Sevoflurane Preconditioning Rescues PKMζ Gene Expression from Broad Hypoxia-Induced mRNA Downregulation Correlating with Improved Neuronal Recovery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Preparation
2.2. Molecular Biology
2.2.1. Sample Preparation
2.2.2. RNA Isolation and Reverse Transcription
2.2.3. Quantitative Real-Time RT-PCR
2.2.4. Statistics
3. Results
3.1. Protein Kinase Genes
3.2. Apoptotic Genes
3.3. Poly ADP-Ribose Polymerase
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lipton, P. Ischemic cell death in brain neurons. Physiol. Rev. 1999, 79, 1431–1568. [Google Scholar] [CrossRef] [PubMed]
- Ayuso, M.I.; Martinez-Alonso, E.; Regidor, I.; Alcazar, A. Stress Granule Induction after Brain Ischemia Is Independent of Eukaryotic Translation Initiation Factor (eIF) 2alpha Phosphorylation and Is Correlated with a Decrease in eIF4B and eIF4E Proteins. J. Biol. Chem. 2016, 291, 27252–27264. [Google Scholar] [CrossRef] [PubMed]
- DeGracia, D.J.; Hu, B.R. Irreversible translation arrest in the reperfused brain. J. Cereb. Blood Flow Metab. 2007, 27, 875–893. [Google Scholar] [CrossRef] [PubMed]
- Gidday, J.M. Cerebral preconditioning and ischaemic tolerance. Nat. Rev. Neurosci. 2006, 7, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Meng, F.; Cottrell, J.E.; Sacktor, T.C.; Kass, I.S. Metabotropic actions of the volatile anaesthetic sevoflurane increase protein kinase M synthesis and induce immediate preconditioning protection of rat hippocampal slices. J. Physiol. 2012, 590, 4093–4107. [Google Scholar] [CrossRef] [PubMed]
- Bickler, P.E.; Fahlman, C.S. Enhanced hypoxic preconditioning by isoflurane: Signaling gene expression and requirement of intracellular Ca2+ and inositol triphosphate receptors. Brain Res. 2010, 1340, 86–95. [Google Scholar] [CrossRef]
- Bickler, P.E.; Zhan, X.; Fahlman, C.S. Isoflurane preconditions hippocampal neurons against oxygen-glucose deprivation: Role of intracellular Ca2+ and mitogen-activated protein kinase signaling. Anesthesiology 2005, 103, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Jiang, X.; Shi, E.; Ma, H.; Wang, J. Sevoflurane preconditioning reverses impairment of hippocampal long-term potentiation induced by myocardial ischaemia-reperfusion injury. Eur. J. Anaesthesiol. 2009, 26, 961–968. [Google Scholar] [CrossRef]
- Wang, J.; Lei, B.; Popp, S.; Meng, F.; Cottrell, J.E.; Kass, I.S. Sevoflurane immediate preconditioning alters hypoxic membrane potential changes in rat hippocampal slices and improves recovery of CA1 pyramidal cells after hypoxia and global cerebral ischemia. Neuroscience 2007, 145, 1097–1107. [Google Scholar] [CrossRef]
- Wei, H.; Kang, B.; Wei, W.; Liang, G.; Meng, Q.C.; Li, Y.; Eckenhoff, R.G. Isoflurane and sevoflurane affect cell survival and BCL-2/BAX ratio differently. Brain Res. 2005, 1037, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Engelhard, K.W.C.; Eberspacher, E.; Pape, M.; Blobner, M.; Hutzler, P.; Kochs, E. Sevoflurane and propofol influence the expression of apoptosis-regulating proteins after cerebral ischaemia and reperfusion in rats. Eur. J. Anaesthesiol. 2004, 21, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Sacktor, T.C. How does PKMzeta maintain long-term memory? Nat. Rev. Neurosci. 2011, 12, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Meng, F.; Cottrell, J.E.; Kass, I.S. The differential effects of volatile anesthetics on electrophysiological and biochemical changes during and recovery after hypoxia in rat hippocampal slice CA1 pyramidal cells. Neuroscience 2006, 140, 957–967. [Google Scholar] [CrossRef] [PubMed]
- Harrison, D.C.; Medhurst, A.D.; Bond, B.C.; Campbell, C.A.; Davis, R.P.; Philpott, K.L. The use of quantitative RT-PCR to measure mRNA expression in a rat model of focal ischemia—Caspase-3 as a case study. Brain Res. Mol. Brain Res. 2000, 75, 143–149. [Google Scholar] [CrossRef]
- Asanuma, M.; Ogawa, N.; Hirata, H.; Chou, H.H.; Kondo, Y.; Mori, A. Ischemia-induced changes in alpha-tubulin and beta-actin mRNA in the gerbil brain and effects of bifemelane hydrochloride. Brain Res. 1993, 600, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Meldgaard, M.; Fenger, C.; Lambertsen, K.L.; Pedersen, M.D.; Ladeby, R.; Finsen, B. Validation of two reference genes for mRNA level studies of murine disease models in neurobiology. J. Neurosci. Methods 2006, 156, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Langnaese, K.; John, R.; Schweizer, H.; Ebmeyer, U.; Keilhoff, G. Selection of reference genes for quantitative real-time PCR in a rat asphyxial cardiac arrest model. BMC Mol. Biol. 2008, 9, 53. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, O.; Bar-Am, O.; Amit, T.; Chillag-Talmor, O.; Youdim, M.B. Neuroprotection via pro-survival protein kinase C isoforms associated with Bcl-2 family members. FASEB J. 2004, 18, 1471–1473. [Google Scholar] [CrossRef] [PubMed]
- Marini, F.; Pozzato, C.; Andreetta, V.; Jansson, B.; Arban, R.; Domenici, E.; Carboni, L. Single exposure to social defeat increases corticotropin-releasing factor and glucocorticoid receptor mRNA expression in rat hippocampus. Brain Res. 2006, 1067, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Medhurst, A.D.; Harrison, D.C.; Read, S.J.; Campbell, C.A.; Robbins, M.J.; Pangalos, M.N. The use of TaqMan RT-PCR assays for semiquantitative analysis of gene expression in CNS tissues and disease models. J. Neurosci. Methods 2000, 98, 9–20. [Google Scholar] [CrossRef]
- Churchill, E.N.; Mochly-Rosen, D. The roles of PKCdelta and epsilon isoenzymes in the regulation of myocardial ischaemia/reperfusion injury. Biochem. Soc. Trans. 2007, 35, 1040–1042. [Google Scholar] [CrossRef] [PubMed]
- Raval, A.P.; Dave, K.R.; Mochly-Rosen, D.; Sick, T.J.; Perez-Pinzon, M.A. Epsilon PKC is required for the induction of tolerance by ischemic and NMDA-mediated preconditioning in the organotypic hippocampal slice. J. Neurosci. 2003, 23, 384–391. [Google Scholar] [CrossRef]
- Obal, D.; Weber, N.C.; Zacharowski, K.; Toma, O.; Dettwiler, S.; Wolter, J.I.; Kratz, M.; Mullenheim, J.; Preckel, B.; Schlack, W. Role of protein kinase C-epsilon (PKCepsilon) in isoflurane-induced cardioprotection. Br. J. Anaesth. 2005, 94, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Huang, Y.M.; Wang, E.; Zuo, Z.Y.; Guo, Q.L. Sevoflurane-induced delayed neuroprotection involves mitoK(ATP) channel opening and PKC epsilon activation. Mol. Biol. Rep. 2012, 39, 5049–5057. [Google Scholar] [CrossRef] [PubMed]
- Okusa, C.; Miyamae, M.; Sugioka, S.; Kaneda, K.; Inamura, Y.; Onishi, A.; Domae, N.; Kotani, J.; Figueredo, V.M. Acute memory phase of sevoflurane preconditioning is associated with sustained translocation of protein kinase C-alpha and epsilon, but not delta, in isolated guinea pig hearts. Eur. J. Anaesthesiol. 2009, 26, 582–588. [Google Scholar] [CrossRef]
- Niizuma, K.; Yoshioka, H.; Chen, H.; Kim, G.S.; Jung, J.E.; Katsu, M.; Okami, N.; Chan, P.H. Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim. Biophys. Acta 2010, 1802, 92–99. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, F.; Tang, T.; Guo, C. The role of PARP1 in the DNA damage response and its application in tumor therapy. Front. Med. 2012, 6, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, L.; Kern, T.S.; Zheng, L. Inhibition of poly(ADP-ribose) polymerase inhibits ischemia/reperfusion induced neurodegeneration in retina via suppression of endoplasmic reticulum stress. Biochem. Biophys. Res. Commun. 2012, 423, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Schriewer, J.M.; Peek, C.B.; Bass, J.; Schumacker, P.T. ROS-mediated PARP activity undermines mitochondrial function after permeability transition pore opening during myocardial ischemia-reperfusion. J. Am. Heart Assoc. 2013, 2, e000159. [Google Scholar] [CrossRef]
- Bianchetti, E.; Mladinic, M.; Nistri, A. Mechanisms underlying cell death in ischemia-like damage to the rat spinal cord in vitro. Cell Death Dis. 2013, 4, e707. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Liu, J.; Florveus, A.; Ganesan, V.; Cottrell, J.E.; Kass, I.S. Exposure to Sevoflurane, But Not Ketamine, During Early-life Brain Development has Long-Lasting Effects on GABA(A) Receptor Mediated Inhibitory Neurotransmission. Neuroscience 2021, 472, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Jevtovic-Todorovic, V.; Boscolo, A.; Sanchez, V.; Lunardi, N. Anesthesia-induced developmental neurodegeneration: The role of neuronal organelles. Front. Neurol. 2012, 3, 141. [Google Scholar] [CrossRef]
- Warner, D.O.; Shi, Y.; Flick, R.P. Anesthesia and Neurodevelopment in Children: Perhaps the End of the Beginning. Anesthesiology 2018, 128, 700–703. [Google Scholar] [CrossRef] [PubMed]
- Tsokas, P.; Hsieh, C.; Flores-Obando, R.E.; Bernabo, M.; Tcherepanov, A.; Hernandez, A.I.; Thomas, C.; Bergold, P.J.; Cottrell, J.E.; Kremerskothen, J.; et al. KIBRA anchoring the action of PKMzeta maintains the persistence of memory. Sci. Adv. 2024, 10, eadl0030. [Google Scholar] [CrossRef] [PubMed]
- Tsokas, P.; Hsieh, C.; Yao, Y.; Lesburgueres, E.; Wallace, E.J.; Tcherepanov, A.; Jothianandan, D.; Hartley, B.R.; Pan, L.; Rivard, B.; et al. Compensation for PKMzeta in long-term potentiation and spatial long-term memory in mutant mice. Elife 2016, 5, e14846. [Google Scholar] [CrossRef] [PubMed]
- Bedirli, N.; Bagriacik, E.U.; Emmez, H.; Yilmaz, G.; Unal, Y.; Ozkose, Z. Sevoflurane and isoflurane preconditioning provides neuroprotection by inhibition of apoptosis-related mRNA expression in a rat model of focal cerebral ischemia. J. Neurosurg. Anesthesiol. 2012, 24, 336–344. [Google Scholar] [CrossRef]
- Zhang, S.D.; Zhai, J.; Zhang, H.; Wan, H.; Li, D.Z. Protective effect of isoflurane and sevoflurane on ischemic neurons and expression of Bcl-2 and ICE genes in rat brain. Biomed. Environ. Sci. 2006, 19, 143–146. [Google Scholar] [PubMed]
- Zhang, J.; Wang, C.; Yu, S.; Luo, Z.; Chen, Y.; Liu, Q.; Hua, F.; Xu, G.; Yu, P. Sevoflurane postconditioning protects rat hearts against ischemia-reperfusion injury via the activation of PI3K/AKT/mTOR signaling. Sci. Rep. 2014, 4, 7317. [Google Scholar] [CrossRef]
- Libien, J.; Sacktor, T.C.; Kass, I.S. Magnesium blocks the loss of protein kinase C, leads to a transient translocation of PKC(alpha) and PKC(epsilon), and improves recovery after anoxia in rat hippocampal slices. Brain Res. Mol. Brain Res. 2005, 136, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.D.; Gourov, A.V.; Harte, C.; Gao, P.; Lee, C.; Sylvain, D.; Splett, J.M.; Oxberry, W.C.; van de Nes, P.S.; Troy-Regier, M.J.; et al. Nucleolar integrity is required for the maintenance of long-term synaptic plasticity. PLoS ONE 2014, 9, e104364. [Google Scholar] [CrossRef]
mRNA | Forward Primer Sequence (5′→3′) | Reverse Primer Sequence (5′→3′) | Size of Product (Bp) |
---|---|---|---|
Bad | GCT TAG CCC TTT TCG AGG AC | GAT CCC ACC AGG ACT GGA T | 200 |
Bcl-xL | GGT GAG TCG GAT TGC AAG TT | GAG CCC AGC AGA ACT ACA CC | 198 |
Bcl2 | AGGGGCTACGAGTGGGATAC | TCAGGCTGGAAGGAGAAGATG | 86 |
PKMζ | GGC TCC TTA AAG GGA CGG AA | TGC TCT ACC GAA GGT GGG C | 54 |
PKCε | CCC CTT GTG ACC AGG AAC TA | GCC TTT GCC TAA CAC CTT GA | 203 |
PKCγ | TTC TTC AAG CAG CCA ACC TT | TGT AGC TGT GCA GAC GGA AC | 202 |
Parp 1 | AGTATGCCAAGTCCAACAGGAGCA | ATCATACCCAGTTGCGGCTTCTCT | 114 |
GAPDH | GAACATCATCCCTGCATCCA | CCAGTGAGCTTCCCGTTCA | 70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, J.Y.; Allen, K.D.; Hernandez, A.I.; Cottrell, J.E.; Kass, I.S. Sevoflurane Preconditioning Rescues PKMζ Gene Expression from Broad Hypoxia-Induced mRNA Downregulation Correlating with Improved Neuronal Recovery. NeuroSci 2025, 6, 9. https://doi.org/10.3390/neurosci6010009
Hou JY, Allen KD, Hernandez AI, Cottrell JE, Kass IS. Sevoflurane Preconditioning Rescues PKMζ Gene Expression from Broad Hypoxia-Induced mRNA Downregulation Correlating with Improved Neuronal Recovery. NeuroSci. 2025; 6(1):9. https://doi.org/10.3390/neurosci6010009
Chicago/Turabian StyleHou, Joan Y., Kim D. Allen, A. Iván Hernandez, James E. Cottrell, and Ira S. Kass. 2025. "Sevoflurane Preconditioning Rescues PKMζ Gene Expression from Broad Hypoxia-Induced mRNA Downregulation Correlating with Improved Neuronal Recovery" NeuroSci 6, no. 1: 9. https://doi.org/10.3390/neurosci6010009
APA StyleHou, J. Y., Allen, K. D., Hernandez, A. I., Cottrell, J. E., & Kass, I. S. (2025). Sevoflurane Preconditioning Rescues PKMζ Gene Expression from Broad Hypoxia-Induced mRNA Downregulation Correlating with Improved Neuronal Recovery. NeuroSci, 6(1), 9. https://doi.org/10.3390/neurosci6010009