The Impact of Ageing on Episodic Memory Retrieval: How Valence Influences Neural Functional Connectivity
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Task Stimuli
2.2.1. Images
2.2.2. Video
2.3. Experimental Design
2.4. Task and Experimental Procedure
2.5. fMRI Data Acquisition
2.6. Behavioural Data Analysis and Mixed Modelling
2.7. fMRI Data Preprocessing and Denoising
2.8. fMRI Data Analysis
2.8.1. Multivariate Pattern Analysis (MVPA)
2.8.2. Seed-Based Connectivity (SBC) Analyses
2.8.3. Semipartial Correlations
3. Results
3.1. Behavioural Results
3.2. fMRI Results
3.2.1. MVPA
3.2.2. SBC
3.2.3. SBC—Semipartial Correlations
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
- Accuracy
- 2.
- Response times
Appendix C
Seed-Based Connectivity (SBC)
H | Peak Region | MNI Coordinates | Voxel No. | BSR | ||||
---|---|---|---|---|---|---|---|---|
Contrast | x | y | z | |||||
1. Right Cuneus | ||||||||
old > young | neg > neu | R | Superior Occipital Gyrus | +18 | −90 | +18 | 3495 | 0.0000 |
old > young | L | Lingual Gyrus | −8 | −64 | −4 | 1102 | 0.0000 | |
old > young | L | Superior Temporal Gyrus | +62 | −12 | +2 | 168 | 0.0008 | |
old > young | pos > neu | R | Calcarine | +16 | −100 | +2 | 152 | 0.0016 |
old > young | neg > pos | R | Calcarine | +8 | −94 | +12 | 167 | 0.0006 |
old > young | R | Lingual Gyrus | +14 | −42 | −6 | 84 | 0.0706 | |
2. Left Lingual Gyrus | ||||||||
old > young | neg > neu | R | Precuneus | +18 | −68 | +40 | 1062 | 0.0000 |
old > young | L | Superior Occipital Gyrus | −14 | −86 | +32 | 324 | 0.0000 | |
old > young | L | Middle Occipital Gyrus | −30 | −70 | +42 | 254 | 0.0000 | |
old > young | R | Middle Occipital Gyrus | +44 | −68 | +26 | 178 | 0.0003 | |
old > young | pos > neu | L | Inferior Parietal Gyrus | −30 | −58 | +42 | 236 | 0.0000 |
young > old | neg > pos | L | Inferior Tri Frontal Gyrus | −44 | +32 | +8 | 134 | 0.0032 |
old > young | L | Superior Occipital Gyrus | −10 | −98 | +22 | 128 | 0.0044 | |
3. Left Inferior Occipital Gyrus | ||||||||
young > old | neg > neu | R | Parahippocampal Gyrus | +24 | −40 | −10 | 176 | 0.0003 |
young > old | L | Fusiform Gyrus | −32 | −38 | −24 | 174 | 0.0004 | |
young > old | L | Lingual Gyrus | −12 | −50 | +4 | 167 | 0.0005 | |
young > old | L | Cuneus | −4 | −76 | +36 | 163 | 0.0007 | |
young > old | pos > neu | R | Calcarine | +16 | −58 | +6 | 309 | 0.0000 |
young > old | neg > pos | R | Superior Frontal Gyrus | +16 | +66 | +2 | 259 | 0.0000 |
young > old | L | Angular Gyrus | −50 | −60 | +42 | 139 | 0.0027 | |
4. Right Inferior Parietal Gyrus | ||||||||
old > young | neg > neu | L | Superior Temporal Gyrus | −48 | −26 | +4 | 480 | 0.0000 |
old > young | L | Superior Temporal Pole | −44 | +20 | −14 | 132 | 0.0043 | |
young > old | neg > pos | R | Superior Parietal | +12 | −56 | +72 | 173 | 0.0005 |
young > old | L | Precuneus | −14 | −62 | +64 | 132 | 0.0042 | |
5. Left Anterior Insula | ||||||||
young > old | neg > neu | L | Superior Medial Frontal Gyrus | −8 | +50 | +36 | 1567 | 0.0000 |
young > old | L | Inferior Tri Frontal Gyrus | −36 | +16 | +30 | 538 | 0.0000 | |
young > old | L | Superior Frontal Gyrus | −34 | +52 | +2 | 202 | 0.0001 | |
young > old | R | Middle Frontal Gyrus | +32 | +58 | +6 | 157 | 0.0009 | |
young > old | pos > neu | L | Superior Medial Frontal Gyrus | −2 | +50 | +30 | 1092 | 0.0000 |
young > old | R | Middle Frontal Gyrus | +46 | +32 | +24 | 168 | 0.0005 | |
6. Left Middle Frontal Gyrus | ||||||||
young > old | neg > neu | L | Superior Parietal Gyrus | −24 | −56 | +42 | 186 | 0.0002 |
young > old | R | Fusiform Gyrus | +30 | −74 | −6 | 162 | 0.0007 | |
young > old | neg > pos | R | Lingual Gyrus | +20 | −70 | −6 | 243 | 0.0000 |
young > old | L | Insula | −44 | 0 | −6 | 177 | 0.0003 |
Appendix D
References
- Tulving, E. Episodic and semantic memory. In Organisation of Memory, 2nd ed.; Tulving, E., Donaldson, W., Eds.; Academic Press: Cambridge, MA, USA, 1972; Volume 1, pp. 381–403. [Google Scholar]
- Spaniol, J.; Grady, C. Aging and the neural correlates of source memory: Over-recruitment and functional reorganization. Neurobiol. Aging 2012, 33, e3–e425. [Google Scholar] [CrossRef] [PubMed]
- Kinugawa, K.; Schumm, S.; Pollina, M.; Depre, M.; Jungbluth, C.; Doulazmi, M.; Sebban, C.; Zlomuzica, A.; Pietrowsky, R.; Pause, B.; et al. Aging-related episodic memory decline: Are emotions the key? Front. Behav. Neurosci. 2013, 7, 2. [Google Scholar] [CrossRef] [PubMed]
- Nyberg, L.; Lövdén, M.; Riklund, K.; Lindenberger, U.; Bäckman, L. Memory aging and brain maintenance. In Trends in Cognitive Sciences; Cell Press: Cambridge, MA, USA, 2012; Volume 16, pp. 292–305. [Google Scholar] [CrossRef]
- Nyberg, L. Functional brain imaging of episodic memory decline in ageing. J. Intern. Med. 2017, 281, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Korkki, S.M.; Richter, F.R.; Jeyarathnarajah, P.; Simons, J.S. Supplemental Material for Healthy Ageing Reduces the Precision of Episodic Memory Retrieval. Psychol. Aging 2020, 35, 124–142. [Google Scholar] [CrossRef]
- Park, D.C.; Reuter-Lorenz, P. The adaptive brain: Aging and neurocognitive scaffolding. Annu. Rev. Psychol. 2009, 60, 173–196. [Google Scholar] [CrossRef]
- St-Laurent, M.; Abdi, H.; Burianová, H.; Grady, C.L. Influence of aging on the neural correlates of autobiographical, episodic, and semantic memory retrieval. J. Cogn. Neurosci. 2011, 23, 4150–4163. [Google Scholar] [CrossRef]
- Cabeza, R.; Prince, S.E.; Daselaar, S.M.; Greenberg, D.L.; Budde, M.; Dolcos, F.; LaBar, K.S.; Rubin, D.C. Brain activity during episodic retrieval of autobiographical and laboratory events: An fMRI study using a novel photo paradigm. J. Cogn. Neurosci. 2004, 16, 1583–1594. [Google Scholar] [CrossRef]
- Rönnlund, M.; Nyberg, L.; Bäckman, L.; Nilsson, L.G. Stability, growth, and decline in adult life span development of declarative memory: Cross-sectional and longitudinal data from a population-based study. Psychol. Aging 2005, 20, 3–18. [Google Scholar] [CrossRef]
- Josefsson, M.; De Luna, X.; Pudas, S.; Nilsson, L.G.; Nyberg, L. Genetic and lifestyle predictors of 15-year longitudinal change in episodic memory. J. Am. Geriatr. Soc. 2012, 60, 2308–2312. [Google Scholar] [CrossRef]
- Addis, D.R.; Roberts, R.P.; Schacter, D.L. Age-related neural changes in autobiographical remembering and imagining. Neuropsychologia 2011, 49, 3656–3669. [Google Scholar] [CrossRef]
- Greene, N.R.; Naveh-Benjamin, M. Adult age-related changes in the specificity of episodic memory representations: A review and theoretical framework. Psychol. Aging 2023, 38, 67–86. [Google Scholar] [CrossRef] [PubMed]
- Schacter, D.L.; Gaesser, B.; Addis, D.R. Remembering the past and imagining the future in the elderly. Gerontology 2013, 59, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Boujut, A.; Clarys, D. The effect of ageing on recollection: The role of the binding updating process. Memory 2016, 24, 1231–1242. [Google Scholar] [CrossRef] [PubMed]
- Souchay, C.; Moulin, C.J.A.; Clarys, D.; Taconnat, L.; Isingrini, M. Diminished episodic memory awareness in older adults: Evidence from feeling-of-knowing and recollection. Conscious. Cogn. 2007, 16, 769–784. [Google Scholar] [CrossRef]
- Wong, J.T.; Cramer, S.J.; Gallo, D.A. Age-related reduction of the confidence-accuracy relationship in episodic memory: Effects of recollection quality and retrieval monitoring. Psychol. Aging 2012, 27, 1053–1065. [Google Scholar] [CrossRef]
- Eckert, M.A.; Keren, N.I.; Roberts, D.R.; Calhoun, V.D.; Harris, K.C. Age-related changes in processing speed: Unique contributions of cerebellar and prefrontal cortex. Front. Hum. Neurosci. 2010, 4, 1178. [Google Scholar] [CrossRef]
- Kochunov, P.; Coyle, T.; Lancaster, J.; Robin, D.A.; Hardies, J.; Kochunov, V.; Bartzokis, G.; Stanley, J.; Royall, D.; Schlosser, A.E.; et al. Processing speed is correlated with cerebral health markers in the frontal lobes as quantified by neuroimaging. NeuroImage 2010, 49, 1190–1199. [Google Scholar] [CrossRef]
- Hultsch, D.F.; Macdonald, S.W.S.; Dixon, R.A. Variability in Reaction Time Performance of Younger and Older Adults. J. Gerontol. 2002, 57, P101–P115. Available online: https://academic.oup.com/psychsocgerontology/article/57/2/P101/600150 (accessed on 4 September 2024). [CrossRef]
- Squire, L.R. Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 1992, 99, 195–231. [Google Scholar] [CrossRef]
- LaBar, K.S.; Cabeza, R. Cognitive neuroscience of emotional memory. Nat. Rev. Neurosci. 2006, 7, 54–64. [Google Scholar] [CrossRef]
- Raz, N.; Lindenberger, U.; Rodrigue, K.M.; Kennedy, K.M.; Head, D.; Williamson, A.; Dahle, C.; Gerstorf, D.; Acker, J.D. Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cereb. Cortex 2005, 15, 1676–1689. [Google Scholar] [CrossRef] [PubMed]
- Gorbach, T.; Pudas, S.; Lundquist, A.; Orädd, G.; Josefsson, M.; Salami, A.; de Luna, X.; Nyberg, L. Longitudinal association between hippocampus atrophy and episodic-memory decline. Neurobiol. Aging 2017, 51, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Ward, A.M.; Mormino, E.C.; Huijbers, W.; Schultz, A.P.; Hedden, T.; Sperling, R.A. Relationships between default-mode network connectivity, medial temporal lobe structure, and age-related memory deficits. Neurobiol. Aging 2015, 36, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Persson, J.; Pudas, S.; Lind, J.; Kauppi, K.; Nilsson, L.G.; Nyberg, L. Longitudinal structure-function correlates in elderly reveal MTL dysfunction with cognitive decline. Cereb. Cortex 2012, 22, 2297–2304. [Google Scholar] [CrossRef]
- Morcom, A.M.; Good, C.D.; Frackowiak, R.S.J.; Rugg, M.D. Age effects on the neural correlates of successful memory encoding. Brain 2003, 126, 213–229. [Google Scholar] [CrossRef]
- Richter, F.R.; Cooper, R.A.; Bays, P.M.; Simons, J.S. Distinct neural mechanisms underlie the success, precision, and vividness of episodic memory. eLIFE 2016, 25, e18260. [Google Scholar] [CrossRef]
- Cabeza, R.; Anderson, N.D.; Locantore, J.K.; McIntosh, A.R. Aging gracefully: Compensatory brain activity in high-performing older adults. NeuroImage 2002, 17, 1394–1402. [Google Scholar] [CrossRef]
- Madden, D.J.; Turkington, T.G.; Provenzale, J.M.; Denny, L.L.; Hawk, T.C.; Gottlob, L.R.; Coleman, R.E. Adult Age Differences in the Functional Neuroanatomy of Verbal Recognition Memory. Hum. Brain Mapp. 1999, 7, 115–135. [Google Scholar] [CrossRef]
- Nielson, K.A.; Langenecker, S.A.; Garavan, H. Differences in the functional neuroanatomy of inhibitory control across the adult life span. Psychol. Aging 2002, 17, 56–71. [Google Scholar] [CrossRef]
- Rosen, A.C.; Prull, M.W.; O’Hara, R.; Race, E.A.; Desmond, J.E.; Glover, G.H.; Yesavage, J.A.; Gabrieli, J.D.E. Variable effects of aging on frontal lobe contributions to memory. NeuroReport 2002, 13, 2425–2428. [Google Scholar] [CrossRef]
- Spreng, R.N.; Stevens, W.D.; Chamberlain, J.P.; Gilmore, A.W.; Schacter, D.L. Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. NeuroImage 2010, 53, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Stanley, M.L.; Monge, Z.A.; Wing, E.A.; Geib, B.R.; Davis, S.W.; Cabeza, R. Age-Related Compensatory Reconfiguration of PFC Connections during Episodic Memory Retrieval. Cereb. Cortex 2021, 31, 717–730. [Google Scholar] [CrossRef] [PubMed]
- Reuter-Lorenz, P.A.; Jonides, J.; Smith, E.E.; Hartley, A.; Miller, A.; Marshuetz, C.; Koeppe, R.A. Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. J. Cogn. Neurosci. 2000, 12, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Reuter-Lorenz, P.A.; Cappell, K.A. Neurocognitive Aging and the Compensation Hypothesis. Curr. Dir. Psychol. Res. 2008, 17, 177–182. [Google Scholar] [CrossRef]
- Almeida, J.; Martins, A.R.; Amaral, L.; Valério, D.; Bukhari, Q.; Schu, G.; Nogueira, J.; Spínola, M.; Soleimani, G.; Fernandes, F.; et al. The cerebellum is causally involved in episodic memory under aging. GeroScience 2023, 45, 2267–2287. [Google Scholar] [CrossRef]
- Alger, S.E.; Kensinger, E.A.; Payne, J.D. Preferential consolidation of emotionally salient information during a nap is preserved in middle age. Neurobiol. Aging 2018, 68, 34–47. [Google Scholar] [CrossRef]
- Nashiro, K.; Mather, M. How arousal affects younger and older adults’ memory binding. Exp. Aging Res. 2011, 37, 108–128. [Google Scholar] [CrossRef]
- Sutherland, M.R.; Mather, M. Negative arousal increases the effects of stimulus salience in older adults. Exp. Aging Res. 2015, 41, 259–271. [Google Scholar] [CrossRef]
- Dolcos, F.; Katsumi, Y.; Weymar, M.; Moore, M.; Tsukiura, T.; Dolcos, S. Emerging Directions in Emotional Episodic Memory. Front. Psychol. 2017, 8, 1867. Available online: https://www.frontiersin.org/article/10.3389/fpsyg.2017.01867 (accessed on 4 September 2024). [CrossRef]
- Constantinou, M.; Karadachka, K.; Marstaller, L.; Burianová, H. The effect of negative arousal on declarative memory. Neuropsychologia 2024, 193, 108759. [Google Scholar] [CrossRef]
- Kensinger, E.A.; Gutchess, A.H.; Schacter, D.L. Effects of Aging and Encoding Instructions on Emotion-Induced Memory Trade-Offs. Psychol. Aging 2007, 22, 781–795. [Google Scholar] [CrossRef] [PubMed]
- Ritchey, M.; Dolcos, F.; Cabeza, R. Role of amygdala connectivity in the persistence of emotional memories over time: An event-related fMRI investigation. Cereb. Cortex 2008, 18, 2494–2504. [Google Scholar] [CrossRef] [PubMed]
- Sharot, T.; Yonelinas, A.P. Differential time-dependent effects of emotion on recollective experience and memory for contextual information. Cognition 2008, 106, 538–547. [Google Scholar] [CrossRef] [PubMed]
- Katsumi, Y.; Moore, M. Affective enhancement of episodic memory is associated with widespread patterns of intrinsic functional connectivity across the adult lifespan. Front. Behav. Neurosci. 2022, 16, 910180. [Google Scholar] [CrossRef]
- Sakaki, M.; Fryer, K.; Mather, M. Emotion Strengthens High-Priority Memory Traces but Weakens Low-Priority Memory Traces. Psychol. Sci. 2014, 25, 387–395. [Google Scholar] [CrossRef]
- Clewett, D.; McClay, M. Emotional arousal lingers across time to bind discrete episodes in memory. PsyArXiv 2021. [Google Scholar] [CrossRef]
- Schlüter, H.; Hackländer, R.P.; Bermeitinger, C. Emotional oddball: A review on memory effects. Psychon. Bull. Rev. 2019, 26, 1472–1502. [Google Scholar] [CrossRef]
- Tartar, J.L.; de Almeida, K.; McIntosh, R.C.; Rosselli, M.; Nash, A.J. Emotionally negative pictures increase attention to a subsequent auditory stimulus. Int. J. Psychophysiol. 2012, 83, 36–44. [Google Scholar] [CrossRef]
- Bisby, J.A.; Horner, A.J.; Bush, D.; Burgess, N. Negative emotional content disrupts the coherence of episodic memories. J. Exp. Psychol. Gen. 2018, 147, 243–256. [Google Scholar] [CrossRef]
- Farras-Permanyer, L.; Mancho-Fora, N.; Montalà-Flaquer, M.; Bartrés-Faz, D.; Vaqué-Alcázar, L.; Peró-Cebollero, M.; Guàrdia-Olmos, J. Age-related changes in resting-state functional connectivity in older adults. Neural Regen. Res. 2019, 14, 1544–1555. [Google Scholar] [CrossRef]
- Varangis, E.; Habeck, C.G.; Razlighi, Q.R.; Stern, Y. The Effect of Aging on Resting State Connectivity of Predefined Networks in the Brain. Front. Aging Neurosci. 2019, 11, 234. [Google Scholar] [CrossRef] [PubMed]
- Varangis, E.; Habeck, C.G.; Stern, Y. Task-based functional connectivity in aging: How task and connectivity methodology affect discovery of age effects. Brain Behav. 2021, 1, e01954. [Google Scholar] [CrossRef] [PubMed]
- Charles, S.T.; Carstensen, L.L. Social and emotional aging. Ann. Rev. Psychol. 2010, 61, 383–409. [Google Scholar] [CrossRef] [PubMed]
- Carstensen, L.L.; Turan, B.; Scheibe, S.; Ram, N.; Ersner-Hershfield, H.; Samanez-Larkin, G.R.; Brooks, K.P.; Nesselroade, J.R. Emotional Experience Improves With Age: Evidence Based on Over 10 Years of Experience Sampling. Psychol. Aging 2011, 26, 21–33. [Google Scholar] [CrossRef]
- Isaacowitz, D.M.; Wadlinger, H.A.; Goren, D.; Wilson, H.R. Is there an age-related positivity effect in visual attention? A comparison of two methodologies. Emotion 2006, 6, 511–516. [Google Scholar] [CrossRef]
- Cacioppo, J.T.; Berntson, G.G.; Bechara, A.; Tranel, D.; Hawkley, L.C. Could an Aging Brain Contribute to Subjective Well-Being? The Value Added by a Social Neuroscience Perspective. In Social Neuroscience: Toward Understanding the Underpinnings of the Social Mind, Social Cognition and Social Neuroscience; Oxford Academic: Oxford, UK, 2011. [Google Scholar]
- Charles, S.T.; Mather, M.; Carstensen, L.L. Aging and Emotional Memory: The Forgettable Nature of Negative Images for Older Adults. J. Exp. Psychol. Gen. 2003, 132, 310–324. [Google Scholar] [CrossRef]
- Dixon, M.L.; Thiruchselvam, R.; Todd, R.; Christoff, K. Emotion and the prefrontal cortex: An integrative review. Psychol. Bull. 2017, 143, 1033–1081. [Google Scholar] [CrossRef]
- Fossati, P.; Hevenor Simon, J.; Graham, S.J.; Grady, C.; Keightley, M.L.; Fergus Craik, M.; Mayberg, H. Article In Search of the Emotional Self: An fMRI Study Using Positive and Negative Emotional Words. Am. J. Psychiatry 2003, 160, 1938–1945. Available online: http://ajp.psychiatryonline.org (accessed on 4 September 2024). [CrossRef]
- Ochsner, K.; Bunge, S.; Gross, J.; Gabrieli, J. Rethinking feelings: An fMRI study of the cognitive regulation of emotion. J. Cogn. Neurosci. 2002, 14, 1215–1229. [Google Scholar] [CrossRef]
- Keightley, M.L.; Chiew, K.S.; Winocur, G.; Grady, C.L. Age-related differences in brain activity underlying identification of emotional expressions in faces. Soc. Cogn. Affect. Neurosci. 2007, 2, 292–302. [Google Scholar] [CrossRef]
- Stevens, F.L.; Hurley, R.A.; Taber, K.H. Anterior Cingulate Cortex: Unique role in cognition and emotion. J. Neuropsychiatry Clin. Neurosci. 2011, 23, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, A.; Okamoto, Y.; Yoshimura, S.; Shishida, K.; Toki, S.; Doi, M.; Machino, A.; Fukumoto, T.; Yamashita, H.; Yamawaki, S. Distinctive neural responses to pain stimuli during induced sadness in patients with somatoform pain disorder: An fMRI study. Neuroimage Clin. 2013, 12, 782–789. [Google Scholar] [CrossRef] [PubMed]
- Ochsner, K.N.; Gross, J.J. The cognitive control of emotion. Trends Cogn. Sci. 2005, 9, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Yonelinas, A.P.; Ritchey, M. The slow forgetting of emotional episodic memories: An emotional binding account. Trends Cogn. Sci. 2015, 19, 259–267. [Google Scholar] [CrossRef]
- St Jacques, P.; Dolcos, F.; Cabeza, R. Effects of aging on functional connectivity of the amygdala during negative evaluation: A network analysis of fMRI data. Neurobiol. Aging 2010, 31, 315–327. [Google Scholar] [CrossRef]
- Grady, C.L.; Maisog, J.M.; Horwitz, B.; Ungerleider, L.G.; Mentis, M.J.; Salerno, J.A.; Pietrini, P.; Wagner, E.; Haxby, J.V. Age-related changes in cortical blood flow activation during visual processing of faces and location. J. Neurosci. 1994, 14, 1450–1462. [Google Scholar] [CrossRef]
- Park, D.C.; Polk, T.A.; Park, R.; Minear, M.; Savage, A.; Smith, M.R. Aging reduces neural specialization in ventral visual cortex. Proc. Natl. Acad. Sci. USA 2004, 101, 13091–13095. [Google Scholar] [CrossRef]
- Carp, J.; Park, J.; Hebrank, A.; Park, D.C.; Polk, T.A. Age-related neural dedifferentiation in the motor system. PLoS ONE 2011, 6, e29411. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; Mchugh, P.R. Mini-Mental State” a Practical Method For Grading The Cognitive State Of Patients For The Clinician. J. Gsychiaf. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Kurdi, B.; Lozano, S.; Banaji, M.R. Introducing the Open Affective Standardized Image Set (OASIS). Behav. Res. Methods 2017, 49, 457–470. [Google Scholar] [CrossRef]
- Dan-Glauser, E.S.; Scherer, K.R. The Geneva affective picture database (GAPED): A new 730-picture database focusing on valence and normative significance. Behav. Res. Methods 2011, 43, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Marchewka, A.; Zurawski, Ł.; Jednoróg, K.; Grabowska, A. The Nencki Affective Picture System (NAPS): Introduction to a novel, standardized, wide-range, high-quality, realistic picture database. Behav. Res. Methods 2014, 46, 596–610. [Google Scholar] [CrossRef] [PubMed]
- Aue, T.; Hoeppli, M.-E.; Piguet, C. The sensitivity of physiological measures to phobic and nonphobic fear intensity. J. Psychophysiol. 2012, 26, 154–167. [Google Scholar] [CrossRef]
- Balsamo, M.; Carlucci, L.; Padulo, C.; Perfetti, B.; Fairfield, B. A Bottom-Up Validation of the IAPS, GAPED, and NAPS Affective Picture Databases: Differential Effects on Behavioral Performance. Front. Psychol. 2020, 11, 2187. [Google Scholar] [CrossRef]
- Kopal, J.; Pidnebesna, A.; Tomeček, D.; Tintěra, J.; Hlinka, J. Typicality of functional connectivity robustly captures motion artifacts in rs-fMRI across datasets, atlases, and preprocessing pipelines. Hum. Brain Mapp. 2020, 41, 5325–5340. [Google Scholar] [CrossRef]
- Abdi, H.; Edelman, B.; Valentin, D.; Dowling, W.J. Experimental Design and Analysis for Psychology; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Garrett, A.S.; Maddock, R.J. Time course of the subjective emotional response to aversive pictures: Relevance to fMRI studies. Psychiatry Res. Neuroimaging 2001, 108, 39–48. [Google Scholar] [CrossRef]
- Rozenkrants, B.; Olofsson, J.K.; Polich, J. Affective visual event-related potentials: Arousal, valence, and repetition effects for normal and distorted pictures. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 2008, 67, 114–123. [Google Scholar] [CrossRef]
- Cano, M.E.; Class, Q.A.; Polich, J. Affective valence, stimulus attributes, and P300: Color vs. black/white and normal vs. scrambled images. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 2009, 71, 17–24. [Google Scholar] [CrossRef]
- Zunhammer, M.; Geis, S.; Busch, V.; Eichhammer, P.; Greenlee, M.W. Pain modulation by intranasal oxytocin and emotional picture viewing—A randomized double-blind fMRI study. Sci. Rep. 2016, 6, 31606. [Google Scholar] [CrossRef]
- Peirce, J.W. PsychoPy—Psychophysics software in Python. J. Neurosci. Methods 2007, 162, 8–13. [Google Scholar] [CrossRef]
- Heilbron, F.C.; Escorcia, V.; Ghanem, B.; Niebles, J.C. ActivityNet: A Large-Scale Video Benchmark for Human Activity Understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 961–970. [Google Scholar] [CrossRef]
- Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 1990, 87, 9868–9872. [Google Scholar] [CrossRef] [PubMed]
- Hedge, C.; Powell, G.; Sumner, P. The mapping between transformed reaction time costs and models of processing in aging and cognition. Psychol. Aging 2018, 33, 1093–1104. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development for R. RStudio, PBC 2020. Available online: http://www.rstudio.com/ (accessed on 4 September 2024).
- Friston, K.J.; Holmes, A.P.; Poline, J.B.; Grasby, P.J.; Williams, S.C.; Frackowiak, R.S.; Turner, R. Analysis of fMRI time-series revisited. Neuroimage 1995, 2, 45–53. [Google Scholar] [CrossRef]
- Whitfield-Gabrieli, S.; Nieto-Castanon, A. Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012, 2, 125–141. [Google Scholar] [CrossRef]
- The MathWorks Inc. MATLAB, Version: 9.12.0 (R2022a); The MathWorks Inc.: Natick, MA, USA, 2022; Available online: https://www.mathworks.com (accessed on 4 September 2024).
- Behzadi, Y.; Restom, K.; Liau, J.; Liu, T.T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 2007, 37, 90–101. [Google Scholar] [CrossRef]
- Beaty, R.; Benedek, M.; Barry Kaufman, S.; Silvia, P.J. Default and Executive Network Coupling Supports Creative Idea Production. Sci. Rep. 2015, 5, 10964. [Google Scholar] [CrossRef]
- Whitfield-Gabrieli, S.; Ghosh, S.; Nieto-Castanon, A. Brain connectomics predict response to treatment in social anxiety disorder. Mol. Psychiatry 2016, 21, 680–685. [Google Scholar] [CrossRef]
- Nieto-Castanon, A. Brain-wide connectome inferences using functional connectivity MultiVariate Pattern Analyses (fc- MVPA). PLoS Comput. Biol. 2022, 1, e1010634. [Google Scholar] [CrossRef]
- Yankouskaya, A.; Stolte, M.; Moradi, Z.; Rotshtein, P.; Humphreys, G. Integration of identity and emotion information in faces: fMRI evidence. Brain Cogn. 2017, 116, 29–39. [Google Scholar] [CrossRef]
- Costello, A.B.; Osborne, J.W. Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Pract. Assess. Res. Eval. 2005, 10, 7. [Google Scholar]
- Hair, J.; Anderson, R.; Tatham, R.; Black, W. Multivariate Data Analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Argyropoulos, G.; Loane, C.; Roca-Fernandez, A.; Lage-Martinez, C.; Gurau, O.; Irani, S.R.; Butler, C.R. Network-wide abnormalities explain memory variability in hippocampal amnesia. eLife 2019, 8, e46156. [Google Scholar] [CrossRef] [PubMed]
- Corbetta, M.; Patel, G.; Shulman, G.L. The reorienting system of the human brain: From environment to theory of mind. Neuron 2008, 8, 306–324. [Google Scholar] [CrossRef]
- Sala-Llonch, R.; Bartrés-Faz, D.; Junqué, C. Reorganization of brain networks in aging: A review of functional connectivity studies. Front. Psychol. 2015, 21, 663. [Google Scholar] [CrossRef]
- Numssen, O.; Bzdok, D.; Hartwigsen, G. Functional specialization within the inferior parietal lobes across cognitive domains. eLife 2021, 2, e63591. [Google Scholar] [CrossRef]
- Namkung, H.; Kim, S.H.; Sawa, A. The Insula: An Underestimated Brain Area in Clinical Neuroscience, Psychiatry, and Neurology Trends. Neuroscience 2017, 40, 200–207. [Google Scholar] [CrossRef]
- Waugh, C.E.; Pareezad, Z.; Mauss, I.B.; Lumian, D.S.; Ford, B.Q.; Davis, T.S.; Ciesielski, B.G.; Sams, K.V. Emotion regulation changes the duration of the BOLD response to emotional stimuli. Soc. Cogn. Affect. Neurosci. 2016, 11, 1550–1559. [Google Scholar] [CrossRef]
- Xu, Y. Parietal-driven visual working memory representation in occipito-temporal cortex. Curr. Biol. 2023, 33, 4516–4523. [Google Scholar] [CrossRef]
- Labouvie-Vief, G.; Gruhn, D.; Studer, J. Dynamic integration of emotion and cognition: Equilibrium regulation in development and aging. In The Handbook of Life-Span Development, Social and Emotional Development; Lerner, R.M., Lamb, M.E., Freund, A.M., Eds.; John and Wiley and Sons: Hoboken, NJ, USA, 2010; pp. 79–115. [Google Scholar]
- Keuss, P.J.; Van der Molen, M.W. Positive and negative effects of stimulus intensity in auditory reaction tasks: Further studies on immediate arousal. Acta Psychol. 1982, 52, 61–72. [Google Scholar] [CrossRef]
- Laricchiuta, D.; Petrosini, L. Individual differences in response to positive and negative stimuli: Endocannabinoid-based insight on approach and avoidance behaviors. Front. Syst. Neurosci. 2014, 8, 238. [Google Scholar] [CrossRef]
- Unkelbach, C.; Alves, H.; Koch, A. Negativity bias, positivity bias, and valence asymmetries: Explaining the differential processing of positive and negative information. In Advances in Experimental Social Psychology; Gawronski, B., Ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2020; pp. 115–187. [Google Scholar] [CrossRef]
- Izard, C.E. Emotion theory and research: Highlights, unanswered questions, and emerging issues. Annu. Rev. Psychol. 2009, 60, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xu, M.; Wang, J.; Rao, T.; Burnett, I. Improving Visual Saliency Computing With Emotion Intensity. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1201–1213. [Google Scholar] [CrossRef] [PubMed]
- Dixon, P.M.; Saint-Maurice, P.F.; Kim, Y.; Hibbing, P.; Bai, Y.; Welk, G.J. A Primer on the Use of Equivalence Testing for Evaluating Measurement Agreement. Med. Sci. Sports Exerc. 2018, 50, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Lakens, D.; Scheel, A.M.; Isager, P.M. Equivalence Testing for Psychological Research: A Tutorial. Adv. Methods Pr. Psychol. Sci. 2018, 1, 259–269. [Google Scholar] [CrossRef]
- Anderson-Cook, C.M.; Borror, C.M.; Montgomery, D.C. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th ed.; John and Wiley and Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Lakens, D. Equivalence Tests: A Practical Primer for t Tests, Correlations, and Meta-Analyses. Soc. Psychol. Pers. Sci. 2017, 8, 355–362. [Google Scholar] [CrossRef]
H | Peak Region | MNI Coordinates | Voxel No. | BSR | |||
---|---|---|---|---|---|---|---|
Young > Old | x | y | z | ||||
R | Cuneus | +10 | −78 | +32 | 641 | 0.000000 | |
L | Middle Frontal Gyrus | −28 | +58 | +12 | 109 | 0.000000 | |
L | Lingual Gyrus | −18 | −84 | −16 | 98 | 0.000001 | |
L | Inferior Occipital Gyrus | −54 | −72 | −2 | 79 | 0.000010 | |
L | Anterior Insular Cortex | −28 | +14 | +12 | 76 | 0.000010 | |
R | Inferior Parietal Gyrus | +38 | −52 | +42 | 70 | 0.000040 |
Group Contrast | Condition Contrast | H | Peak Region | MNI Coordinates | Voxel No. | BSR | ||
---|---|---|---|---|---|---|---|---|
x | y | z | ||||||
Right Cuneus | ||||||||
old > young | pos > neu | R | Precentral Gyrus | +60 | +8 | +20 | 170 | 0.0005 |
Right Inferior Parietal Gyrus | ||||||||
young > old | neg > neu | R | Precuneus | +6 | −62 | +66 | 172 | 0.0003 |
young > old | pos > neu | R | Lingual Gyrus | +22 | −84 | −12 | 144 | 0.0015 |
young > old | neg > pos | R | Precuneus | +8 | −62 | +66 | 124 | 0.0038 |
Left Anterior Insula | ||||||||
young > old | neg > neu | L | Precentral Gyrus | −40 | +8 | +36 | 158 | 0.0005 |
old > young | pos > neu | L | Inferior Occipital Gyrus | −36 | −72 | −10 | 181 | 0.0002 |
young > old | R | Superior Medial Frontal Gyrus | +12 | +56 | +14 | 176 | 0.0002 | |
young > old | neg > pos | L | Lingual Gyrus | −2 | −78 | +4 | 143 | 0.0015 |
young > old | L | Fusiform Gyrus | −34 | −74 | −12 | 123 | 0.0047 | |
Left Middle Frontal Gyrus | ||||||||
young > old | neg > pos | L | Paracentral Lobule | −4 | −22 | +70 | 191 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Constantinou, M.; Pecchinenda, A.; Burianová, H.; Yankouskaya, A. The Impact of Ageing on Episodic Memory Retrieval: How Valence Influences Neural Functional Connectivity. NeuroSci 2024, 5, 542-564. https://doi.org/10.3390/neurosci5040040
Constantinou M, Pecchinenda A, Burianová H, Yankouskaya A. The Impact of Ageing on Episodic Memory Retrieval: How Valence Influences Neural Functional Connectivity. NeuroSci. 2024; 5(4):542-564. https://doi.org/10.3390/neurosci5040040
Chicago/Turabian StyleConstantinou, Marianna, Anna Pecchinenda, Hana Burianová, and Ala Yankouskaya. 2024. "The Impact of Ageing on Episodic Memory Retrieval: How Valence Influences Neural Functional Connectivity" NeuroSci 5, no. 4: 542-564. https://doi.org/10.3390/neurosci5040040
APA StyleConstantinou, M., Pecchinenda, A., Burianová, H., & Yankouskaya, A. (2024). The Impact of Ageing on Episodic Memory Retrieval: How Valence Influences Neural Functional Connectivity. NeuroSci, 5(4), 542-564. https://doi.org/10.3390/neurosci5040040