Generation of Spherical Microparticles of Moringa Leaves through a Supercritical Antisolvent Extraction Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solvents
2.2. Plant Material
2.3. Preparation of Moringa-Leaf Extract
2.4. Design of Experiment
2.5. Supercritical Antisolvent Extraction (SAE)
2.6. Particle Size Distribution
2.7. Antioxidant Activity Assay with DPPH
2.8. Extract Load
2.9. Moringa-Leaf Particle Composition
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rubio-Sanz, L. Comparativa nutricional del cultivo de Moringa Oleifera en España. Cienc. Tecnol. UTEQ 2020, 13, 17–22. [Google Scholar] [CrossRef]
- Saini, R.K.; Sivanesan, I.; Keum, Y.S. Phytochemicals of Moringa oleifera: A review of their nutritional, therapeutic and industrial significance. 3 Biotech 2016, 6, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharya, A.; Tiwari, P.; Sahu, P.K.; Kumar, S. A Review of the Phytochemical and Pharmacological Characteristics of Moringa oleifera. J. Pharm. Bioallied Sci. 2018, 10, 181–191. [Google Scholar] [PubMed]
- Ammara, S.; Mohammad, S.; Muhammad, F.A.; Mirza, M.F.A.B.; Azhar, R. HPLC analysis, cytotoxicity, and safety study of Moringa oleifera Lam. (wild type) leaf extract. J. Food Biochem. 2020, 44, 3400. [Google Scholar]
- Pari, L.; Karama, M.; Kosiska, A.; Rybarczyk, A.; Amarowicz, R. Antioxidant activity of the crude extracts of drumstick tree (moringa oleifera lam.) and sweet broomweed (Scoparia dulcis L.) leaves. Pol. J. Food Nutr. Sci. 2007, 57, 203–208. [Google Scholar]
- Antonio-Alegría, L.; Sánchez-Mundo, M.L.; Sánchez-Zacarías, M.A.; Hernández-Nava, R.G. Perfil proteico, compuestos fenólicos y capacidad antioxidante de hoja de moringa (Moringa Oleífera). Rinderesu 2020, 5, 965–976. [Google Scholar]
- Brilhante, R.S.N.; Sales, J.A.; Pereira, V.S.; Castelo-Branco, D.S.C.M.; Cordeiro, R.A.; de Souza, C.M.; de Araújo Neto Paiva, M.; Feitosa dos Santos, J.B.; Costa, J.J.; Gadelha Rocha, M.F. Research advances on the multiple uses of Moringa Oleifera: A sustainable alternative for socially neglected population. Asian Pac. J. Trop. Med. 2017, 10, 621–630. [Google Scholar] [CrossRef]
- Guzmán-Maldonado, S.H.; López-Manzano, M.J.; Madera-Santana, T.J.; Núñez-Colín, C.A.; Grijalva-Verdugo, C.P.; Villa-Lerma, A.G.; Rodríguez-Núñez, J.R. Nutritional characterization of Moringa Oleifera leaves, seeds, husks and flowers from two regions of Mexico. Agron. Colomb. 2020, 38, 287–297. [Google Scholar] [CrossRef]
- Mumtaz, M.Z.; Kausar, F.; Hassan, M.; Javaid, S.; Malik, A. Anticancer activities of phenolic compounds from Moringa oleifera leaves: In vitro and in silico mechanistic study. Beni-Suef Univ. J. Basic Appl. Sci. 2021, 10, 12. [Google Scholar] [CrossRef]
- Karthivashan, G.; Arulselvan, P.; Razak, A.A.; Safinar, I.I.; Fakurazi, S. Competing Role of Bioactive Constituyents in Moringa oleifera Extract and Conventional Nutrition Feed on the Performance of Cobb 500 Broilers. Biomed Res. Int. 2015, 2015, 970398. [Google Scholar] [CrossRef] [Green Version]
- Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Cultivation, Genetic, Ethnopharmacology, Phytochemistry and Pharmacology of Moringa oleifera Leaves: An Overview. Int. J. Mol. Sci. 2015, 16, 12791–12835. [Google Scholar] [CrossRef]
- Promy, V.; Manal, A.A.; Sarah, S.A.A.; Awatif, A.H.; Mai, E.; Khalid, O.; Rabia, Q.; Manal, F.E.-K.; Hany, M.Y.; Mohamed, F.S.E.-D.; et al. Green synthesis of Moringa oleifera leaf nanoparticles and an assessment of their therapeutic potential. J. King Saud Univ.-Sci. 2023, 35, 102576. [Google Scholar]
- Guamán-Balcázar, M.C.; Montes, A.; Fernández-Ponce, M.T.; Casas, L.; Mantell, C.; Pereyra, C.; Martínez de la Ossa, E. Generation of potent antioxidant nanoparticles from mango leaves by supercritical antisolvent extraction. J. Supercrit. Fluids 2018, 138, 92–101. [Google Scholar] [CrossRef]
- Chinnarasu, C.; Montes, A.; Fernández-Ponce, M.T.; Casas, L.; Mantell, C.; Pereyra, C.; Martínez de la Ossa, E. Precipitation of antioxidant fine particles from Olea europaea leaves using supercritical antisolvent process. J. Supercrit. Fluids 2015, 97, 125–132. [Google Scholar] [CrossRef]
- Baldino, L.; Della Porta, G.; Osseo, L.S.; Reverchon, E.; Adami, R. Concentrated oleuropein powder from olive leaves using alcoholic extraction and supercritical CO2 assisted extraction. J. Supercrit. Fluids 2018, 133, 65–69. [Google Scholar] [CrossRef]
- Chinnarasu, C.; Montes, A.; Fernández-Ponce, M.T.; Casas, L.; Mantell, C.; Pereyra, C.; Martínez de la Ossa, E.; Pattabhi, S. Natural antioxidant fine particles recovery from Eucalyptus globulus leaves using supercritical carbon dioxide assisted processes. J. Supercrit. Fluids 2015, 101, 161–169. [Google Scholar] [CrossRef]
- Natolino, A.; Da Porto, C.; Rodriguez-Rojo, S.; Moreno, T.; Cocero, M.J. Supercritical antisolvent precipitation of polyphenols from grape marc extract. J. Supercrit. Fluids 2016, 118, 54–63. [Google Scholar] [CrossRef]
- Meneses, M.A.; Caputo, G.; Scognamiglio, M.; Reverchon, E.; Adami, R. Antioxidant phenolic compounds recovery from Mangifera indica L. by-products by supercritical antisolvent extraction. J. Food Eng. 2015, 163, 45–53. [Google Scholar] [CrossRef]
- Guamán-Balcázar, M.C.; Montes, A.; Pereyra, C.; Martínez de la Ossa, E. Precipitation of mango leaves antioxidants by supercritical antisolvent process. J. Supercrit. Fluids 2017, 128, 218–226. [Google Scholar] [CrossRef]
- Montes, A.; Williamson, D.; Hanke, F.; Guaman-Balcazar, M.C.; Valor, D.; Pereyra, C.; Martínez de la Ossa, E.; Teipel, U. Precipitation of powerful antioxidant nanoparticles from orange leaves by means of supercritical CO2. J. CO2 Util. 2019, 31, 235–243. [Google Scholar] [CrossRef]
- Villanueva-Bermejo, D.; Zahran, F.; Troconis, D.; Villalva, M.; Reglero, G.; Fornari, T. Selective precipitation of phenolic compounds from Achillea millefolium L. extracts by supercritical anti-solvent technique. J. Supercrit. Fluids 2017, 120, 52–58. [Google Scholar] [CrossRef]
- Osorio-Tobón, J.F.; Carvalho, P.I.N.; Rostagno, M.A.; Petenate, A.J.; Meireles, M.A.A. Precipitation of curcuminoids from an ethanolic turmeric extract using a supercritical antisolvent process. J. Supercrit. Fluids 2016, 108, 26–34. [Google Scholar] [CrossRef]
- Machado, A.P.d.F.; Montes, A.; Valor, D.; Fernández- Ponce, M.T.; Fernández Barbero, G.; Maróstica Júnior, M.R.; Pereyra, C.; Martínez de la Ossa, E. Co-precipitation of grape residue extract using sub- and supercritical CO2 technology. J. CO2 Util. 2022, 61, 102010. [Google Scholar] [CrossRef]
- Guamán-Balcázar, M.C.; Montes, A.; Pereyra, C.; Martínez de la Ossa, E. Production of submicron particles of the antioxidants of mango leaves/PVP by supercritical antisolvent extraction process. J. Supercrit. Fluids 2019, 143, 294–304. [Google Scholar] [CrossRef]
- Visentin, A.; Rodríguez-Rojo, S.; Navarrete, A.; Maestri, D.; Cocero, M.J. Precipitation and encapsulation of rosemary antioxidants by supercritical antisolvent process. J. Food Eng. 2012, 109, 9–15. [Google Scholar] [CrossRef]
- Santana, Á.L.; Meireles, M.A.A. Coprecipitation of turmeric extracts and polyethylene glycol with compressed carbon dioxide. J. Supercrit. Fluids 2017, 125, 31–41. [Google Scholar] [CrossRef]
- Wei, P.; Zhang, Y.; Wang, Y.Y.; Dong, J.F.; Liao, B.N.; Su, Z.C.; Li, W.; Xu, J.C.; Lou, W.Y.; Su, H.H.; et al. Efficient extraction, excellent activity, and microencapsulation of flavonoids from Moringa oleifera leaves extracted by deep eutectic solvent. Biomass Conv. Bioref. 2023. [Google Scholar] [CrossRef]
- Ebru, K.; Raneen, A.; Mehmet, T.; Selin, Ş. Encapsulation of Moringa oleifera leaf extract in chitosan-coated alginate microbeads produced by ionic gelation. Food Biosci. 2022, 50, 102158. [Google Scholar]
- Prosapio, V.; Reverchon, E.; De Marco, I. Coprecipitation of Polyvinylpyrrolidone/β-Carotene by Supercritical Antisolvent Processing. Ind. Eng. Chem. Res. 2015, 54, 11568–11575. [Google Scholar] [CrossRef]
- Scherer, R.; Godoy, H.T. Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem. 2009, 112, 654–658. [Google Scholar] [CrossRef]
- Zullaikah, S.; Naulina, R.Y.; Meinawati, P.; Fauziyah, K.; Rachimoellah, M.; Rachmaniah, O.; Nurkhamidah, S.; Suari, N.M.I.P.; Prasetyo, E.N. Enhanced Extraction of Phenolic Compounds from Moringa Oleifera Leaves Using Subcritical Water Ethanol Mixture. IOP Conf. Ser. Mater. Sci. Eng. 2019, 543, 012021. [Google Scholar] [CrossRef] [Green Version]
- Chen, C. Sinapic Acid and Its Derivatives as Medicine in Oxidative Stress-Induced Diseases and Aging. Oxidative Med. Cell. Longev. 2016, 2016, 3571614. [Google Scholar] [CrossRef] [Green Version]
- Zduska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant Properties of Ferulic Acid and Its Possible Application. Skin Pharmacol. Physiol. 2018, 31, 332–336. [Google Scholar] [CrossRef]
- Simunkova, M.; Barbierikova, Z.; Jomova, K.; Hudecova, L.; Lauro, P.; Alwasel, S.H.; Alhazza, I.; Rhodes, C.J.; Valko, M. Antioxidant vs. Prooxidant Properties of the Flavonoid, Kaempferol, in the Presence of Cu(II) Ions: A ROS-Scavenging Activity, Fenton Reaction and DNA Damage Study. Int. J. Mol. Sci. 2021, 22, 1619. [Google Scholar] [CrossRef]
- Kluska, M.; Juszczak, M.; Zuchowski, J.; Stochmal, A.; Wozniak, K. Effect of Kaempferol and Its Glycoside Derivatives on Antioxidant Status of HL-60 Cells Treated with Etoposide. Molecules 2022, 27, 333. [Google Scholar] [CrossRef]
- Murga, R.; Sanz, M.T.; Beltran, S.; Cabeza, J.L. Solubility of three hydroxycinnamic acids in supercritical carbon dioxide. J. Supercrit. Fluids 2003, 27, 239–245. [Google Scholar] [CrossRef]
- Cid-Ortega, S.; Monroy-Rivera, J.A. Extraction of Kaempferol and Its Glycosides Using Supercritical Fluids from Plant Sources: A Review. Food Technol. Biotechnol. 2018, 56, 480–493. [Google Scholar] [CrossRef]
- Paula, J.T.; Sousa, I.M.O.; Foglio, M.A.; Cabral, F.A. Solubility of protocatechuic acid, sinapic acid and chrysin in supercritical carbon dioxide. J. Supercrit. Fluids 2016, 112, 89–94. [Google Scholar] [CrossRef]
Run | P (bar) | T (°C) | Moringa:PVP Ratio (wt:wt) | MPS (µm) | Extract Load (%) | AAI |
---|---|---|---|---|---|---|
1 | 200 | 55 | 0.11 | 3.02 ± 1.78 | 9.38 | 0.12 |
2 | 150 | 35 | 0.33 | Agglomerated | ||
3 | 100 | 35 | 0.11 | Agglomerated | ||
4 | 100 | 55 | 0.33 | 2.91 ±2.67 | 11.50 | 0.25 |
5 | 200 | 35 | 0.33 | 2.76 ± 2.10 | 12.09 | 0.41 |
6 | 150 | 45 | 0.16 | 2.00 ± 1.25 | 12.38 | 0.34 |
7 | 100 | 55 | 0.11 | --- | ||
8 | 200 | 35 | 0.11 | 3.06 ± 2.16 | 10.24 | 0.22 |
9 | 150 | 35 | 0.11 | Agglomerated | ||
10 | 100 | 35 | 0.33 | --- | ||
11 | 150 | 45 | 0.16 | Agglomerated | ||
12 | 150 | 55 | 0.33 | 5.32 ± 2.25 | 12.97 | 0.29 |
13 | 150 | 55 | 0.11 | 2.77± 1.80 | 8.78 | 0.18 |
14 | 200 | 55 | 0.33 | 2.63 ± 1.56 | 9.16 | 0.17 |
Compound | Linear Equation | R2 |
---|---|---|
Gallic Acid | 0.994 | |
Epigallocatechin Gallate | 0.990 | |
Mangiferin | 0.999 | |
Cumaric Acid | 0.988 | |
Vitexin | 0.999 | |
Sinapic Acid | 0.995 | |
Quercetin 3-β-D-Glucoside | 0.996 | |
Kaempferol | 0.934 | |
Ferulic Acid | 0.983 | |
Kaempferol 3-Glucoside | 0.984 |
Sample | Mangiferin | Quercetin 3-β-D Glucoside | Vitexin | Epigallocatechin Gallate | Coumaric Acid | Gallic Acid |
---|---|---|---|---|---|---|
µg/L | ||||||
Run 1 | 0.2 | --- | 0.4 | 3.1 | --- | 17.5 |
Run 4 | --- | 1.6 | 0.3 | 2.5 | --- | 17.7 |
Run 5 | --- | 7.3 | 0.5 | 2.3 | --- | 16.7 |
Run 6 | --- | --- | 0.4 | 2.6 | 3.9 | 15.9 |
Run 8 | 0.4 | 1.8 | 0.4 | 2.2 | --- | --- |
Run 12 | --- | --- | 0.7 | --- | --- | 17.1 |
Run 13 | --- | --- | 0.4 | 2.4 | --- | --- |
Run 14 | 0.9 | --- | --- | 2.2 | --- | 16.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montes, A.; Valor, D.; Pereyra, C.; Martínez de la Ossa, E. Generation of Spherical Microparticles of Moringa Leaves through a Supercritical Antisolvent Extraction Process. Sustain. Chem. 2023, 4, 143-153. https://doi.org/10.3390/suschem4020011
Montes A, Valor D, Pereyra C, Martínez de la Ossa E. Generation of Spherical Microparticles of Moringa Leaves through a Supercritical Antisolvent Extraction Process. Sustainable Chemistry. 2023; 4(2):143-153. https://doi.org/10.3390/suschem4020011
Chicago/Turabian StyleMontes, Antonio, Diego Valor, Clara Pereyra, and Enrique Martínez de la Ossa. 2023. "Generation of Spherical Microparticles of Moringa Leaves through a Supercritical Antisolvent Extraction Process" Sustainable Chemistry 4, no. 2: 143-153. https://doi.org/10.3390/suschem4020011
APA StyleMontes, A., Valor, D., Pereyra, C., & Martínez de la Ossa, E. (2023). Generation of Spherical Microparticles of Moringa Leaves through a Supercritical Antisolvent Extraction Process. Sustainable Chemistry, 4(2), 143-153. https://doi.org/10.3390/suschem4020011