Removal of Metals by Biomass Derived Adsorbent in Its Granular and Powdered Forms: Adsorption Capacity and Kinetics Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biomass Derived Adsorbent and Adsorbate Solution
2.2. Fourier Transform Infrared Spectroscopy Analysis
2.3. Experimental Procedure
2.4. Determination of Metal Concentration
2.5. Kinetic Modeling
2.5.1. Pseudo-First-Order Model
2.5.2. Pseudo-Second-Order Model
2.5.3. Weber and Morris Model
2.5.4. Elovich Model
3. Results and Discussion
3.1. Removal of Metal Ions
3.2. Characterization of the Biomass Composition
3.3. Kinetic Analyses
3.3.1. Pseudo-First-Order Model
3.3.2. Pseudo-Second-Order Model
3.3.3. Weber and Morris Model
3.3.4. Elovich Model
3.4. Evaluation of Zn and Cu Adsorption Systems and Application of Kinetic Modeling
3.4.1. Zinc Adsorption Systems
3.4.2. Copper Adsorption Systems
3.4.3. Representativeness of the Pseudo-Second-Order Model in Metal Adsorption Systems
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burakov, A.E.; Galunin, E.V.; Burakova, I.V.; Kucherova, A.E.; Agarwal, S.; Tkachev, A.G.; Gupta, V.K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol. Environ. Saf. 2018, 148, 702–712. [Google Scholar] [CrossRef] [PubMed]
- Abdi, O.; Kazemi, M. A review study of biosorption of heavy metals and comparison between different biosorbents. J. Mater. Environ. Sci. 2015, 6, 1386–1399. [Google Scholar]
- Sulaymon, A. Biosorption of Heavy Metals: A Review. J. Chem. Sci. Technol. 2014, 3, 74–102. [Google Scholar]
- Sen, T.K.; Gomez, D. Adsorption of zinc (Zn2+) from aqueous solution on natural bentonite. Desalination 2011, 267, 286–294. [Google Scholar] [CrossRef]
- Al-Saydeh, S.A.; El-Naas, M.H.; Zaidi, S.J. Copper removal from industrial wastewater: A comprehensive review. J. Ind. Eng. Chem. 2017, 56, 35–44. [Google Scholar] [CrossRef]
- CONAMA. National Council for the Environment-Ministry of the Environment, In: Resolution number 430 of May 13, 2011. In Provides for the Conditions and Standards for Effluent Discharge, Complements and Amends Resolution Number 357 of March 17, 2005; Brasilia, Brazil. 2011. Available online: https://www.braziliannr.com/brazilian-environmental-legislation/conama-resolution-43011/ (accessed on 30 October 2022).
- Pagnanelli, F.; Cruz Viggi, C.; Toro, L. Isolation and quantification of cadmium removal mechanisms in batch reactors inoculated by sulphate reducing bacteria: Biosorption versus bioprecipitation. Bioresour. Technol. 2010, 101, 2981–2987. [Google Scholar] [CrossRef]
- Liakos, E.V.; Rekos, K.; Giannakoudakis, D.A.; Mitropoulos, A.C.; Fu, J.; Kyzas, G.Z. Activated Porous Carbon Derived from Tea and Plane Tree Leaves Biomass for the Removal of Pharmaceutical Compounds from Wastewaters. Antibiotics 2021, 10, 65. [Google Scholar] [CrossRef]
- Giannakoudakis, D.A.; Hosseini-Bandegharaei, A.; Tsafrakidou, P.; Triantafyllidis, K.S.; Kornaros, M.; Anastopoulos, I. Aloe vera waste biomass-based adsorbents for the removal of aquatic pollutants: A review. J. Environ. Manag. 2018, 227, 354–364. [Google Scholar] [CrossRef]
- Michalak, I.; Chojnacka, K.; Witek-Krowiak, A. State of the Art for the Biosorption Process—A Review. Appl. Biochem. Biotechnol. 2013, 170, 1389–1416. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.-S.; Law, R.; Chang, C.-C. Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21. Water Res. 1997, 31, 1651–1658. [Google Scholar] [CrossRef]
- Utgikar, V.; Chen, B.-Y.; Tabak, H.H.; Bishop, D.F.; Govind, R. Treatment of acid mine drainage: I. Equilibrium biosorption of zinc and copper on non-viable activated sludge. Int. Biodeter. Biodegr. 2000, 46, 19–28. [Google Scholar] [CrossRef]
- He, J.; Chen, J.P. A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools. Bioresour. Technol. 2014, 160, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Hadiani, M.R.; Darani, K.K.; Rahimifard, N.; Younesi, H. Biosorption of low concentration levels of Lead (II) and Cadmium (II) from aqueous solution by Saccharomyces cerevisiae: Response surface methodology. Biocatal. Agric. Biotechnol. 2018, 15, 25–34. [Google Scholar] [CrossRef]
- Yu, B.; Zhang, Y.; Shukla, A.; Shukla, S.S.; Dorris, K.L. The removal of heavy metal from aqueous solutions by sawdust adsorption — removal of copper. J. Hazard. Mater. 2000, 80, 33–42. [Google Scholar] [CrossRef]
- Freitas, G.R.; Silva, M.G.C.; Vieira, M.G.A. Biosorption technology for removal of toxic metals: A review of commercial biosorbents and patents. Environ. Sci. Pollut. Res. 2019, 26, 19097–19118. [Google Scholar] [CrossRef]
- Bogusz, A.; Oleszczuk, P.; Dobrowolski, R. Adsorption and desorption of heavy metals by the sewage sludge and biochar-amended soil. Environ. Geochem. Health 2019, 41, 1663–1674. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Pan, Y.; Cai, P.; Guo, T.; Xiao, H. Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent. Bioresour.Technol. 2017, 241, 482–490. [Google Scholar] [CrossRef]
- Zeraatkar, A.K.; Ahmadzadeh, H.; Talebi, A.F.; Moheimani, N.R.; McHenry, M.P. Potential use of algae for heavy metal bioremediation, a critical review. J. Environ. Manag. 2016, 181, 817–831. [Google Scholar] [CrossRef]
- Al-Degs, Y.S.; El-Barghouthi, M.I.; Issa, A.A.; Khraisheh, M.A.; Walker, G.M. Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: Equilibrium and kinetic studies. Water Res. 2006, 40, 2645–2658. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.-J. Biosorption isotherms, kinetics and thermodynamics. Sep. Purif. Technol. 2008, 61, 229–242. [Google Scholar] [CrossRef]
- Rice, E.W.; Baird, R.B.; Eaton, A.D. Standard Methods for the Examination for Water and Wastewater, 23rd ed.; American Public Health Association: Washington DC, USA, 2017. [Google Scholar]
- Mogensen, A.S.; Haagensen, F.; Ahring, B.K. Anaerobic degradation of linear alkylbenzene sulfonate. Environ. Toxicol. Chem. 2003, 22, 706–711. [Google Scholar] [CrossRef] [PubMed]
- Shek, T.-H.; Ma, A.; Lee, V.K.C.; McKay, G. Kinetics of zinc ions removal from effluents using ion exchange resin. Chem. Eng. J. 2009, 146, 63–70. [Google Scholar] [CrossRef]
- Kumar, D.; Gaur, J.P. Chemical reaction- and particle diffusion-based kinetic modeling of metal biosorption by a Phormidium sp.-dominated cyanobacterial mat. Bioresour. Technol. 2011, 102, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem. Eng. J. 2009, 150, 366–373. [Google Scholar] [CrossRef]
- Gundry, P.M.; Tompkins, F.C. Chemisorption of gases on metals. Chem. Soc. Rev. 1960, 14, 257–291. [Google Scholar] [CrossRef]
- Esposito, A.; Pagnanelli, F.; Vegliò, F. pH-related equilibria models for biosorption in single metal systems. Chem. Eng. Sci. 2002, 57, 307–313. [Google Scholar] [CrossRef]
- Aksu, Z.; Açıkel, Ü.; Kabasakal, E.; Tezer, S. Equilibrium modelling of individual and simultaneous biosorption of chromium(VI) and nickel(II) onto dried activated sludge. Water Res. 2002, 36, 3063–3073. [Google Scholar] [CrossRef]
- Pagnanelli, F.; Esposito, A.; Toro, L.; Vegliò, F. Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: Langmuir-type empirical model. Water Res. 2003, 37, 627–633. [Google Scholar] [CrossRef]
- Norton, L.; Baskaran, K.; McKenzie, T. Biosorption of zinc from aqueous solutions using biosolids. Adv. Environ. Res. 2004, 8, 629–635. [Google Scholar] [CrossRef]
- Shanmugaprakash, M.; Sivakumar, V. Batch and fixed-bed column studies for biosorption of Zn(II) ions onto pongamia oil cake (Pongamia pinnata) from biodiesel oil extraction. J. Environ. Manag. 2015, 164, 161–170. [Google Scholar] [CrossRef]
- Yang, C.; Wang, J.; Lei, M.; Xie, G.; Zeng, G.; Luo, S. Biosorption of zinc(II) from aqueous solution by dried activated sludge. J. Environ. Sci. 2010, 22, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Terry, P.A.; Stone, W. Biosorption of cadmium and copper contaminated water by Scenedesmus abundans. Chemosphere 2002, 47, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Pavasant, P.; Apiratikul, R.; Sungkhum, V.; Suthiparinyanont, P.; Wattanachira, S.; Marhaba, T.F. Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera. Bioresour. Technol. 2006, 97, 2321–2329. [Google Scholar] [CrossRef] [PubMed]
- Lacerda, E.C.M.; Passos Galluzzi Baltazar, M.; Reis, T.A.; Nascimento, C.A.O.; Côrrea, B.; Gimenes, L.J. Copper biosorption from an aqueous solution by the dead biomass of Penicillium ochrochloron. Environ. Monit. Assess. 2019, 191, 247. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Kumar, D.; Gaur, J.P. Kinetic and isotherm modeling of lead(II) sorption onto some waste plant materials. Chem. Eng. J. 2009, 148, 226–233. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, D.; Gaur, J.P. Removal of Cu(II) and Pb(II) by Pithophora oedogonia: Sorption, desorption and repeated use of the biomass. J. Hazard. Mater. 2008, 152, 1011–1019. [Google Scholar] [CrossRef]
- Vilar, V.J.P.; Botelho, C.M.S.; Boaventura, R.A.R. Equilibrium and kinetic modelling of Cd(II) biosorption by algae Gelidium and agar extraction algal waste. Water Res. 2006, 40, 291–302. [Google Scholar] [CrossRef]
- Ho, Y.S.; Ng, J.C.Y.; McKay, G. Kinetics of pollutant sorption by biosorbents: Review. Sep. Purif. Rev. 2000, 29, 189–232. [Google Scholar] [CrossRef]
- Tan, K.L.; Hameed, B.H. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J. Taiwan Inst. Chem. Eng. 2017, 74, 25–48. [Google Scholar] [CrossRef]
- Plazinski, W.; Rudzinski, W.; Plazinska, A. Theoretical models of sorption kinetics including a surface reaction mechanism: A review. Adv. Colloid Interface Sci. 2009, 152, 2–13. [Google Scholar] [CrossRef]
- Calero, M.; Blázquez, G.; Martín-Lara, M.A. Kinetic Modeling of the Biosorption of Lead(II) from Aqueous Solutions by Solid Waste Resulting from the Olive Oil Production. J. Chem. Eng. Data 2011, 56, 3053–3060. [Google Scholar] [CrossRef]
- Sağ, Y.; Aktay, Y. Kinetic studies on sorption of Cr(VI) and Cu(II) ions by chitin, chitosan and Rhizopus arrhizus. Biochem. Eng. J. 2002, 12, 143–153. [Google Scholar] [CrossRef]
- Vilar, V.J.P.; Botelho, C.M.S.; Boaventura, R.A.R. Chromium and zinc uptake by algae Gelidium and agar extraction algal waste: Kinetics and equilibrium. J. Hazard. Mater. 2007, 149, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Malamis, S.; Katsou, E. A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms. J. Hazard. Mater. 2013, 252–253, 428–461. [Google Scholar] [CrossRef] [PubMed]
- Elkady, M.F.; Ibrahim, A.M.; El-Latif, M.M.A. Assessment of the adsorption kinetics, equilibrium and thermodynamic for the potential removal of reactive red dye using eggshell biocomposite beads. Desalination 2011, 278, 412–423. [Google Scholar] [CrossRef]
- Juang, R.-S.; Chen, M.-L. Application of the Elovich Equation to the Kinetics of Metal Sorption with Solvent-Impregnated Resins. Ind. Eng. Chem. Res. 1997, 36, 813–820. [Google Scholar] [CrossRef]
- Melčáková, I.; Ružovič, T. Biosorption of zinc from aqueous solution using algae and plant biomass. Nova Biotechnol. Chim. 2010, 1, 33–43. [Google Scholar] [CrossRef]
- Rodrigues, A.C.D.; Amaral Sobrinho, N.M.B.; Santos, F.S.; Santos, A.M.; Pereira, A.C.C.; Lima, E.S.A. Biosorption of Toxic Metals by Water Lettuce (Pistia stratiotes) Biomass. Water Air Soil Pollut. 2017, 228, 156. [Google Scholar] [CrossRef]
- Peng, Q.; Liu, Y.; Zeng, G.; Xu, W.; Yang, C.; Zhang, J. Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution. J. Hazard. Mater. 2010, 177, 676–682. [Google Scholar] [CrossRef]
- Ianis, M.; Tsekova, K.; Vasileva, S. Copper Biosorption by Penicillium Cyclopium: Equilibrium and Modelling Study. Biotechnol. Biotechnol. Equip. 2006, 20, 195–201. [Google Scholar] [CrossRef]
- Khormaei, M.; Nasernejad, B.; Edrisi, M.; Eslamzadeh, T. Copper biosorption from aqueous solutions by sour orange residue. J. Hazard. Mater. 2007, 149, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Sillanpää, M.; Ncibi, M.C.; Matilainen, A.; Vepsäläinen, M. Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review. Chemosphere 2018, 190, 54–71. [Google Scholar] [CrossRef] [PubMed]
Zinc (mg g−1) | Copper (mg g−1) | |||
---|---|---|---|---|
Time (min) | Granular | Powdered | Granular | Powdered |
0 | 0.16 ± 0.06 | 0.39 ± 0.04 | 0.19 ± 0.15 | 0.41 ± 0.09 |
120 | 0.78 ± 0.02 | 1.03 ± 0.02 | 0.73 ± 0.01 | 0.78 ± 0.02 |
240 | 0.82 ± 0.03 | 1.07 ± 0.05 | 1.17 ± 0.01 | 0.88 ± 0.00 |
1440 | 1.47 ± 0.04 | 1.25 ± 0.02 | 1.61 ± 0.04 | 1.23 ± 0.00 |
2880 | 1.81 ± 0.02 | 1.58 ± 0.05 | 1.59 ± 0.00 | 1.47 ± 0.00 |
4320 | 1.83 ± 0.01 | 1.46 ± 0.01 | 1.59 ± 0.00 | 1.40 ± 0.01 |
Metal | Parameters 1 | Granular Biomass | Powdered Biomass |
---|---|---|---|
Zinc | qe exp (mg g−1) | 1.81 | 1.58 |
qe adj (mg g−1) | 1.35 | 0.71 | |
k1 (min−1) | 0.00 | 0.00 | |
R2 | 0.95 | 0.87 | |
Copper | qe exp (mg g−1) | 1.61 | 1.47 |
qe adj (mg g−1) | 0.83 | 0.76 | |
k1 (min−1) | 0.00 | 0.00 | |
R2 | 0.90 | 0.95 |
Metal | Parameters | Granular Biomass | Powdered Biomass |
---|---|---|---|
Zinc | qe exp (mg g−1) | 1.81 | 1.58 |
qe adj (mg g−1) | 1.90 | 1.51 | |
k2 (g mg−1 min−1) | 0.00 | 0.01 | |
R2 | 0.99 | 0.99 | |
Copper | qe exp (mg g−1) | 1.61 | 1.47 |
qe adj (mg g−1) | 1.62 | 1.44 | |
k2 (g mg−1 min−1) | 0.01 | 0.01 | |
R2 | 1.00 | 1.00 |
Metal | Parameters | Granular Biomass | Powdered Biomass |
---|---|---|---|
Zinc | Kd (mg g−1 min−1) | 0.02 | 0.01 |
C (mg g−1) | 0.38 | 0.69 | |
R2 | 0.99 | 0.78 | |
Copper | Kd (mg g−1 min−1) | 0.02 | 0.02 |
C (mg g−1) | 0.55 | 0.56 | |
R2 | 0.77 | 0.91 |
Metal | Parameters | Granular Biomass | Powdered Biomass |
---|---|---|---|
Zinc | α (mg g−1 min−1) | 0.02 | 1.27 |
β (mg g−1) | 3.08 | 7.01 | |
R2 | 1.00 | 0.87 | |
Copper | α (mg g−1 min−1) | 0.09 | 0.09 |
β (mg g−1) | 4.38 | 5.18 | |
R2 | 0.87 | 0.97 |
Data | Parameters | Granular Biomass | Powdered Biomass | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Experimental System (S0-Zn) | qe exp (mg g−1) | 1.81 | 1.58 | |||||||||||
qe adj (mg g−1) | 1.90 | 1.51 | ||||||||||||
k2 (g mg−1 min−1) | 0.00 | 0.01 | ||||||||||||
R2 | 0.99 | 0.99 | ||||||||||||
System 1 (S1-Zn) | Green seaweed | Plant | ||||||||||||
Root | Stem | Leaf | ||||||||||||
qe exp (mg g−1) | 3.50 | 5.40 | 7.60 | 7.80 | ||||||||||
qe adj (mg g−1) | 2.36 | 5.80 | 7.62 | 6.87 | ||||||||||
k2 (g mg−1 min−1) | –0.08 | 0.02 | 0.13 | –0.12 | ||||||||||
R2 | 1.00 | 1.00 | 1.00 | 1.00 | ||||||||||
System 2 (S2-Zn) | Water lettuce dry biomass | |||||||||||||
2.13 | 21.04 | 51.98 | 61.91 | 104.54 | ||||||||||
(mg Zn2+ L−1) | ||||||||||||||
qe exp (mg g−1) | 0.05 | 0.85 | 2.19 | 2.36 | 3.70 | |||||||||
qe adj (mg g−1) | 0.06 | 0.90 | 2.20 | 2.41 | 4.53 | |||||||||
k2 (g mg−1 min−1) | 0.02 | 0.01 | 0.01 | 0.00 | 0.00 | |||||||||
R2 | 0.45 | 1.00 | 1.00 | 0.99 | 0.95 | |||||||||
System 3 (S3-Zn) | Activated sludge system biomass | |||||||||||||
2.0 | 5.0 | 98.1 | ||||||||||||
(mg Zn2+ L−1) | ||||||||||||||
qe exp (mg g−1) | 0.33 | 1.70 | 7.85 | |||||||||||
qe adj (mg g−1) | 0.35 | 1.80 | 8.18 | |||||||||||
k2 (g mg−1 min−1) | 0.03 | 0.01 | 0.00 | |||||||||||
R2 | 0.69 | 0.98 | 0.98 |
Data | Parameters | Granular Biomass | Powdered Biomass |
---|---|---|---|
Experimental System (S0-Cu) | qe exp (mg g−1) | 1.61 | 1.47 |
qe adj (mg g−1) | 1.62 | 1.44 | |
k2 (g mg−1 min−1) | 0.01 | 0.01 | |
R2 | 1.00 | 1.00 | |
System 1 (S1-Cu) | Fungus biomass—Saccharomyces cerevisiae | ||
qe exp (mg g−1) | 131 | ||
qe adj (mg g−1) | 133.33 | ||
k2 (g mg−1 min−1) | 0.02 | ||
R2 | 1 | ||
System 2 (S2-Cu) | Fungus biomass—Penicillium cyclopium | ||
0.9915 | 3.966 | ||
(g L−1) | |||
qe exp (mg g−1) | 57.49 | 20.42 | |
qe adj (mg g−1) | 59.52 | 21.14 | |
k2 (g mg−1 min−1) | 0.01 | 0.02 | |
R2 | 1.00 | 1.00 | |
System 3 (S3-Cu) | Sour orange residue biomass | ||
0.15–0.35 | 0.7–1.0 | ||
(mm) | |||
qe exp (mg g−1) | 13.59 | 13.21 | |
qe adj (mg g−1) | 13.68 | 1.62 | |
k2 (g mg−1 min−1) | 0.23 | 0.01 | |
R2 | 1.00 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguiar, A.B.S.; Costa, J.M.; Santos, G.E.; Sancinetti, G.P.; Rodriguez, R.P. Removal of Metals by Biomass Derived Adsorbent in Its Granular and Powdered Forms: Adsorption Capacity and Kinetics Analysis. Sustain. Chem. 2022, 3, 535-550. https://doi.org/10.3390/suschem3040033
Aguiar ABS, Costa JM, Santos GE, Sancinetti GP, Rodriguez RP. Removal of Metals by Biomass Derived Adsorbent in Its Granular and Powdered Forms: Adsorption Capacity and Kinetics Analysis. Sustainable Chemistry. 2022; 3(4):535-550. https://doi.org/10.3390/suschem3040033
Chicago/Turabian StyleAguiar, Ana Beatriz Soares, Josiel Martins Costa, Gabriela Espirito Santos, Giselle Patrícia Sancinetti, and Renata Piacentini Rodriguez. 2022. "Removal of Metals by Biomass Derived Adsorbent in Its Granular and Powdered Forms: Adsorption Capacity and Kinetics Analysis" Sustainable Chemistry 3, no. 4: 535-550. https://doi.org/10.3390/suschem3040033
APA StyleAguiar, A. B. S., Costa, J. M., Santos, G. E., Sancinetti, G. P., & Rodriguez, R. P. (2022). Removal of Metals by Biomass Derived Adsorbent in Its Granular and Powdered Forms: Adsorption Capacity and Kinetics Analysis. Sustainable Chemistry, 3(4), 535-550. https://doi.org/10.3390/suschem3040033