Isolation of Cardanol Fractions from Cashew Nutshell Liquid (CNSL): A Sustainable Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Purification of Crude CNSL via Flash Column Chromatography
2.3.1. Method 1
2.3.2. Method 2
2.4. Characterization Details of the Purified CNSL Fractions
2.4.1. Monoene Cardanol
2.4.2. Diene Cardanol
2.4.3. Triene Cardanol
3. Results
3.1. Purification Strategy
3.2. Acetonitrile Recovery
3.3. Characterization of Cardanol Fractions
3.3.1. HPLC Analyses
3.3.2. FTIR Analyses
3.3.3. NMR Analyses
3.3.4. GC–MS Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lochab, B.; Shukla, S.; Varma, I.K. Naturally occurring phenolic sources: Monomers and polymers. RSC Adv. 2014, 4, 21712–21752. [Google Scholar] [CrossRef]
- Mgaya, J.; Shombe, G.B.; Masikane, S.C.; Mlowe, S.; Mubofu, E.B.; Revaprasadu, N. Cashew nut shell: A potential bio-resource for the production of bio-sourced chemicals, materials and fuels. Green Chem. 2019, 21, 1186–1201. [Google Scholar] [CrossRef]
- Adekanbi, M.L.; Olugasa, T.T. Utilizing cashew nut shell liquid for the sustainable production of biodiesel: A comprehensive review. Clean. Chem. Eng. 2022, 4, 100085. [Google Scholar] [CrossRef]
- Gallezot, P. Conversion of biomass to selected chemical products. Chem. Soc. Rev. 2012, 41, 1538–1558. [Google Scholar] [CrossRef] [PubMed]
- Dodds, E.; Lawson, W. Synthetic strogenic agents without the phenanthrene nucleus. Nature 1936, 137, 996. [Google Scholar] [CrossRef]
- Carwile, J.L.; Luu, H.T.; Bassett, L.S.; Driscoll, D.A.; Yuan, C.; Chang, J.Y.; Ye, X.; Calafat, A.M.; Michels, K.B. Polycarbonate bottle use and urinary bisphenol A concentrations. Environ. Health Perspect. 2009, 117, 1368–1372. [Google Scholar] [CrossRef]
- Bolognesi, C.; Castle, L.; Cravedi, J.-P.; Engel, K.-H.; Fowler, P.A.F.; Franz, R.; Grob, K.; Gürtler, R.; Husøy, T.; Mennes, W. Scientific opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs: Executive summary. EFSA J. 2015, 13, 3978. [Google Scholar]
- Chen, D.; Kannan, K.; Tan, H.; Zheng, Z.; Feng, Y.-L.; Wu, Y.; Widelka, M. Bisphenol analogues other than BPA: Environmental occurrence, human exposure, and toxicity—A review. Environ. Sci. Technol. 2016, 50, 5438–5453. [Google Scholar] [CrossRef] [PubMed]
- Trita, A.; Over, L.; Pollini, J.; Baader, S.; Riegsinger, S.; Meier, M.; Gooßen, L. Synthesis of potential bisphenol A substitutes by isomerising metathesis of renewable raw materials. Green Chem. 2017, 19, 3051–3060. [Google Scholar] [CrossRef]
- Granado, L.; Tavernier, R.; Henry, S.; Auke, R.O.; Foyer, G.; David, G.; Caillol, S. Toward sustainable phenolic thermosets with high thermal performances. ACS Sustain. Chem. Eng. 2019, 7, 7209–7217. [Google Scholar] [CrossRef]
- Thébault, M.; Pizzi, A.; Policardi, F. Naturally occurring phenolic sources for industrial applications. In Industrial Arene Chemistry: Markets, Technologies, Sustainable Processes and Cases Studies of Aromatic Commodities; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2023; Volume 4, pp. 2059–2100. [Google Scholar] [CrossRef]
- Calò, E.; Maffezzoli, A.; Mele, G.; Martina, F.; Mazzetto, S.E.; Tarzia, A.; Stifani, C. Synthesis of a novel cardanol-based benzoxazine monomer and environmentally sustainable production of polymers and bio-composites. Green Chem. 2007, 9, 754–759. [Google Scholar] [CrossRef]
- Gazzotti, S.; Ortenzi, M.A.; Farina, H.; Disimino, M.; Silvani, A. Carvacrol-and cardanol-containing 1, 3-dioxolan-4-ones as comonomers for the synthesis of functional polylactide-based materials. Macromolecules 2020, 53, 6420–6431. [Google Scholar] [CrossRef]
- Trejo-Machin, A.; Puchot, L.; Verge, P. A cardanol-based polybenzoxazine vitrimer: Recycling, reshaping and reversible adhesion. Polym. Chem. 2020, 11, 7026–7034. [Google Scholar] [CrossRef]
- Caillol, S. The future of cardanol as small giant for biobased aromatic polymers and additives. Eur. Polym. J. 2023, 193, 112096. [Google Scholar] [CrossRef]
- Liang, B.; Li, X.; Hu, L.; Bo, C.; Zhou, J.; Zhou, Y. Foaming resol resin modified with polyhydroxylated cardanol and its application to phenolic foams. Indus. Crop. Prod. 2016, 80, 194–196. [Google Scholar] [CrossRef]
- Manarin, E.; Corsini, F.; Trano, S.; Fagiolari, L.; Amici, J.; Francia, C.; Bodoardo, S.; Turri, S.; Bella, F.; Griffini, G. Cardanol-derived epoxy resins as biobased gel polymer electrolytes for potassium-ion conduction. ACS Appl. Polym. Mater. 2022, 4, 3855–3865. [Google Scholar] [CrossRef]
- Vallin, A.; Ferretti, F.; Campaner, P.; Monticelli, O.; Pellis, A. Environmentally friendly synthesis of cardanol-based polyesters and their application as poly(lactic acid) additives. ACS Sustain. Chem. Eng. 2023, 11, 9654–9661. [Google Scholar] [CrossRef]
- Vemula, P.K.; John, G. Crops: A green approach toward self-assembled soft materials. Acc. Chem. Res. 2008, 41, 769–782. [Google Scholar] [CrossRef]
- Iji, M.; Moon, S.; Tanaka, S. Hydrophobic, mechanical and thermal characteristics of thermoplastic cellulose diacetate bonded with cardanol from cashew nutshell. Polym. J. 2011, 43, 738–741. [Google Scholar] [CrossRef]
- Lochab, B.; Varma, I.; Bijwea, J. Sustainable polymers derived from naturally occurring materials. Adv. Mater. Phys. Chem. 2012, 2, 221–225. [Google Scholar] [CrossRef]
- Kandaswamy, S.; Swarupa, V.M.; Sur, S.; Choubey, G.; Devarajan, Y.; Mishra, R. Cashew nut shell oil as a potential feedstock for biodiesel production: An overview. Biotechnol. Bioeng. 2023, 120, 3137–3147. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, L.; Thapliyal, P.; Karade, S. Anticorrosive properties of the epoxy–cardanol resin based paints. Prog. Org. Coat. 2007, 59, 76–80. [Google Scholar] [CrossRef]
- Ranarijaona, M.M.; Rafanoela, S.H.; Herinirina, L.C.; Duclos, M.C.; Lavaud, A.L.; Goux-Henry, C.; Métay, E.; Vestalys, V.R.; Lemaire, M. CNSL oxyacetic derivatives, new bio-based binder for paint preparation. Green Mater. 2023, 12, 15–28. [Google Scholar] [CrossRef]
- Voirin, C.; Caillol, S.; Sadavarte, N.V.; Tawade, B.V.; Boutevin, B.; Wadgaonkar, P.P. Functionalization of cardanol: Towards biobased polymers and additives. Polym. Chem. 2014, 5, 3142–3162. [Google Scholar] [CrossRef]
- Balgude, D.; Sabnis, A.; Ghosh, S.K. Synthesis and characterization of cardanol based aqueous 2K polyurethane coatings. Eur. Polym. J. 2016, 85, 620–634. [Google Scholar] [CrossRef]
- Masood, S.; Khan, S.; Ghosal, A.; Alam, M.; Rana, D.; Zafar, F.; Nishat, N. Fabrication of cardanol (a phenolic lipid) based polyamine coatings for anti-corrosive applications. Prog. Org. Coat. 2023, 174, 107304. [Google Scholar] [CrossRef]
- Oh, S.; Gavande, V.; Lee, W.-K. Synthesis and characteristics of cardanol-based acrylates as reactive diluents in UV-curing coatings. Mol. Cryst. Liq. Cryst. 2023, 68–75. [Google Scholar] [CrossRef]
- Greco, A.; Maffezzoli, A. Cardanol derivatives as innovative bio-plasticizers for poly(lactic acid). Polym. Degrad. Stab. 2016, 132, 213–219. [Google Scholar] [CrossRef]
- Lomonaco, D.; Santiago, G.M.P.; Ferreira, Y.S.; Arriaga, Â.M.C.; Mazzetto, S.E.; Mele, G.; Vasapollo, G. Study of technical CNSL and its main components as new green larvicides. Green Chem. 2009, 11, 31–33. [Google Scholar] [CrossRef]
- Kanehashi, S.; Masuda, R.; Yokoyama, K.; Kanamoto, T.; Nakashima, H.; Miyakoshi, T. Development of a cashew nut shell liquid (CNSL)-based polymer for antibacterial activity. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Shi, Y.; Kamer, P.C.; Cole-Hamilton, D.J. Synthesis of pharmaceutical drugs from cardanol derived from cashew nut shell liquid. Green Chem. 2019, 21, 1043–1053. [Google Scholar] [CrossRef]
- Monisha, M.; Amarnath, N.; Mukherjee, S.; Lochab, B. Cardanol benzoxazines: A versatile monomer with advancing applications. Macromol. Chem. Phys. 2019, 220, 1800470. [Google Scholar] [CrossRef]
- Duhan, V.; Amarnath, N.; Yadav, S.; Lochab, B. Greening biobased polybenzoxazine network: Three benefits in one go. ACS Appl. Polym. Mater. 2023, 5, 2971–2982. [Google Scholar] [CrossRef]
- Mapari, S.; Mestry, S.; Mhaske, S. Development of cardanol-derived epoxidized and Si-modified pressure-sensitive adhesives (PSAs). Int. J. Adhes. Adhes. 2023, 126, 103443. [Google Scholar] [CrossRef]
- Amarnath, N.; Appavoo, D.; Lochab, B. Eco-friendly halogen-free flame retardant cardanol polyphosphazene polybenzoxazine networks. ACS Sustain. Chem. Eng. 2018, 6, 389–402. [Google Scholar] [CrossRef]
- Masood, S.; Zafar, F.; Nishat, N. Green flame retardant material from cashew nut shell liquid. In Applications of Advanced Green Materials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 663–679. [Google Scholar]
- Sriharshitha, S.; Krishnadevi, K.; Devaraju, S.; Srinivasadesikan, V.; Lee, S.-L. Eco-friendly sustainable poly (benzoxazine-co-urethane) with room-temperature-assisted self-healing based on supramolecular interactions. ACS Omega 2020, 5, 33178–33185. [Google Scholar] [CrossRef] [PubMed]
- Bo, C.; Sha, Y.; Song, F.; Zhang, M.; Hu, L.; Jia, P.; Zhou, Y. Renewable benzoxazine-based thermosets from cashew nut: Investigating the self-healing, shape memory, recyclability and antibacterial activity. J. Clean. Prod. 2022, 341, 130898. [Google Scholar] [CrossRef]
- Ghosh, A.; Shukla, S.; Monisha, M.; Kumar, A.; Lochab, B.; Mitra, S. Sulfur copolymer: A new cathode structure for room-temperature sodium–sulfur batteries. ACS Energy Lett. 2017, 2, 2478–2485. [Google Scholar] [CrossRef]
- Rajkumar, B.; Khanam, L.; Koukaras, E.N.; Sharma, G.D.; Singh, S.P.; Lochab, B. Cardanol and guaiacol-sourced solution-processable green small molecule-based organic solar cells. ACS Sustain. Chem. Eng. 2020, 8, 5891–5902. [Google Scholar] [CrossRef]
- Tagliatesta, P.; Crestini, C.; Saladino, R.; Neri, V.; Filippone, P.; Fiorucci, C.; Attanasi, O.A. Manganese and iron tetraphenylporphyrin-catalyzed oxidation of a cardanol derivative (hydrogenated tert-butylcardanol). J. Porphyr. Phthalocyanines 2002, 6, 12–16. [Google Scholar] [CrossRef]
- Facanha, M.A.R.; Mazzetto, S.E.; Carioca, J.O.B.; de Barros, G.G. Evaluation of antioxidant properties of a phosphorated cardanol compound on mineral oils (NH10 and NH20). Fuel 2007, 86, 2416–2421. [Google Scholar]
- Lochab, B.; Varma, I.; Bijwe, J. Thermal behaviour of cardanol-based benzoxazines: Monomers and polymers. J. Ther. Anal. Calorim. 2010, 102, 769–774. [Google Scholar] [CrossRef]
- Denis, M.; Totée, C.; Le Borgne, D.; Sonnier, R.; Caillol, S.; Negrell, C. Triple Benefits of Cardanol as Chain Stopper, Flame Retardant and Reactive Diluent for Greener Alkyd Coating. Organics 2023, 4, 109–125. [Google Scholar] [CrossRef]
- Das, P.; Ganesh, A. Bio-oil from pyrolysis of cashew nut shell—a near fuel. Biomass Biooenerg. 2003, 25, 113–117. [Google Scholar] [CrossRef]
- Patel, R.N.; Bandyopadhyay, S.; Ganesh, A. Extraction of cashew (Anacardium occidentale) nut shell liquid using supercritical carbon dioxide. Bioresour. Technol. 2006, 97, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Ramos, E.H.; Nomen, R.; Sempere, J. Recovery of anacardic acids from cashew nut shell liquid with ion-exchange resins. Ind. Eng. Chem. Res. 2018, 57, 16903–16908. [Google Scholar] [CrossRef]
- Mubofu, E.B. From cashew nut shell wastes to high value chemicals. Pure Appl. Chem. 2016, 88, 17–27. [Google Scholar] [CrossRef]
- Tyman, J.H. Synthetic and Natural Phenols; Elsevier: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Tyman, J.; Johnson, R.; Muir, M.; Rokhgar, R. The extraction of natural cashew nut-shell liquid from the cashew nut (Anacardium occidentale). J. Am. Oil Chem. Soc. 1989, 66, 553–557. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, S.; Guo, W.-W.; Wang, P.-L.; Xing, W.; Song, L.; Hu, Y. Renewable cardanol-based phosphate as a flame retardant toughening agent for epoxy resins. ACS Sustain. Chem. Eng. 2017, 5, 3409–3416. [Google Scholar] [CrossRef]
- Kyei, S.K.; Eke, W.I.; Nagre, R.D.; Mensah, I.; Akaranta, O. A comprehensive review on waste valorization of cashew nutshell liquid: Sustainable development and industrial applications. Clean. Waste Syst. 2023, 6, 100116. [Google Scholar] [CrossRef]
- Mao, Z.-B.; Luo, T.-L.; Cheng, H.-T.; Liang, M.; Liu, G.-J. Intrinsic kinetics of catalytic hydrogenation of cardanol. Ind. Eng. Chem. Res. 2009, 48, 9910–9914. [Google Scholar] [CrossRef]
- Sahin, C.; Magomedova, L.; Ferreira, T.A.M.; Liu, J.; Tiefenbach, J.; Alves, P.S.; Queiroz, F.J.G.; Oliveira, A.S.d.; Bhattacharyya, M.; Grouleff, J.; et al. Phenolic lipids derived from cashew nut shell liquid to treat metabolic diseases. J. Med. Chem. 2022, 65, 1961–1978. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.N.; Bandyopadhyay, S.; Ganesh, A. Extraction of cardanol and phenol from bio-oils obtained through vacuum pyrolysis of biomass using supercritical fluid extraction. Energy 2011, 36, 1535–1542. [Google Scholar] [CrossRef]
- Jaillet, F.; Darroman, E.; Ratsimihety, A.; Boutevin, B.; Caillol, S. Synthesis of cardanol oil building blocks for polymer synthesis. Green Mater. 2015, 3, 59–70. [Google Scholar] [CrossRef]
- Wu, H.; Li, Q.; Yu, H.; Gu, M.; Wang, Y.; Xu, C.; Liao, Z. Comprehensive utilization of Hainan cashew nut shell: Process optimization of cashew nut shell liquid extraction and cardanol refinement by catalytic transfer hydrogenation. Ind. Crop. Prod. 2023, 203, 117168. [Google Scholar] [CrossRef]
- Rao, B.; Palanisamy, A. Synthesis of bio based low temperature curable liquid epoxy, benzoxazine monomer system from cardanol: Thermal and viscoelastic properties. Eur. Polym. J. 2013, 49, 2365–2376. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhatia, B.; Amarnath, N.; Rastogi, S.K.; Lochab, B. Isolation of Cardanol Fractions from Cashew Nutshell Liquid (CNSL): A Sustainable Approach. Sustain. Chem. 2024, 5, 68-80. https://doi.org/10.3390/suschem5020006
Bhatia B, Amarnath N, Rastogi SK, Lochab B. Isolation of Cardanol Fractions from Cashew Nutshell Liquid (CNSL): A Sustainable Approach. Sustainable Chemistry. 2024; 5(2):68-80. https://doi.org/10.3390/suschem5020006
Chicago/Turabian StyleBhatia, Bhavika, Nagarjuna Amarnath, Sumit K. Rastogi, and Bimlesh Lochab. 2024. "Isolation of Cardanol Fractions from Cashew Nutshell Liquid (CNSL): A Sustainable Approach" Sustainable Chemistry 5, no. 2: 68-80. https://doi.org/10.3390/suschem5020006
APA StyleBhatia, B., Amarnath, N., Rastogi, S. K., & Lochab, B. (2024). Isolation of Cardanol Fractions from Cashew Nutshell Liquid (CNSL): A Sustainable Approach. Sustainable Chemistry, 5(2), 68-80. https://doi.org/10.3390/suschem5020006