Use of Antioxidants to Reduce Chromium (VI) Formation during the Leather Tanning Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Fatty Acid Peroxide Determination
2.2.2. Hexavalent Chromium Determination
2.2.3. Other Analysis
2.2.4. Antioxidant Screening
3. Results and Discussion
3.1. Determination of Peroxides
3.2. NMR Analysis
3.3. UV Analysis
3.3.1. Chromium Behaviour
3.3.2. Agent Selection
- Water shows an inhibiting action on chromium oxidation. Indeed, all the samples showing a high concentration of Cr(VI) detected were prepared in the absence of water.
- Cromo FD has more sensitivity to oxidation than Chromosal B for various reasons, which are more fully investigated below.
- The results of NMR spectra agree with the results of this analysis. Indeed, on average, the most effective substances acting on chromium oxidation are Riveroil TIS and Keoil SK 042, thanks to the higher presence of unsaturation.
3.3.3. Antioxidant Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ellen MacArthur Foundation. What Is a Circular Economy. Circular Economy Introduction. Available online: https://www.ellenmacarthurfoundation.org/topics/circular-economy-introduction/overview (accessed on 18 April 2024).
- Omoloso, O.; Mortimer, K.; Wise, W.R.; Jraisat, L. Sustainability research in the leather industry: A critical review of progress and opportunities for future research. J. Clean. Prod. 2021, 285, 125441. [Google Scholar] [CrossRef]
- Dixit, S.; Yadav, A.; Dwivedi, P.D.; Das, M. Toxic hazards of leather industry and technologies to combat threat: A review. J. Clean. Prod. 2015, 87, 39–49. [Google Scholar] [CrossRef]
- Joseph, K.; Nithya, N. Material flows in the life cycle of leather. J. Clean. Prod. 2009, 17, 676–682. [Google Scholar] [CrossRef]
- Torras, J.; Buj, I.; Rovira, M.; de Pablo, J. Chromium recovery from exhausted baths generated in plating processes and its reuse in the tanning industry. J. Hazard Mater. 2012, 209–210, 343–347. [Google Scholar] [CrossRef]
- Karanam, S.B.; Raji, P.; Selvarani, J.A.; Samrot, A.V.; Pazhayakath, T.M.J.; Appalaraju, V.V.S.S. Leather Processing, Its Effects on Environment and Alternatives of Chrome Tanning. Int. J. Adv. Res. Eng. Technol. 2019, 10, 69–79. [Google Scholar]
- Thyssen, J.P.; Jensen, P.; Carlsen, B.C.; Engkilde, K.; Menné, T.; Johansen, J.D. The prevalence of chromium allergy in Denmark is currently increasing as a result of leather exposure. Br. J. Dermatol. 2009, 161, 1288–1293. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Zeng, Y.; Zhang, W. A Further Investigation on Collagen-Cr(III) Interaction at Molecular Level. J. Am. Leather Chem. Assoc. 2016, 111, 101–106. [Google Scholar]
- Fathima, N.N.; Baias, M.; Blumich, B.; Ramasami, T. Structure and dynamics of water in native and tanned collagen fibers: Effect of crosslinking. Int. J. Biol. Macromol. 2010, 47, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.Q.; Chen, C.L.; Li, T.D.; Cheng, J.Y.; Zhang, H.Y. Effects of Chromium-olation Length on Crosslinking Effects Investigated by Molecular Dynamics Simulation. Soft Mater. 2015, 13, 24–31. [Google Scholar] [CrossRef]
- Fontaine, M.; Clement, Y.; Blanc, N.; Demesmay, C. Hexavalent chromium release from leather over time natural ageing vs accelerated ageing according to a multivariate approach. J. Hazard Mater. 2019, 368, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.L.; Wise, S.S.; Wise, J.P., Sr. Carcinogenicity of hexavalent chromium. Indian J. Med. Res. 2008, 128, 353–372. [Google Scholar]
- Wadhawan, A.R.; Stone, A.T.; Bouwer, E.J. Biogeochemical Controls on Hexavalent Chromium Formation in Estuarine Sediments. Environ. Sci. Technol. 2013, 15, 8220–8228. [Google Scholar] [CrossRef] [PubMed]
- Arellano-Sánchez, M.G.; Devouge-Boyer, C.; Hubert-Roux, M.; Afonso, C.; Mignot, M. Chromium Determination in Leather and Other Matrices: A Review. Crit. Rev. Anal. Chem. 2022, 52, 1537–1556. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L. Recent Research Progress on Leather Fatliquoring Agents. Polym. Plast. Technol. Eng. 2009, 48, 285–291. [Google Scholar] [CrossRef]
- Measuring the moisture content of wet-blue. In Leather International; Business Trade Media International: London, UK, 2007.
- Xu, T.; Jiang, X.; Tang, Y.; Zeng, Y.; Zhang, W.; Shi, B. Oxidation of trivalent chromium induced by unsaturated oils: A pathway for hexavalent chromium formation in soil. J. Hazard Mater. 2021, 405, 124699. [Google Scholar] [CrossRef]
- Shen, Y.; Ma, J.; Fan, Q.; Gao, D.; Yao, H. Strategical development of chrome-free tanning agent by integrating layered double hydroxide with starch derivatives. Carbohydr. Polym. 2023, 304, 120511. [Google Scholar] [CrossRef]
- Batema, G.; von Behr, D.; van Driesten, S. Preventing chromium VI—Smit & Zoon. In Leather International; Business Trade Media International: London, UK, 2016. [Google Scholar]
- Udkhiyati, M.; Rachmawati, L. Comparison the Effect of Using Different Fatliqour to the Formation of Chromium (VI) in Leather Production. Mater. Sci. Forum 2019, 948, 217–220. [Google Scholar] [CrossRef]
- Compte, I.; Torras, Q.; Izquierdo, F.; Cuadros, R.; Bacardit, A. Use of Long-Chain Synthetic Phenolic Antioxidants to Produce Chromium-Tanned Leather without Risk of Hexavalent Chromium Formation. J. Am. Leather Chem. Assoc. 2023, 118, 439–449. [Google Scholar]
- TFL Ledertechnik GmbH and Co KG. Leather Treatment and Agent. CN Patent 101316938A, 27 November 2006. [Google Scholar]
- BS EN ISO 3960:2017; Animal and Vegetable Fats and Oils. Determination of Peroxide Value. Iodometric (Visual) Endpoint Determination. British Standard European Standard International Organization for Standardization: Geneva, Switzerland, 2017.
- Tiwari, A.K.; Orioli, S.; De Maio, M. Assessment of groundwater geochemistry and diffusion of hexavalent chromium contamination in an industrial town of Italy. J. Contam. Hydrol. 2019, 225, 103503. [Google Scholar] [CrossRef]
- Hama, J.R.; Fitzsimmons-Thoss, V. Determination of Unsaturated Fatty Acids Composition in Walnut (Juglans regia L.) Oil Using NMR Spectroscopy. Food Anal. Methods 2022, 15, 1226–1236. [Google Scholar] [CrossRef]
- BS EN ISO 17075-1:2017; Chemical Determination of Chromium(VI) Content in Leather—Part 1: Colorimetric Method. British Standard European Standard International Organization for Standardization: Geneva, Switzerland, 2017.
- Sanchez-Hachair, A.; Hofmann, A. Hexavalent chromium quantification in solution: Comparing direct UV–visible spectrometry with 1,5-diphenylcarbazide colorimetry. Comptes Rendus Chim. 2018, 21, 890–896. [Google Scholar] [CrossRef]
- Bajza, Z.; Vinkovic Vrcek, I. Fatliquoring agent and drying temperature effects on leather properties. J. Mater. Sci. 2001, 36, 5265–5270. [Google Scholar]
- Eyizi, V.; Tontul, I.; Türker, S. Effect of variety, drying methods and drying temperature on physical and chemical properties of hawthorn leather. J. Food Meas. Charact. 2020, 14, 3263–3269. [Google Scholar] [CrossRef]
- Lace, A.; Ryan, D.; Bowkett, M.; Cleary, J. Chromium Monitoring in Water by Colorimetry Using Optimised 1,5-Diphenylcarbazide Method. Int. J. Environ. Res. Public Health 2019, 16, 1803. [Google Scholar] [CrossRef]
- Wąsowska, I.; Maia, M.R.G.; Niedźwiedzka, K.M.; Czauderna, M.; Ramalho Ribeiro, J.M.C.; Devillard, E.; Shingfield, K.J.; Wallace, R.J. Influence of fish oil on ruminal biohydrogenation of C18 unsaturated fatty acids. Br. J. Nutr. 2006, 95, 1199–1211. [Google Scholar] [CrossRef]
- Domínguez, H. Self-Aggregation of the SDS Surfactant at a Solid–Liquid Interface. J. Phys. Chem. B 2007, 111, 4054–4059. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.W.; Aguilar, J.A.; Atkinson, K.D.; Cowley, M.J.; Elliott, P.I.P.; Duckett, S.B.; Green, G.G.R.; Khazal, I.G.; López-Serrano, J.; Williamson, D.C. Reversible Interactions with para-Hydrogen Enhance NMR Sensitivity by Polarization Transfer. Science 2009, 323, 1708–1711. [Google Scholar] [CrossRef]
- Mathiason, F.; Lidén, C.; Hedberg, Y.S. Chromium released from leather—II: The importance of environmental parameters. Contact Dermat. 2015, 72, 275–285. [Google Scholar] [CrossRef]
- Davis, S.J.; Wise, W.R.; Recchia, S.; Spinazzè, A.; Masi, M. The Evaluation of the Detection of Cr(VI) in Leather. Analytica 2021, 3, 1–13. [Google Scholar] [CrossRef]
- Hauber, C.; Buljan, J. Formation, Prevention & Determination of Cr(VI) in Leather; United Nations Industrial Development Organization: Vienna, Austria, 2000. [Google Scholar]
- Pettine, M.; Capri, S. Removal of humic matter interference in the determination of Cr(VI) in soil extracts by the diphenylcarbazide method. Anal. Chim. Acta 2005, 540, 239–246. [Google Scholar] [CrossRef]
- Hron, W.T.; Menahan, L.A. A sensitive method for the determination of free fatty acids in plasma. J. Lipid Res. 1981, 22, 377–381. [Google Scholar] [CrossRef]
- McNeill, L.; McLean, J. State of the Science of Hexavalent Chromium in Drinking Water. Water Res. Found. 2012, 44, 1–35. [Google Scholar]
- Zhitkovich, A. Chromium in Drinking Water: Sources, Metabolism, and Cancer Risksacquosa. Chem. Res. Toxicol. 2011, 24, 1617–1629. [Google Scholar] [CrossRef] [PubMed]
- Pierre, G.; Punta, C.; Delattre, C.; Melone, L.; Dubessay, P.; Fiorati, A.; Pastori, N.; Galante, Y.M.; Michaud, P. TEMPO-mediated oxidation of polysaccharides: An ongoing story. Carbohydr. Polym. 2017, 165, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zeng, R.; Han, B.; Li, J. Single-Electron Transfer Reactions Enabled by N-Heterocyclic Carbene Organocatalysis. Chem. A Eur. J. 2021, 27, 3238–3250. [Google Scholar] [CrossRef]
- Knapp, G.; Orloff, H. Improved Lube Oil Antioxidants. Ind. Eng. Chem. 1961, 53, 63–66. [Google Scholar] [CrossRef]
- Foti, M.C. Antioxidant properties of phenols. J. Pharm. Pharmacol. 2010, 59, 1673–1685. [Google Scholar] [CrossRef]
- Sachdeva, M.; Karan, M.; Singh, T.; Dhingra, S. Oxidants and Antioxidants in Complementary and Alternative Medicine: A Review. Spatula DD Peer Rev. J. Complement. Med. Drug Discov. 2014, 4, 1–16. [Google Scholar] [CrossRef]
- Madhan, B.; Aravindhan, R.; Ranjithakumar, N.; Venkiah, V.; Raghava Rao, J.; Unni Nair, B. Combination tanning based on tara: An attempt to make chrome-free garment leather. J. Am. Leather Chem. Assoc. 2007, 102, 198–204. [Google Scholar]
- Devikavathi, G.; Suresh, S.; Rose, C.; Muralidharan, C. Prevention of carcinogenic Cr(VI) formation in leather—A three pronged approach for leather products. Indian J. Chem. Technol. 2014, 21, 7–13. [Google Scholar]
- Franceschi, M.; Pacchi, G.; Maraviglia, M. Use of Olive Mill Waste Waters in the Leather Tanning Industry. European Patent 3494237B1, 3 August 2017. [Google Scholar]
- Azaizeh, H.; Halahlih, F.; Najami, N.; Brunner, D.; Faulstich, M.; Tafesh, A. Antioxidant activity of phenolic fractions in olive mill wastewater. Food Chem. 2012, 134, 2226–2234. [Google Scholar] [CrossRef] [PubMed]
- Kupareva, A.; Mäki-Arvela, P.; Grénman, H.; Eränen, K.; Sjöholm, R.; Reunanen, M.; Murzin, D.Y. Chemical Characterization of Lube Oils. Energy Fuels 2013, 27, 27–34. [Google Scholar] [CrossRef]
- Moktadir, M.A.; Ahmadi, H.B.; Sultana, R.; Zohra, F.T.; Liou, J.J.H.; Rezaei, J. Circular economy practices in the leather industry: A practical step towards sustainable development. J. Clean. Prod. 2020, 251, 119737. [Google Scholar] [CrossRef]
Fatliquoring Agents | 1H-NMR | 13C-NMR |
---|---|---|
Keoil SK 042 | 0.07 | 0.15 |
Riveroil TIS | 0.11 | 0.05 |
Lipsol MSW | 0.04 | 0.07 |
Truposist D | 0.02 | 0.01 |
Riveroil LSW | 0.01 | <0.01 |
Riveroil GLH | <0.01 | <0.01 |
Substance | Conditions of Reaction | Cr(III) Starting (g/L) | Cr(VI) Final (mg/L) | |
---|---|---|---|---|
Time | Temperature | |||
Cromo FD | 6 h | rt | 555.6 | 5.1 ± 0.5 |
Cromo FD | 48 h | 50 °C | 7.5 | 1.4 ± 0.1 |
Cromo FD | 120 h | rt | 7.5 | 0.65 ± 0.06 |
Cromo FD | 24 h | rt | 7.5 | 0.65 ± 0.06 |
Cromo FD | 6 h | rt | 7 | 0.64 ± 0.06 |
Cromo FD | 24 h + 72 h | rt | 7.5 | 0.60 ± 0.06 |
Cromo FD | 72 h + 24 h | rt | 7.5 | 0.57 ± 0.06 |
Cr2(SO4)3 | 6 h | rt | 7.5 | 0.37 ± 0.04 |
Cr2(SO4)3 | 6 h | rt | 4.75 | 0.2 ± 0.02 |
Chromosal B | - | rt | 0.28 (?) | 0.14 ± 0.01 |
Water | Chromium Source | Fatliquoring Agent | Cr(VI) Concentration (mg/L) |
---|---|---|---|
No | Cromo FD | Keoil SK 042 | 1.2 ± 0.1 |
No | Cromo FD | Lipsol MSW | 0.94 ± 0.09 |
No | Cromo FD | Riveroil TIS | 0.79 ± 0.08 |
No | Chromosal B | Keoil SK 042 | 0.77 ± 0.08 |
Yes | Cromo FD | Riveroil TIS | 0.73 ± 0.07 |
Yes | Cromo FD | - | 0.65 ± 0.06 |
Yes | Cromo FD | Keoil SK 042 | 0.57 ± 0.06 |
No | Chromosal B | Lipsol MSW | 0.56 ±0.06 |
Yes | Cromo FD | Lipsol MSW | 0.51 ± 0.05 |
No | Cromo FD | Truposist D | 0.48 ± 0.05 |
Yes | Cromo FD | Truposist D | 0.47 ± 0.05 |
Yes | Chromosal B | Truposist D | 0.47 ± 0.05 |
No | Chromosal B | Truposist D | 0.42 ± 0.04 |
Yes | Chromosal B | - | 0.37 ± 0.04 |
Yes | Chromosal B | Lipsol MSW | 0.37 ± 0.04 |
Yes | Chromosal B | Riveroil TIS | 0.37 ± 0.04 |
Yes | Chromosal B | Keoil SK 042 | 0.36 ± 0.04 |
No | Chromosal B | Riveroil TIS | 0.28 ± 0.03 |
Technique | Cromo FD | Chromosal B | Difference |
---|---|---|---|
pH meter | 3.8 | 2.1 | 1.7 |
ICP-OES [g/100 g] | 16.8 ± 0.5 | 18.5 ± 0.5 | 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salmi, O.; Molinelli, A.; Gelosa, S.; Sacchetti, A.; Rossi, F.; Masi, M. Use of Antioxidants to Reduce Chromium (VI) Formation during the Leather Tanning Process. Sustain. Chem. 2024, 5, 244-257. https://doi.org/10.3390/suschem5030016
Salmi O, Molinelli A, Gelosa S, Sacchetti A, Rossi F, Masi M. Use of Antioxidants to Reduce Chromium (VI) Formation during the Leather Tanning Process. Sustainable Chemistry. 2024; 5(3):244-257. https://doi.org/10.3390/suschem5030016
Chicago/Turabian StyleSalmi, Omar, Alessandro Molinelli, Simone Gelosa, Alessandro Sacchetti, Filippo Rossi, and Maurizio Masi. 2024. "Use of Antioxidants to Reduce Chromium (VI) Formation during the Leather Tanning Process" Sustainable Chemistry 5, no. 3: 244-257. https://doi.org/10.3390/suschem5030016
APA StyleSalmi, O., Molinelli, A., Gelosa, S., Sacchetti, A., Rossi, F., & Masi, M. (2024). Use of Antioxidants to Reduce Chromium (VI) Formation during the Leather Tanning Process. Sustainable Chemistry, 5(3), 244-257. https://doi.org/10.3390/suschem5030016