Bio-Based Chemicals from Dedicated or Waste Biomasses: Life Cycle Assessment for Evaluating the Impacts on Land
Abstract
:1. Introduction
2. Materials and Methods
EF 3.0 Method | ReCiPe 2016 | IMPACT World+ | |||
---|---|---|---|---|---|
midpoint | ✓ | midpoint | ✓ | midpoint | ✓ |
endpoint | endpoint | ✓ | endpoint | ✓ | |
geography | European level | geography | Global level | geography | Global level |
Impact category at midpoint level | Unit | Impact category at midpoint level | Unit | Impact category at midpoint level | Unit |
Climate change | kg CO2 eq. | Global warming | kg CO2 eq. | Climate change, short term | kg CO2 eq. |
Ozone depletion | kg CFC11 eq. | Stratospheric ozone depletion | kg CFC11 eq. | Climate change, long term | kg CO2 eq. |
Ionising radiation | kBq U-235 eq. | Ionizing radiation | kBq Co-60 eq. | Fossil and nuclear energy use | MJ deprived |
Photochemical ozone formation | kg NMVOC eq. | Ozone formation, Human health | kg NOx eq. | Mineral resources use | kg deprived |
Particulate matter | disease inc. | Fine particulate matter formation | kg PM2.5 eq. | Photochemical oxidant formation | kg NMVOC eq. |
Human toxicity, non-cancer | CTUh | Ozone formation, Terrestrial ecosystems | kg NOx eq. | Ozone layer depletion | kg CFC-11 eq. |
Human toxicity, cancer | CTUh | Terrestrial acidification | kg SO2 eq. | Freshwater ecotoxicity | CTUe |
Acidification | mol H+ eq. | Freshwater eutrophication | kg P eq. | Human toxicity cancer | CTUh |
Eutrophication, freshwater | kg P eq. | Marine eutrophication | kg N eq. | Human toxicity non-cancer | CTUh |
Eutrophication, marine | kg N eq. | Terrestrial ecotoxicity | kg 1,4-DCB | Freshwater acidification | kg SO2 eq. |
Eutrophication, terrestrial | mol N eq. | Freshwater ecotoxicity | kg 1,4-DCB | Terrestrial acidification | kg SO2 eq. |
Ecotoxicity, freshwater | CTUe | Marine ecotoxicity | kg 1,4-DCB | Freshwater eutrophication | kg PO4 eq. |
Land use | Pt | Human carcinogenic toxicity | kg 1,4-DCB | Marine eutrophication | kg N eq. |
Water use | m3 depriv. | Human non-carcinogenic toxicity | kg 1,4-DCB | Particulate matter formation | kg PM2.5 eq. |
Resource use, fossils | MJ | Land use | m2 annual crop eq. | Ionizing radiation | Bq C-14 eq. |
Resource use, minerals and metals | kg Sb eq. | Mineral resource scarcity | kg Cu eq. | Land transformation, biodiversity | m2 yr arable |
Climate change—Fossil | kg CO2 eq. | Fossil resource scarcity | kg oil eq. | Land occupation, biodiversity | m2 yr arable |
Climate change—Biogenic | kg CO2 eq. | Water consumption | m3 | Water scarcity | m3 world eq. |
Climate change—Land use and LU change | kg CO2 eq. | ||||
Human toxicity, non-cancer—organics | CTUh | ||||
Human toxicity, non-cancer—inorganics | CTUh | ||||
Human toxicity, non-cancer—metals | CTUh | ||||
Human toxicity, cancer—organics | CTUh | ||||
Human toxicity, cancer—inorganics | CTUh | ||||
Human toxicity, cancer—metals | CTUh | ||||
Ecotoxicity, freshwater—organics | CTUe | ||||
Ecotoxicity, freshwater—inorganics | CTUe | ||||
Ecotoxicity, freshwater—metals | CTUe |
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
B2B | Business to Business |
B2C | Business to Consumer |
CML | Centrum Milieukunde Leiden |
EDIP | Environmental Design of Industrial Products |
EIA | Environmental Impact Assessment |
EoL | End of Life |
ISO | International Organization for Standardization |
LANCA | Land Use Indicator Value Calculation in Life Cycle Assessment |
LCA | Life Cycle Assessment |
LCI | Life Cycle Inventory |
LCIA | Life Cycle Impact Assessment |
LU | Land use |
LUCAS | (LCIA method Used for a Canadian-Specific context |
OECD | The Organisation for Economic Co-operation and Development |
OFTE | Ozone formation, terrestrial ecosystems |
PA | Polyamide(s) |
PBAT | Polybutylene adipate terephthalate |
PBS | Polybutylene succinate |
PE | Polyethylene |
PET | Polyethylene terephthalate |
PHA | Polyhydroxyalkanoate(s) |
PLA | Polylactic acid |
PP | Polypropylene |
PTT | Polytrimethylene terephthalate |
RIVM | National Institute of Public Health and Environ-mental Protection |
TAP | Terrestrial acidification potential |
TETP | Terrestrial ecotoxicity potential |
TEUP | Terrestrial eutrophication potential |
References
- Anastas, P.T.; Warner, J. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Cespi, D.; Esposito, I.; Cucciniello, R.; Anastas, P.T. Beyond the beaker: Benign by design society. Curr. Res. Green. Sustain. Chem. 2020, 3, 100028. [Google Scholar] [CrossRef]
- Anastas, P.T.; Zimmerman, J.B. Design through the 12 principles of green engineering. Env. Sci. Tech. 2003, 37, 94–101. [Google Scholar] [CrossRef]
- Circular Bio-Based Europe Joint Undertaking Annual Work Programme 2023. Available online: https://www.cbe.europa.eu/news/cbe-ju-sets-funding-priorities-2023 (accessed on 21 April 2023).
- BP p.l.c. bp Energy Outlook 2022; BP p.l.c.: London, UK, 2022; Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2022.pdf (accessed on 21 April 2023).
- Shahabuddin, M.; Tanvir Alam, M.; Krishna, B.B.; Bhaskar, T.; Perkins, G. A review on the production of renewable aviation fuels from the gasification of biomass and residual wastes. Bioresour. Technol. 2020, 312, 123596. [Google Scholar] [CrossRef]
- O’Lenick, A.J. Guerbet Chemistry. J. Surfactants Deterg. 2001, 4, 311–315. [Google Scholar] [CrossRef]
- The Organisation for Economic Co-Operation and Development (OECD). Global Material Resources Outlook to 2060—Economic Drivers and Environmental Consequences; OECD Publishing: Paris, France, 2018; Available online: https://www.oecd.org/publications/global-material-resources-outlook-to-2060-9789264307452-en.htm (accessed on 21 April 2023).
- European Bioplastics e.V. Bioplastics: Facts and Figures; European Bioplastics: Berlin, Germany, 2021; Available online: https://docs.european-bioplastics.org/publications/EUBP_Facts_and_figures.pdf (accessed on 21 April 2023).
- Hairon Azhar, N.N.; Ang, D.T.-C.; Abdullah, R.; Harikrishna, J.A.; Cheng, A. Bio-Based Materials Riding theWave of Sustainability: Common Misconceptions, Opportunities, Challenges and the Way Forward. Sustainability 2022, 14, 5032. [Google Scholar] [CrossRef]
- Quecholac-Piña, X.; Hernández-Berriel, M.d.C.; Mañón-Salas, M.d.C.; Espinosa-Valdemar, R.M.; Vázquez-Morillas, A. Degradation of Plastics under Anaerobic Conditions: A Short Review. Polymers 2020, 12, 109. [Google Scholar] [CrossRef]
- Stoica, M. Biodegradable Nanomaterials for Drink Packaging. In Nanotechnology in the Beverage Industry; Elsevier: Amsterdam, The Netherlands, 2020; pp. 609–632. [Google Scholar]
- Folino, A.; Karageorgiou, A.; Calabrò, P.S.; Komilis, D. Biodegradation of Wasted Bioplastics in Natural and Industrial Environments: A Review. Sustainability 2020, 12, 6030. [Google Scholar] [CrossRef]
- Kale, G.; Kijchavengkul, T.; Auras, R.; Rubino, M.; Selke, S.E.; Singh, S.P. Compostability of Bioplastic Packaging Materials: An Overview. Macromol. Biosci. 2007, 7, 255–277. [Google Scholar] [CrossRef]
- Lee, R.A.; Lavoie, J.-M. From first- to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity. Anim. Front. 2013, 2, 6–11. [Google Scholar] [CrossRef]
- Moodley, P. Sustainable biofuels: Opportunities and challenges. In Applied Biotechnology Reviews, Sustainable Biofuels; Ramesh Ray, C., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 1–20. [Google Scholar]
- Baldoni, E.; Reumerman, P.; Parisi, C.; Platt, R.; González Hermoso, H.; Vikla, K.; Vos, J.; M’barek, R. Chemical and Material Driven Biorefineries in the EU and Beyond; JRC124809; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- Zuiderveen, E.A.R.; Kuipers1, K.J.J.; Caldeira, C.; Hanssen, S.; van der Hulst, M.; de Jonge, M.M.J.; Vlysidis, A.; van Zelm, R.; Sala, S.; Huijbregts, M.A.J. The potential of emerging bio-based products to reduce environmental impacts. Nat. Portf. 2022, preprint. [Google Scholar] [CrossRef]
- Papong, S.; Malakul, P.; Trungkavashirakun, R.; Wenunun, P.; Chom-In, T.; Nithitanakul, M.; Sarobol, E. Comparative assessment of the environmental profile of PLA and PET drinking water bottles from a life cycle perspective. J. Clean. Prod. 2014, 65, 539–550. [Google Scholar] [CrossRef]
- Leejarkpai, T.; Mungcharoen, T.; Suwanmanee, U. Comparative assessment of global warming impact and eco-efficiency of PS (polystyrene), PET (polyethylene terephthalate) and PLA (polylactic acid) boxes. J. Clean. Prod. 2016, 125, 95–107. [Google Scholar] [CrossRef]
- Suwanmanee, U.; Varabuntoonvit, V.; Chaiwutthinan, P.; Tajan, M.; Mungcharoen, T.; Leejarkpai, T. Life cycle assessment of single use thermoform boxes made from polystyrene (PS), polylactic acid, (PLA), and PLA/starch: Cradle to consumer gate. Int. J. Life Cycle Assess. 2013, 18, 401–417. [Google Scholar] [CrossRef]
- 14067:2018; Greenhouse Gases—Carbon Footprint of Products—Requirements and Guidelines for Quantification. International Organization for Standardization (ISO): Geneva, Switzerland, 2018.
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe 2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.D.M.; Hollander, A.; Zijp, M.; van Zelm, R. ReCiPe 2016—A Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level; Report I: Characterization; National Institute for Public Health and the Environment (RIVM): Utrecht, The Netherlands, 2017; Available online: https://pre-sustainability.com/legacy/download/Report_ReCiPe_2017.pdf (accessed on 21 April 2023).
- Bishop, G.; Styles, D.; Lens, P.N.L. Environmental performance comparison of bioplastics and petrochemical plastics: A review of life cycle assessment (LCA) methodological decisions. Resour. Conserv. Recy. 2021, 168, 105451–105465. [Google Scholar] [CrossRef]
- 14040:2006/Amd 1:2020; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization (ISO): Geneva, Switzerland.
- 14044:2006/Amd 1:2017; Environmental Management—Life Cycle Assessment—Requirements and Guidelines—Amendment 1. ISO: Geneva, Switzerland. Available online: https://www.iso.org/standard/72357.html (accessed on 21 April 2023).
- 14044:2006/Amd 2:2020; Environmental Management—Life Cycle Assessment—Requirements and Guidelines—Amendment 2. ISO: Geneva, Switzerland. Available online: https://www.iso.org/standard/76122.html (accessed on 21 April 2023).
- Ögmundarson, Ó.; Herrgård, M.J.; Förster, J.; Hauschild, M.Z.; Fantke, P. Addressing environmental sustainability of biochemicals. Nat. Sustain. 2020, 3, 167–174. [Google Scholar] [CrossRef]
- EN 16760:2015; Bio-Based Products—Life Cycle Assessment. European Committee for Standardisation: Brussels, Belgium, 2015.
- Cespi, D.; Passarini, F.; Vassura, I.; Cavani, F. Butadiene from biomass, a life cycle perspective to address sustainability in the chemical industry. Green Chem. 2016, 18, 1625–1638. [Google Scholar] [CrossRef]
- Cespi, D.; Passarini, F.; Neri, E.; Cucciniello, R.; Cavani, F. LCA integration within sustainability metrics for chemical companies. In Life Cycle Assessment in the Chemical Product Chain, 1st ed.; Maranghi, S., Brondi, C., Eds.; Springer: Cham, Switzerland, 2020; Chapter 3; pp. 53–73. [Google Scholar]
- Gironi, F.; Piemonte, V. Life Cycle Assessment of Polylactic Acid and Polyethylene Terephthalate Bottles for Drinking Water. Environ. Prog. Sustain. 2011, 30, 459–468. [Google Scholar] [CrossRef]
- Daful, A.G.; Haigh, K.; Vaskan, P.; Görgens, J.F. Environmental impact assessment of lignocellulosic lactic acid production: Integrated with existing sugar mills. Food Bioprod. Process. 2016, 99, 58–70. [Google Scholar] [CrossRef]
- Patel, M.; Crank, M.; Dornburg, V.; Hermann, B.; Roes, L.; Hüsing, B.; Overbeek, L.; Terragni, F.; Recchia, E. Medium and Long-Term Opportunities and Risks of the Biotechnological Production of Bulk Chemicals from Renewable Resources—The Potential of White Biotechnology. Thre BREW Project. 2006. Available online: https://edepot.wur.nl/183326 (accessed on 21 April 2023).
- Hermann, B.G.; Blok, K.; Patel, M.K. Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change. Environ. Sci. Technol. 2007, 41, 7915–7921. [Google Scholar] [CrossRef]
- Goedkoop, M.; Heijungs, R.; Huijbregts, M.; De Schryver, A.; Struijs, J.; van Zelm, R. ReCiPe 2008—A Life Cycle Impact Assessment Method which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level, 1st ed.; Version 1.08; Ministry of Housing, Spatial Planning and the Environment (VROM): The Hague, The Netherlands, 2013. [Google Scholar]
- Milà i Canals, L.; Bauer, C.; Depestele, J.; Freiermuth Knuchel, R.; Gaillard, G.; Michelsen, O.; Müller-Wenk, R.; Rydgren, B. Key Elements in a Framework for Land Use Impact Assessment Within LCA. Int. J. Life Cycle Assess. 2007, 12, 5–15. [Google Scholar] [CrossRef]
- Bulle, C.; Margni, M.; Patouillard, L.; Boulay, A.M.; Bourgault, G.; De Bruille, V.; Cao, V.; Hauschild, M.; Henderson, A.; Humbert, S.; et al. IMPACT World+: A globally regionalized life cycle impact assessment method. Int. J. Life Cycle Assess. 2019, 24, 1653–1674. [Google Scholar] [CrossRef]
- Jolliet, O.; Margni, M.; Charles, R.; Humbert, S.; Payet, J.; Rebitzer, G.; Rosenbaum, R. IMPACT 2002+: A new life cycle impact assessment methodology. Int. J. Life Cycle Assess. 2003, 8, 324–330. [Google Scholar] [CrossRef]
- Toffoletto, L.; Bulle, C.; Godin, J.; Reid, C.; Deschênes, L. LUCAS—A new LCIA method used for a Canadian-specific context. Int. J. Life Cycle Assess. 2007, 12, 93–102. [Google Scholar] [CrossRef]
- Hauschild, M.Z.; Wenzel, H. Environmental Assessment of Products. Scientific Background; Kluwer Academic Publishers: Hingham, MA, USA, 1998; Volume 2. [Google Scholar]
- European Platform on Life Cycle Assessment. Available online: https://eplca.jrc.ec.europa.eu/LCDN/developerEF.xhtml (accessed on 21 April 2023).
- European Commission. Commission Recommendation (EU) 2021/2279 of 15 December 2021 on the Use of the Environmental Footprint Methods to Measure and Communicate the Life Cycle Environmental Performance of Products and Organisations. Available online: https://environment.ec.europa.eu/system/files/2021-12/Commission%20Recommendation%20on%20the%20use%20of%20the%20Environmental%20Footprint%20methods_0.pdf (accessed on 21 April 2023).
- Seppälä, J.; Posch, M.; Johansson, M.; Hettelingh, J.P. Country-dependent Characterisation Factors for Acidification and Terrestrial Eutrophication Based on Accumulated Exceedance as an Impact Category Indicator. Int. J. Life Cycle Assess. 2006, 11, 403–416. [Google Scholar] [CrossRef]
- Bos, U.; Horn, R.; Beck, T.; Lindner, J.P.; Fischer, M. LANCA® Characterization Factors for Life Cycle Impact Assessment—Version 2.0; Fraunhofer IBP: Stuttgart, Germany, 2016. [Google Scholar]
- De Laurentiis, V.; Secchi, M.; Bos, U.; Horn, R.; Laurent, A.; Sala, S. Soil quality index: Exploring options for a comprehensive assessment of land use impacts in LCA. J. Clean. Prod. 2019, 215, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Horn, R.; Maier, S. LANCA®-Characterization Factors for Life Cycle Impact Assessment, Version 2.5. 2018. Available online: http://publica.fraunhofer.de/documents/N-379310.html (accessed on 21 April 2023).
- Galgani, P.; Woltjer, G.; de Adelhart Toorop, R.; de Groot Ruiz, A.; Varoucha, E. Land Use, Land Use Change, Biodiversity and Ecosystem Services. True Pricing Method for Agri-Food Products. 2021. Available online: https://edepot.wur.nl/555581 (accessed on 21 April 2023).
- Galgani, P.; van Veen, B.; Kanidou, D.; de Adelhart Toorop, R.; Woltjer, G. True Price Assessment Method for Agri-Food Products. 2023. Available online: https://edepot.wur.nl/585906 (accessed on 21 April 2023).
- Kumar, P. TEEB: The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations; Routledge: London, UK; Washington, DC, USA, 2010. [Google Scholar]
- Patel, A.D.; Meesters, K.; den Uil, H.; de Jong, E.; Bloka, K.; Patel, M.K. Sustainability assessment of novel chemical processes at early stage: Application to biobased processes. Energy Environ. Sci. 2012, 5, 8430–8444. [Google Scholar] [CrossRef]
- Cespi, D.; Cucciniello, R.; Ricciardi, M.; Capacchione, C.; Vassura, I.; Passarini, F.; Proto, A. A simplified early stage assessment of process intensification: Glycidol as a value-added product from epichlorohydrin industry wastes. Green Chem. 2016, 18, 4559–4570. [Google Scholar] [CrossRef]
- Tripodi, A.; Bahadori, E.; Cespi, D.; Passarini, F.; Cavani, F.; Tabanelli, T.; Rossetti, I. Acetonitrile from Bioethanol Ammoxidation: Process Design from the Grass-Roots and Life Cycle Analysis. ACS Sustain. Chem. Eng. 2018, 6, 5441–5451. [Google Scholar] [CrossRef]
- Cok, B.; Tsiropoulos, I.; Roes, A.L.; Patel, M.K. Succinic acid production derived from carbohydrates: An energy and greenhouse gas assessment of a platform chemical toward a bio-based economy. Biofuels Bioprod. Bioref. 2014, 8, 16–29. [Google Scholar] [CrossRef]
- Directive 2014/95/EU of The European Parliament and of The Council of 22 October 2014 amending Directive 2013/34/EU as Regards Disclosure of Non-Financial and Diversity Information by Certain Large Undertakings and Groups. Available online: https://eur-lex.europa.eu/legal-content/EN/NIM/?uri=CELEX%3A32014L0095 (accessed on 21 April 2023).
- 14046:2014; Environmental Management—Water Footprint—Principles, Requirements and Guidelines. International Organization for Standardization (ISO): Geneva, Switzerland, 2014.
- Directive 2014/52/EU of the European Parliament and of the Council of 16 April 2014 amending Directive 2011/92/EU on the Assessment of the Effects of Certain Public and Private Projects on the Environment Text with EEA Relevance. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32014L0052 (accessed on 21 April 2023).
- Tecchio, P.; Freni, P.; De Benedetti, B.; Fenouillot, F. Ex-ante Life Cycle Assessment approach developed for a case study on bio-based polybutylene succinate. J. Clean. Prod. 2016, 112, 316–325. [Google Scholar] [CrossRef]
Land-Oriented Method (e.g., LANCA® Model, True Pricing Method for Agri-Food Products, etc.) | Multi-Impact Approach (e.g., ReCiPe 2016, IMPACT World+, EF 3.0, etc.) | |
---|---|---|
Assessing different system boundaries (cradle to gate or cradle to grave) | ★★★ | ★★★ |
Avoid burden-shifting phenomena (e.g., impacts on pre-treatment) | ★ | ★★★ |
Support non-financial disclosure | ★★ | ★★★ |
Support environmental impact assessment on land issues | ★★★ | ★ |
Support eco-design (product, supply chain) | ★ | ★★★ |
Informative respect to land impacts | ★★★ | ★★ |
Easy communication (unit of measures) | ★★★ | ★ |
Barriers for integration with other metrics | ★ | ★ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cespi, D. Bio-Based Chemicals from Dedicated or Waste Biomasses: Life Cycle Assessment for Evaluating the Impacts on Land. Sustain. Chem. 2023, 4, 184-196. https://doi.org/10.3390/suschem4020014
Cespi D. Bio-Based Chemicals from Dedicated or Waste Biomasses: Life Cycle Assessment for Evaluating the Impacts on Land. Sustainable Chemistry. 2023; 4(2):184-196. https://doi.org/10.3390/suschem4020014
Chicago/Turabian StyleCespi, Daniele. 2023. "Bio-Based Chemicals from Dedicated or Waste Biomasses: Life Cycle Assessment for Evaluating the Impacts on Land" Sustainable Chemistry 4, no. 2: 184-196. https://doi.org/10.3390/suschem4020014
APA StyleCespi, D. (2023). Bio-Based Chemicals from Dedicated or Waste Biomasses: Life Cycle Assessment for Evaluating the Impacts on Land. Sustainable Chemistry, 4(2), 184-196. https://doi.org/10.3390/suschem4020014