Mechanisms of Degradation of Collagen or Gelatin Materials (Hemostatic Sponges) in Oral Surgery: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Focus Question
2.2. Database and Keywords
2.3. Eligibility Criteria
2.4. Articles Selection and Data Retrieved
2.5. Risk of Bias
3. Results
3.1. Study 1 (Zhao et al., 2016) [18]
3.2. Study 2 (Yang, 2018) [19]
3.3. Study 3 (Tihan et al., 2015) [20]
3.4. Study 4 (Kang, 1999) [21]
3.5. Study 5 (Rusu et al., 2023) [22]
3.6. Study 6 (Salvatore et al., 2021) [8]
3.7. Study 7 (Ribeiro et al., 2020) [23]
3.8. Study 8 (Kishan et al., 2015) [24]
3.9. Study 9 (Ribeiro et al., 2020) [25]
3.10. Study 10 (Long et al., 2017) [7]
3.11. Study 11 (Borrego-González et al., 2021) [26]
4. Discussion
4.1. Desirable Characteristics of Biomaterials in In Vitro Studies
4.1.1. Human Saliva
4.1.2. Physiological Concentration of Collagenase
4.2. Solution Used for Degradation
4.2.1. Buffer Solution
4.2.2. Collagenase
4.3. Evaluation Interval
4.4. Degradation Measurement Methods
4.5. Comparison of Degradation Test Results
4.6. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H. A Review of the Effects of Collagen Treatment in Clinical Studies. Polymers 2021, 13, 3868. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, S.N.; Dive, A.M.; Moharil, R.; Munde, P. Enigmatic insight into collagen. J. Oral. Maxillofac. Pathol. 2016, 20, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Harley, B.A.; Caliari, S. Collagen-GAG Materials. In Comprehensive Biomaterials; Ducheyne, P., Healy, K., Hutmacher, D.W., Grainger, D.W., Kirkpatrick, C.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 1, pp. 280–300. [Google Scholar]
- Chowdhury, S.R.; Mh Busra, M.F.; Lokanathan, Y.; Ng, M.H.; Law, J.X.; Cletus, U.C.; Idrus, R.B.H. Collagen Type I: A Versatile Biomaterial. In Novel Biomaterials for Regenerative Medicine, Advances in Experimental Medicine and Biology; Chun, H.J., Ed.; Springer Nature Singapore Pte Ltd.: Gateway East, Singapore, 2018; Volume 1077, pp. 389–414. [Google Scholar]
- Deshmukh, K.; Ahamed, M.B.; Deshmukh, R.R.; Pasha, S.K.K.; Bhagat, P.R.; Chidambaram, K. Biopolymer Composites in Electronics. In Biopolymer Composites with High Dielectric Performance: Interface Engineering; Elsevier Inc.: Vellore, India, 2017; pp. 27–128. [Google Scholar]
- Fukunishi, T.; Shoji, T.; Shinoka, T. Nanofiber Composites for Biomedical Applications. In Nanofiber Composites in Vascular Tissue Engineering; Elsevier Inc.: Columbus, OH, USA, 2017; pp. 455–481. [Google Scholar]
- Long, H.; Ma, K.; Xiao, Z.; Ren, X.; Yang, G. Preparation and characteristics of gelatin sponges crosslinked by microbial transglutaminase. PeerJ 2017, 5, e3665. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, L.; Calò, E.; Bonfrate, V.; Pedone, D.; Gallo, N.; Natali, M.L.; Sannino, A.; Madaghiele, M. Exploring the effects of the crosslink density on the physicochemical properties of collagen-based scaffolds. Polym. Test. 2021, 93, 106966. [Google Scholar] [CrossRef]
- Naomi, R.; Bahari, H.; Ridzuan, P.M.; Othman, F. Natural-Based Biomaterial for Skin Wound Healing (Gelatin vs. Collagen): Expert Review. Polymers 2021, 13, 2319. [Google Scholar] [CrossRef] [PubMed]
- Parenteau-Bareil, R.; Gauvin, R.; Berthod, F. Collagen-Based Biomaterials for Tissue Engineering Applications. Materials 2010, 3, 1863–1887. [Google Scholar] [CrossRef]
- Calciolari, E.; Ravanetti, F.; Strange, A.; Mardas, N.; Bozec, L.; Cacchioli, A.; Kostomitsopoulos, N.; Donos, N. Degradation pattern of a porcine collagen membrane in an in vivo model of guided bone regeneration. J. Periodontal. Res. 2018, 53, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Egorikhina, M.N.; Bronnikova, I.I.; Rubtsova, Y.P.; Charykova, I.N.; Bugrova, M.L.; Linkova, D.D.; Aleynik, D.Y. Aspects of In Vitro Biodegradation of Hybrid Fibrin–Collagen Scaffolds. Polymers 2021, 13, 3470. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Ma, Y.; Guo, Z.; Zhang, Y.; Xing, F.; Zhang, T.; Kong, Y.; Luo, X.; Xu, L.; Zhang, G. Evaluating the Degradation Process of Collagen Sponge and Acellular Matrix Implants In Vivo Using the Standardized HPLC-MS/MS Method. Separations 2023, 10, 47. [Google Scholar] [CrossRef]
- Elgezawi, M.; Haridy, R.; Almas, K.; Abdalla, M.A.; Omar, O.; Abuohashish, H.; Elembaby, A.; Wölfle, U.C.; Siddiqui, Y.; Kaisarly, D. Matrix Metalloproteinases in Dental and Periodontal Tissues and Their Current Inhibitors: Developmental, Degradational and Pathological Aspects. Int. J. Mol. Sci. 2022, 23, 8929. [Google Scholar] [CrossRef]
- Hutmacher, D.; Hürzeler, M.B.; Schliephake, H. A Review of Material Properties of Biodegradable and Bioresorbable Polymers and Devices for GTR and GBR Applications. Int. J. Oral Maxillofac. Implant. 1996, 11, 667–678. [Google Scholar]
- Kunrath, M.F.; Dahlin, C. The Impact of Early Saliva Interaction on Dental Implants and Biomaterials for Oral Regeneration: An Overview. Int. J. Mol. Sci. 2022, 23, 2024. [Google Scholar] [CrossRef] [PubMed]
- Sheth, V.H.; Shah, N.P.; Jain, R.; Bhanushali, N.; Bhatnagar, V. Development and validation of a risk-of-bias tool for assessing in vitro studies conducted in dentistry: The QUIN. J. Prosthet. Dent. 2022, 131, 1038–1042. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Li, X.; Zhao, J.; Ma, S.; Ma, X.; Fan, D.; Zhu, C.; Liu, Y. A novel smart injectable hydrogel prepared by microbial transglutaminase and human-like collagen: Its characterization and biocompatibility. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 68, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Xiao, Z.; Long, H.; Ma, K.; Zhang, J.; Ren, X.; Zhang, J. Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods. Sci. Rep. 2018, 8, 1616. [Google Scholar] [CrossRef] [PubMed]
- Tihan, G.T.; Ungureanu, C.; Barbaresso, R.C.; Zgârian, R.G.; Rău, I.; Meghea, A.; Albu, M.G.; Ghica, M.V. Chloramphenicol collagen sponges for local drug delivery in dentistry. Comptes. Rendus. Chim. 2015, 18, 986–992. [Google Scholar] [CrossRef]
- Kang, H.-W.; Tabata, Y.; Ikada, Y. Effect of Porous Structure on the Degradation of Freeze-Dried Gelatin Hydrogels. J. Bioact. Comp. Polym. 1999, 14, 331–343. [Google Scholar] [CrossRef]
- Rusu, A.G.; Nita, L.E.; Simionescu, N.; Ghilan, A.; Chiriac, A.P.; Mititelu-Tartau, L. Enzymatically-Crosslinked Gelatin Hydrogels with Nanostructured Architecture and Self-Healing Performance for Potential Use as Wound Dressings. Polymers 2023, 15, 780. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.S.; Daghrery, A.; Dubey, N.; Li, C.; Mei, L.; Fenno, J.C.; Schwendeman, A.; Aytac, Z.; Bottino, M.C. Hybrid Antimicrobial Hydrogel as Injectable Therapeutics for Oral Infection Ablation. Biomacromolecules 2020, 21, 3945–3956. [Google Scholar] [CrossRef]
- Kishan, A.P.; Nezarati, R.M.; Radzicki, C.M.; Renfro, A.L.; Robinson, J.L.; Whitely, M.E.; Cosgriff-Hernandez, E.M. In situ crosslinking of electrospun gelatin for improved fiber morphology retention and tunable degradation. J. Mat. Chem. B 2015, 3, 7930–7938. [Google Scholar] [CrossRef]
- Ribeiro, J.S.; Bordini, E.A.F.; Jessica A Ferreira, J.A.; Mei, L.; Dubey, N.; Fenno, J.C.; Piva, E.; Lund, R.G.; Schwendeman, A.; Bottino, M.C. Injectable MMP-Responsive Nanotube-Modified Gelatin Hydrogel for Dental Infection Ablation. ACS Appl. Mater. Interfaces 2020, 12, 16006–16017. [Google Scholar] [CrossRef] [PubMed]
- Borrego-González, S.; Rico-Llanos, G.; Becerra, J.; Díaz-Cuenca, A.; Visser, R. Sponge-like processed D-periodic self-assembled atelocollagen supports bone formation in vivo. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 120, 111679. [Google Scholar] [CrossRef] [PubMed]
- Uitto, V.J.; Suomalainen, K.; Sorsa, T. Salivary collagenase. Origin, characteristics and relationship to periodontal health. J. Periodontal. Res. 1990, 25, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Evrosimovska, B.; Dimova, C.; Kovacevska, I.; Panov, S. Concentration of collagenases (MMP-1, -8, -13) in patients with chronically inflamed dental pulp tissue. Prilozi 2012, 33, 191–204. [Google Scholar] [PubMed]
- Hayakawa, T.; Yamashita, K.; Ohuchi, E.; Shinagawa, A. Cell growth-promoting activity of tissue inhibitor of metalloproteinases-2 (TIMP-2). J. Cell. Sci. 1994, 107, 2373–2379. [Google Scholar] [CrossRef] [PubMed]
- Helling, A.L.; Tsekoura, E.K.; Biggs, M.; Bayon, Y.; Pandit, A.; Zeugolis, D.I. In Vitro Enzymatic Degradation of Tissue Grafts and Collagen Biomaterials by Matrix Metalloproteinases: Improving the Collagenase Assay. ACS Biomater. Sci. Eng. 2017, 3, 1922–1932. [Google Scholar] [CrossRef]
- Finamore, T.A.; Curtis, T.E.; Tedesco, J.V.; Grandfield, K.; Roeder, R.K. Nondestructive, longitudinal measurement of collagen scaffold degradation using computed tomography and gold nanoparticles. Nanoscale 2019, 11, 4345–4354. [Google Scholar] [CrossRef]
Property | Collagen | Gelatin |
---|---|---|
Origin | Animals/human tissues | Collagen from bones/skin |
Number of Amino acids | ≅1050 | <20 |
Types | fibril-forming and non-fibrillar-forming | A and B |
Solubility | NaCI solution/dilute acid | H2O |
Mechanical strength | Poor | Poor |
Gelling properties | No | Yes |
Degradation |
| Collagenase/MMP-2 and MMP-9 |
Usage | Burns, hemostasis, tissue defects, wound dressings, augmentation of soft tissue, artificial dermis skin replacement, bone regeneration | Adhesive of soft tissues, artificial skin, wound dressings |
Study | Material | Degradation Solution | Interval of Evaluation | Method for Measurement | Results | Statistical Analysis |
---|---|---|---|---|---|---|
S1. Zhao et al., 2016 [18] | Human-like collagen (HLC) hydrogel with microbial transglutaminase (MTGase) | Collagenase I (100U) and II (100U), separately, in PBS at 37 °C | Collagenase I—18 h; Collagenase II—14 h. | Gravimetric analysis | Time until complete degradation: MTGH3: collagenase I—12 h; collagenase II—10 h MTGH4: collagenase I—14 h; collagenase II—11 h MTGH5: collagenase I—15 h; collagenase II—12 h | Statistical significance was set at p < 0.05. |
S2. Yang, et al., 2018 [19] | Gelatin sponges subjected to different types of crosslinking | 0.1% collagenase type I (>125 CDU/mg, Invitrogen, Carlsbad, CA, USA), 0.1% collagenase type II (>125 CDU/mg, Invitrogen), and 0.1% collagenase type IV (>125 CDU/mg, Invitrogen) in PBS | 0.5 h; 1 h; 1.5 h; 2 h; 3 h; 4 h; 5 h; and 6 h. | Gravimetric analysis | Time until complete degradation: MTG sponge—2 h; EDC sponge—6 h; GP sponge—6 h. The GA sponge preserved about 40% of its initial mass after 6 h. | Statistical significance was set at p < 0.05. |
S3. Tihan et al., 2015 [20] | Type I collagen sponges (CGs) cross-linked with glutaraldehyde (GA) and loaded with chloramphenicol (CP) | Collagenase (10 mg/mL) in phosphate-buffered saline solution (PBS) at 37 °C (pH 7.4) | 1 h; 2 h; 4 h; 8 h; 24 h; and 48 h. | Gravimetric analysis | Time until complete degradation:
| No data were available. |
S4. Kang, et al., 1999 [21] | Gelatin hydrogels cross-linked by glutaraldehyde | 20 U/mL of collagenase solution in DPBS | 0.25 h; 0.5 h; 0.75 h; 1 h; 1.5 h; 2 h; 3 h; 4 h; 8 h; 12 h; 18 h; 24 h; and 32 h. | Gravimetric analysis | Time until complete degradation: Frozen samples: 18 h; Samples with N2: 38 h. | No data were available. |
S5. Rusu, et al., 2023 [22] | Enzymatically cross-linked gelatin-based hydrogels | Collagenase (0.1 mg/mL) in PBS pH 7.4 at 37 °C | Not disclosed | Gravimetric analysis | Time until complete degradation: HGel2 = 4 h; HGel3 = 8 h; HGel4 = 8 h. | For statistical analysis, the one-way ANOVA test and Tukey test were utilized. |
S6. Salvatore et al., 2021 [8] | Collagen scaffolds subjected to various types of crosslinking | Degradation with collagenase (0.1 mg/mL) in phosphate buffer saline solution (PBS) at 37 °C | 24 h | Gravimetric analysis | Time until complete degradation: Scaffold without crosslinking—5 min
| p < 0.05 was used as selection criteria. GP treatment did not significantly increase the resistance of the scaffolds (p = 0.6). |
S7. Ribeiro et al., 2020 [23] | GelMA hydrogel loaded with ciprofloxacin | 2 mL DPBS containing collagenase type A (1 U/mL) and incubated at 37 °C | Not disclosed (7 days) | Gravimetric analysis | Time for complete degradation: 2.5% GelMA-PDS-CIP-SF = 24 h; 2.5% GelMA-PDS-CIP/β-CD-IC-SF = 24 h; 10% GelMA-PDS-CIP-SF = 168 h; 10% GelMA-PDS-CIP/β-CD-IC-SF = 168 h. | The differences were considered as significant if p < 0.05. |
S8. Kishan et al., 2015 [24] | In situ cross-linked gelatin scaffolds | Degradation with collagenase (0.02 U/mL) in phosphate-buffered saline (PBS) solution at 37 °C | 35 days | Gravimetric analysis: Mass loss | Time to complete degradation: Non-cross-linked gelatin—12 h; gelatin 1—10 days; gelatin 5—24 days; gelatin 10—35 days. | All tests were conducted with a 95% confidence interval (p < 0.05). |
S9. Ribeiro et al., 2020 [25] | Photocrosslinkable gelatin methacryloyl (GelMA) hydrogel loaded with chlorhexidine (CHX) | 5 mL DPBS containing 1 U/mL collagenase type I at 37 °C | Not disclosed (21 days) | Gravimetric analysis | Time until complete degradation: Non-CHX = 14 days; CHX-groups = 21 days. | p-value of less than 0.05 was statistically significant. |
S10. Long et al., 2017 [7] | Gelatin sponges | 0.1% collagenase I (>125 CDU/mg) in PBS at 37 °C | 6 h | Gravimetric analysis | Time until complete degradation: 6 h | A value of p < 0.05 was considered statistically significant. |
S11. Borrego-González et al., 2021 [26] | Atelocollagen sponge with different types of crosslinking | 0.5 mL of 0.5 CDU/mL collagenase type I/buffer solution (0.1 M Tris-HCl and 5 mM CaCl2, pH 7.4) at 37 °C. | 0.5 h; 1.5 h; 3 h; 6 h; 24 h; 72 h; and 120 h. | Gravimetric analysis | Time to complete degradation: DCol-S: 3 h; DCol-S0.0015G: 72 h; After 120 h: DCol-S0.015G: 8.4% degraded; DCol-S0.03G: 7.0% degraded; DCol-S0.3G: 6.5% degraded. | No data were available. |
Criterium | Details | S1 [18] | S2 [19] | S3 [20] | S4 [21] | S5 [22] | S6 [8] | S7 [23] | S8 [24] | S9 [25] | S10 [7] | S11 [26] | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Clearly stated aims/objectives | Study should clearly state aims and/or objectives, which should then be followed throughout. | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
2 | Detailed explanation of sample size calculation | Details regarding the method by which the given sample size calculated should be clearly stated. Details regarding the software program, formula, and parameters used for the calculation of the sample size should also be specified. | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
3 | Detailed explanation of the sampling technique | Details regarding the predefined population from the sample that has been selected. Details of the sampling technique and inclusion and exclusion criteria should be clearly stated. | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
4 | Details of the comparison group | Details of the comparison group (positive control, negative control, or standard) should be clearly specified. | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 2 | 2 | 0 |
5 | Detailed explanation of the methodology | Clarity of procedure, method of standardization, and details of any universal standards used (if applicable) should be clearly stated. | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
6 | Operator details | The number of operators and details regarding training and calibration of operator/s (inter-operator and intra-operator reliability) should be clearly specified. | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
7 | Randomization | Details regarding sequence generation and allocation concealment should be clearly stated. | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
8 | Method of measurement of outcome | Clarity of procedure and rationale for choosing the method should be stated. Method of standardization along with details of any universal standards used (if applicable) should also be clearly specified. | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
9 | Outcome assessor details | The number of outcome assessors and details regarding training and calibration of assessor/s (inter-outcome and intra-outcome assessor reliability) should be clearly specified. | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
10 | Blinding | Details regarding the blinding of operator(s), outcome assessor(s), and statistician should be clearly specified. | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
11 | Statistical analysis | Details regarding the software program used and statistical analysis should be clearly specified. | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
12 | Presentation of results | The outcome should be based on predefined aims and/or objectives. All data should be adequately tabulated with baseline data clearly specified (if applicable). | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 1 |
Total (%) | - | - | 83.3 | 91.7 | 66.7 | 66.7 | 91.7 | 75 | 91.7 | 91.7 | 100 | 100 | 75 |
Risk of bias | - | - | Low | Low | Medium | Medium | Low | Low | Low | Low | Low | Low | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catarino, M.; Castro, F.; Macedo, J.P.; Lopes, O.; Pereira, J.; Lopes, P.; Fernandes, G.V.O. Mechanisms of Degradation of Collagen or Gelatin Materials (Hemostatic Sponges) in Oral Surgery: A Systematic Review. Surgeries 2024, 5, 532-548. https://doi.org/10.3390/surgeries5030043
Catarino M, Castro F, Macedo JP, Lopes O, Pereira J, Lopes P, Fernandes GVO. Mechanisms of Degradation of Collagen or Gelatin Materials (Hemostatic Sponges) in Oral Surgery: A Systematic Review. Surgeries. 2024; 5(3):532-548. https://doi.org/10.3390/surgeries5030043
Chicago/Turabian StyleCatarino, Maria, Filipe Castro, José Paulo Macedo, Otília Lopes, Jorge Pereira, Pedro Lopes, and Gustavo Vicentis Oliveira Fernandes. 2024. "Mechanisms of Degradation of Collagen or Gelatin Materials (Hemostatic Sponges) in Oral Surgery: A Systematic Review" Surgeries 5, no. 3: 532-548. https://doi.org/10.3390/surgeries5030043
APA StyleCatarino, M., Castro, F., Macedo, J. P., Lopes, O., Pereira, J., Lopes, P., & Fernandes, G. V. O. (2024). Mechanisms of Degradation of Collagen or Gelatin Materials (Hemostatic Sponges) in Oral Surgery: A Systematic Review. Surgeries, 5(3), 532-548. https://doi.org/10.3390/surgeries5030043