Eggshell and Walnut Shell in Unburnt Clay Blocks
Abstract
:1. Introduction
2. Materials and Experimental Programme
2.1. Raw Materials
2.2. Sample Preparation
2.3. Sample Testing
3. Results and Discussions
4. Conclusions
- The addition of both types of agro-wastes reduced the density of the samples because of their lower specific gravity compared to the clay particles used.
- The linear shrinkage values decreased for increasing both types of wastes separately and combinedly.
- In terms of capillary water absorption, the EP sample showed a decreasing trend for increasing content from 10 to 40%. Furthermore, for WSG samples, capillary water absorption value slightly decreased as the percentage increased. Moreover, for the combination of EP and WSG, capillary water absorption decreased gradually.
- The mechanical strength of the EP samples increased with incorporating EP from 10 to 40%, and then the values decreased for 50% EP content. The samples with 40% EP showed peak compressive (5.68 MPa) and flexural strength (2.30 MPa). On the other hand, the addition of WSG has an adverse effect on the strength of the samples. The optimal compressive (3.83 MPa) and flexural (1.45 MPa) strength values for WSG samples were found at 5% content, which was lower than the control sample’s strength values. Besides, the strength decreased further when WSG was combined with EP. For all the samples, oven-cured samples had higher compressive strength than the laboratory environment cured samples.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The International Nut and Dried Fruit Council Foundation (INC). Nuts & Dried Fruits Statistical Yearbook; INC: Reus, Spain, 2020. [Google Scholar]
- Martinez, M.L.; Moiraghi, L.; Agnese, M.; Guzman, C. Making and some properties of activated carbon produced from agricultural industrial residues from Argentina. J. Argent. Chem. Soc. 2003, 91, 103–108. [Google Scholar]
- Jahanban-Esfahlan, A.; Amarowicz, R. Walnut (Juglans regia L.) shell pyroligneous acid: Chemical constituents and functional applications. RSC Adv. 2018, 8, 22376–22391. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organisation (FAO), FAOSTAT Data. Available online: https://www.fao.org/faostat/en/#rankings/countries_by_commodity (accessed on 12 December 2021).
- Sarsari, N.A.; Pourmousa, S.; Tajdini, A. Physical and mechanical properties of walnut shell flour-filled thermoplastic starch composites. BioResources 2016, 11, 6968–6983. [Google Scholar]
- Xiao, N.; Bock, P.; Antreich, S.J.; Staedler, Y.M.; Schönenberger, J.; Gierlinger, N. From the soft to the hard: Changes in microchemistry during cell wall maturation of walnut shells. Front. Plant Sci. 2020, 11, 466. [Google Scholar] [CrossRef] [PubMed]
- Ayrilmis, N.; Kaymakci, A.; Ozdemir, F. Physical, mechanical, and thermal properties of polypropylene composites filled with walnut shell flour. J. Ind. Eng. Chem. 2013, 19, 908–914. [Google Scholar] [CrossRef]
- Nitin, S.; Singh, V.K. Mechanical behavior of walnut reinforced composite. J. Mater. Environ. Sci. 2013, 4, 233–238. [Google Scholar]
- Zahedi, M.; Pirayesh, H.; Khanjanzadeh, H.; Tabar, M.M. Organo-modified montmorillonite reinforced walnut shell/polypropylene composites. Mater. Des. 2013, 51, 803–809. [Google Scholar] [CrossRef]
- Gope, P.C.; Singh, V.K.; Rao, D.K. Mode I fracture toughness of bio-fiber and bio-shell particle reinforced epoxy bio-composites. J. Reinf. Plast. Compos. 2015, 34, 1075–1089. [Google Scholar] [CrossRef]
- Salasinska, K.; Barczewski, M.; Górny, R.; Kloziński, A. Evaluation of highly filled epoxy composites modified with walnut shell waste filler. Polym. Bull. 2018, 75, 2511–2528. [Google Scholar] [CrossRef] [Green Version]
- Orue, A.; Eceiza, A.; Arbelaiz, A. The use of alkali treated walnut shells as filler in plasticized poly (lactic acid) matrix composites. Ind. Crops Prod. 2020, 145, 111993. [Google Scholar] [CrossRef]
- Hekimoğlu, G.; Sarı, A.; Kar, T.; Keleş, S.; Kaygusuz, K.; Tyagi, V.; Sharma, R.; Al-Ahmed, A.; Al-Sulaiman, F.A.; Saleh, T.A. Walnut shell derived bio-carbon/methyl palmitate as novel composite phase change material with enhanced thermal energy storage properties. J. Energy Storage 2021, 35, 102288. [Google Scholar] [CrossRef]
- Gürü, M.; Atar, M.; Yıldırım, R. Production of polymer matrix composite particleboard from walnut shell and improvement of its requirements. Mater. Des. 2008, 29, 284–287. [Google Scholar] [CrossRef]
- Pirayesh, H.; Khanjanzadeh, H.; Salari, A. Effect of using walnut/almond shells on the physical, mechanical properties and formaldehyde emission of particleboard. Compos. Part B Eng. 2013, 45, 858–863. [Google Scholar] [CrossRef]
- Khanjanzadeh, H.; Pirayesh, H.; Sepahvand, S. Influence of walnut shell as filler on mechanical and physical properties of MDF improved by nano-SiO2. J. Indian Acad. Wood Sci. 2014, 11, 15–20. [Google Scholar] [CrossRef]
- Da Silva, C.; Stefanowski, B.; Maskell, D.; Ormondroyd, G.; Ansell, M.; Dengel, A.; Ball, R. Improvement of indoor air quality by MDF panels containing walnut shells. Build. Environ. 2017, 123, 427–436. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Liu, G.; Chen, L. Pet Fiber Reinforced Wet-Mix Shotcrete with Walnut Shell as Replaced Aggregate. Appl. Sci. 2017, 7, 345. [Google Scholar] [CrossRef] [Green Version]
- Husain, M.S.; Ahmad, A.; Huda, S.; Asim, M. Cost optimization of concrete by replacing fine aggregate with walnut shell powder. Int. J. Civ. Eng. Technol. 2017, 8, 82–89. [Google Scholar]
- Kamal, I.; Sherwani, A.F.; Ali, A.; Khalid, A.; Saadi, I.; Harbi, A. Walnut shell for partial replacement of fine aggregate in concrete: Modeling and optimization. J. Civ. Eng. Res. 2017, 7, 109–119. [Google Scholar]
- Hilal, N.; Ali, T.K.M.; Tayeh, B.A. Properties of environmental concrete that contains crushed walnut shell as partial replacement for aggregates. Arab. J. Geosci. 2020, 13, 812. [Google Scholar] [CrossRef]
- Venkatesan, B.; Lijina, V.J.; Kannan, V.; Dhevasenaa, P.R. Partial replacement of fine aggregate by steel slag and coarse aggregate by walnut shell in concrete. Mater. Today Proc. 2021, 37, 1761–1766. [Google Scholar] [CrossRef]
- Mirón, S.; Wendonly, B.; Gutiérrez, R.; Salvador, R.; Orozco, M.; Eugenia, M. Alternative material for load-bearing wall with addition of walnut shell. Waste Reduction. In Proceedings of the 3rd International Congress on Sustainable Construction and Eco-Efficient Solutions, Seville, Spain, 27–29 March 2017; Universidad de Sevilla: Seville, Spain; pp. 1012–1022. [Google Scholar]
- NMX-C-404-ONNCCE; Industria de la Construcción-Mampostería-Bloques, Tabiques o Ladrillos y Tabicones Para Uso Estructural-Especificaciones y Métodos de Ensayo (Building Industry—Masonry—Blocks or Bricks for Structural Use—Specifications and Essay Method). Diario Oficial de la Federación: Mexico City, Mexico, 2005. (In Spanish)
- Marte Rosario, M. Utilización de la Cáscara de Nuez Chandler en el Yeso. Master’s Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2011. [Google Scholar]
- Waheed, M.; Butt, M.S.; Shehzad, A.; Adzahan, N.M.; Shabbir, M.A.; Suleria, H.A.R.; Aadil, R.M. Eggshell calcium: A cheap alternative to expensive supplements. Trends Food Sci. Technol. 2019, 91, 219–230. [Google Scholar] [CrossRef]
- Waheed, M.; Yousaf, M.; Shehzad, A.; Inam-Ur-Raheem, M.; Khan, M.K.I.; Khan, M.R.; Ahmad, N.; Aadil, R.M. Channelling eggshell waste to valuable and utilizable products: A comprehensive review. Trends Food Sci. Technol. 2020, 106, 78–90. [Google Scholar] [CrossRef]
- Chambers, J.R.; Zaheer, K.; Akhtar, H.; Abdel-Aal, E.-S.M. Chicken eggs. In Egg Innovations and Strategies for Improvements; Hester, P.Y., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 1–9. [Google Scholar]
- Ajala, E.O.; Eletta, O.A.A.; Ajala, M.A.; Oyeniyi, S.K. Characterization and evaluation of chicken eggshell for use as a bio-resource. Arid Zone J. Eng. Technol. Environ. 2018, 14, 26–40. [Google Scholar]
- Shwetha, A.; Dhananjaya, K.S.; Ananda, S.M. Comparative study on calcium content in eggshells of different birds. Int. J. Zool. Stud. 2018, 3, 31–33. [Google Scholar]
- Philippe, F.X.; Mahmoudi, Y.; Cinq-Mars, D.; Lefrançois, M.; Moula, N.; Palacios, J.; Pelletier, F.; Godbout, S. Comparison of egg production, quality and composition in three production systems for laying hens. Livest. Sci. 2020, 232, 103917. [Google Scholar] [CrossRef]
- Ferraz, E.; Gamelas, J.A.F.; Coroado, J.; Monteiro, C.; Rocha, F. Eggshell waste to produce building lime: Calcium oxide reactivity, industrial, environmental and economic implications. Mater. Struct. 2018, 51, 115. [Google Scholar] [CrossRef]
- Saldanha, R.B.; da Rocha, C.G.; Caicedo, A.M.L.; Consoli, N.C. Technical and environmental performance of eggshell lime for soil stabilization. Constr. Build. Mater. 2021, 298, 123648. [Google Scholar] [CrossRef]
- King’Ori, A.M. A review of the uses of poultry eggshells and shell membranes. Int. J. Poult. Sci. 2011, 10, 908–912. [Google Scholar] [CrossRef] [Green Version]
- Sathiparan, N. Utilization prospects of eggshell powder in sustainable construction material–A review. Constr. Build. Mater. 2021, 293, 123465. [Google Scholar] [CrossRef]
- Adogla, F.; Yalley, P.P.K.; Arkoh, M. Improving compressed laterite bricks using powdered eggshells. Int. J. Eng. Sci. (IJES) 2016, 5, 65–70. [Google Scholar]
- Ayodele, A.L.; Oketope, O.M.; Olatunde, O.S. Effect of sawdust ash and eggshell ash on selected engineering properties of lateralized bricks for low-cost housing. Niger. J. Technol. 2019, 38, 278–282. [Google Scholar] [CrossRef]
- Han, H.; Wang, S.; Rakita, M.; Wang, Y.; Han, Q.; Xu, Q. Effect of ultrasound-assisted extraction of phenolic compounds on the characteristics of walnut shells. Food Nutr. Sci. 2018, 9, 1034–1045. [Google Scholar] [CrossRef] [Green Version]
- BS EN 771-1; Specification for Masonry Units. Part 1: Clay Masonry Units. British Standards Institution: London, UK, 2003.
- BS EN 1015-18; Methods of Test for Mortar for Masonry. Part 18: Determination of Water Absorption Coefficient due to Capillary Action of Hardened Mortar. British Standards Institution: London, UK, 2002.
- BS EN 1015-11; Methods of Test for Mortar for Masonry. Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. British Standards Institution: London, UK, 2019.
- IS 1725; Specification for Soil Based Blocks Used in General Building Construction. Bureau of Indian Standards: New Delhi, India, 1982.
- SLS 1382; Specification for Compressed Stabilized Earth Blocks. Sri Lanka Standards Institution: Colombo, Sri Lanka, 2009.
- CID-GCBNMBC-91-1; New Mexico Adobe and Rammed Earth Building Code. General Construction Bureau, Regulation & Licensing Department: Santa Fe, NM, USA, 1991.
- NZS 4298; Materials and Workmanship of Earth Buildings. Standards New Zealand: Wellington, New Zealand, 1998.
- TS EN 771-1; Specification for Masonry Units—Part 1: Clay Masonry Units. Turkish Standards Institution: Ankara, Turkey, 2005. (In Turkish)
- Ngayakamo, B.H.; Bello, A.; Onwualu, A.P. Development of eco-friendly fired clay bricks incorporated with granite and eggshell wastes. Environ. Chall. 2020, 1, 100006. [Google Scholar] [CrossRef]
Materials | Properties | ||||||||
---|---|---|---|---|---|---|---|---|---|
Plasticity Index (%) | Maximum Dry Density (kg/m3) | Optimum Moisture Content (%) | Density (kg/m3) | Specific Gravity | Porosity | Natural Moisture Content (%) | Water Absorption after 24 h under Water (%) | Colour | |
RCP | 12.36 (Medium plastic) | 2320 | 15.50 | 1430 | 2.32 | 0.38 | 6.47 | 27.57 | Red |
EP | - | - | - | 1170 | 1.74 | 0.56 | 0.31 | 39.42 | White |
WSG | - | - | - | 630 | 1.28 | 0.92 | 6.75 | 29.90 | Sandy brown |
Chemical Compounds (%) | RCP | EP | WSG |
---|---|---|---|
SiO2 | 41.454 | 0.097 | 1.103 |
Al2O3 | 15.214 | - | 0.536 |
K2O | 1.636 | 0.155 | 1.871 |
MgO | 5.114 | 0.522 | 0.512 |
Fe2O3 | 8.104 | - | 0.062 |
CaO | 0.633 | 78.111 | 1.722 |
Na2O | 1.027 | 1.423 | 0.930 |
TiO2 | 1.411 | 0.096 | 0.098 |
SO3 | 0.047 | 0.345 | 0.057 |
BaO | 0.216 | 0.189 | 0.075 |
ZrO2 | 0.035 | 0.008 | 0.002 |
MnO | 0.040 | - | 0.002 |
SrO | 0.011 | 0.042 | 0.001 |
P2O5 | - | - | 0.073 |
Sample ID | RCP (g) | Waste (%) | Waste (g) | ||
---|---|---|---|---|---|
EP | WSG | EP | WSG | ||
C | 550 | 0 | 0 | 0 | 0 |
E-10 | 550 | 10 | 0 | 55 | 0 |
E-20 | 550 | 20 | 0 | 110 | 0 |
E-30 | 550 | 30 | 0 | 165 | 0 |
E-40 | 550 | 40 | 0 | 220 | 0 |
E-50 | 550 | 50 | 0 | 275 | 0 |
W-5 | 550 | 0 | 5 | 0 | 27.50 |
W-10 | 550 | 0 | 10 | 0 | 55 |
W-15 | 550 | 0 | 15 | 0 | 82.50 |
W-20 | 550 | 0 | 20 | 0 | 110 |
WE-5/10 | 550 | 10 | 5 | 55 | 27.50 |
WE-5/20 | 550 | 20 | 5 | 110 | 27.50 |
WE-5/30 | 550 | 30 | 5 | 165 | 27.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jannat, N.; Latif Al-Mufti, R.; Hussien, A. Eggshell and Walnut Shell in Unburnt Clay Blocks. CivilEng 2022, 3, 263-276. https://doi.org/10.3390/civileng3020016
Jannat N, Latif Al-Mufti R, Hussien A. Eggshell and Walnut Shell in Unburnt Clay Blocks. CivilEng. 2022; 3(2):263-276. https://doi.org/10.3390/civileng3020016
Chicago/Turabian StyleJannat, Nusrat, Rafal Latif Al-Mufti, and Aseel Hussien. 2022. "Eggshell and Walnut Shell in Unburnt Clay Blocks" CivilEng 3, no. 2: 263-276. https://doi.org/10.3390/civileng3020016
APA StyleJannat, N., Latif Al-Mufti, R., & Hussien, A. (2022). Eggshell and Walnut Shell in Unburnt Clay Blocks. CivilEng, 3(2), 263-276. https://doi.org/10.3390/civileng3020016