.57 | 5.14 |
South Africa | 22.22 | 21.35 | 1.04 |
Uganda | 29.39 | 8.76 | 3.35 |
Zambia | 20.46 | 9.78 | 2.09 |
Country | Estimated Deaths (2016), Unit [40] | Reported Deaths (2016), Unit [59] | Ratio (2016) ”Estimated Deaths/ Reported Deaths” |
---|---|---|---|
Benin | 2986 | 637 | 4.69 |
Burkina Faso | 5686 | 878 | 6.48 |
Cameroon | 7066 | 1879 | 3.76 |
DR Congo | 1405 | 308 | 4.56 |
Côte d’Ivoire | 5582 | 991 | 5.63 |
Ethiopia | 27,326 | 4352 | 6.28 |
Madagascar | 7108 | 340 | 20.91 |
Morocco | 6917 | 3785 | 1.83 |
Niger | 5414 | 978 | 5.54 |
Nigeria | 32,076 | 5053 | 6.35 |
Senegal | 3609 | 604 | 5.98 |
South Africa | 14,507 | 14,071 | 1.03 |
Uganda | 12,036 | 3503 | 3.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrov, A.I. Data-Driven Strategic Approaches to Road Safety Management: Truth and Lies of Official Statistics. World 2025, 6, 3. https://doi.org/10.3390/world6010003
Petrov AI. Data-Driven Strategic Approaches to Road Safety Management: Truth and Lies of Official Statistics. World. 2025; 6(1):3. https://doi.org/10.3390/world6010003
Chicago/Turabian StylePetrov, Artur I. 2025. "Data-Driven Strategic Approaches to Road Safety Management: Truth and Lies of Official Statistics" World 6, no. 1: 3. https://doi.org/10.3390/world6010003
APA StylePetrov, A. I. (2025). Data-Driven Strategic Approaches to Road Safety Management: Truth and Lies of Official Statistics. World, 6(1), 3. https://doi.org/10.3390/world6010003