Thermal Insulation of Hybrid GFRP-Lightweight Concrete Structures
Abstract
:1. Introduction
1.1. Objectives
1.2. Research Significance
2. Applications of Hybrid GFRP Concrete Structures
2.1. The Known Fire Problem in GFRP Structures
2.2. Motivation for the Use of Lightweight Concrete
2.3. Recent Developments in Hybrid GFRP Concrete Structures
3. Thermal Properties
3.1. Concrete
3.2. GFRP
3.3. Convection and Radiation
4. Numerical Model
4.1. Geometry and Boundaries
4.2. Type of Analysis
4.3. Thermal Loads
4.4. Adopted Mesh
5. Analysis of the Results
5.1. Geometry with 5.0 cm of Concrete Cover
5.2. Geometry with 2.5 cm of Concrete Cover
6. Conclusions
- It was concluded that for the same level of concrete cover over the GFRP, LC can achieve an extra fire resistance exposure time of around 30 min when compared with NC for hybrid GFRP-concrete structures. This condition is comparable with the ones provided by adding a small thickness of silicate of calcium (SC), normally used in fireproof solutions.
- In addition, the temperature distribution with NC and LC was compared with different concrete covers over the GFRP, and it was possible to conclude that LC needs less cover to present the same fire resistance exposure time. Since only half of the cover is needed for the LC solution, and the self-weight is smaller, the total structural dead load is smaller, reducing future structural responses due to earthquakes.
- Even for NC, the temperature in the GFRP web is clearly below 250 °C with a 5.0 cm cover, but with a 2.5 cm cover, this value rises almost to 300 °C after two hours. For LC with 2.5 cm, in the GFRP web this value is around 200 °C after two hours, which is enough to maintain some residual strength and stiffness in the GFRP.
- As a result, reducing the NC cover cannot adequately insulate the GFRP web from elevated temperatures, and the use of LC is critical to achieve an economical and efficient structure.
6.1. Limitations of the Study
6.2. Further Developments
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FIB. Fib Bulletin No. 40—FRP Reinforcement in RC Structures; FIB: Lausanne, Switzerland, 2007. [Google Scholar]
- CEN/TC250; Introductory Element—Design of Fibre Reinforced Polymer Structures—Complementary Element. CEN/TC250 Working Group (WG) 4: Brussels, Belgium, 2020.
- Arruda, M.R.T.; Lopes, B. Pre-design guidelines for GFRP composite sandwich panels. Eng. Solid Mech. 2020, 8, 169–186. [Google Scholar] [CrossRef]
- Bakis, C.E.; Bank, L.C.; Brown, V.L.; Cosenza, E.; Davalos, J.F.; Lesko, J.J.; Machida, A.; Rizkalla, S.H.; Triantafillou, T.H. Fibre Reinforced Polymer Composites for Construction—State-of-the-Art Review. J. Compos. Constr. 2002, 6, 73–87. [Google Scholar] [CrossRef]
- Correia, J.R.; Cabral-Fonseca, S.; Branco, F.A.; Ferreira, J.G.; Eusébio, M.I.; Rodrigues, M.P. Durability of pultruded glass-fiber-reinforced polyester profiles for structural applications. Mech. Compos. Mater. 2006, 42, 325–338. [Google Scholar] [CrossRef]
- Correia, J.R.; Branco, F.A.; Ferreira, J. GFRP–concrete hybrid cross-sections for floors of buildings. Eng. Struct. 2009, 31, 1331–1343. [Google Scholar] [CrossRef]
- Correia, J.R.; Branco, F.A.; Ferreira, J.G. Flexural behaviour of GFRP–concrete hybrid beams with interconnection slip. Compos. Struct. 2007, 77, 66–78. [Google Scholar] [CrossRef]
- Ramôa Correia, J. 9—Pultrusion of advanced fibre-reinforced polymer (FRP) composites A2—Bai, Jiping. In Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications; Woodhead Publishing: Sawston, UK, 2013. [Google Scholar]
- Correia, J.R. Glass Fibre Reinforced Polymer (GFRP) Pultruded Profiles. Use of GFRP-Concrete Hybrid Beams in Construction. Master’s Thesis, Instituto Superior Técnico, Lisboa, Portugal, 2004. [Google Scholar]
- Arruda, M.R.T.; Almeida-Fernandes, L.; Castro, L.; Correia, J.R. Tsai–Wu based orthotropic damage model. Compos. Part C Open Access 2021, 4, 100122. [Google Scholar] [CrossRef]
- Arruda, M.R.T.; Trombini, M.; Pagani, A. Implicit to Explicit Algorithm for ABAQUS Standard User-Subroutine UMAT for a 3D Hashin-Based Orthotropic Damage Model. Appl. Sci. 2023, 13, 1155. [Google Scholar] [CrossRef]
- Martins, D.; Proença, M.; Correia, J.R.; Gonilha, J.; Arruda, M.; Silvestre, N. Development of a novel beam-to-column connection system for pultruded GFRP tubular profiles. Compos. Struct. 2017, 171, 263–276. [Google Scholar] [CrossRef]
- Garnevičius, M.; Gribniak, V. Developing a hybrid FRP-concrete composite beam. Sci. Rep. 2022, 12, 16237. [Google Scholar] [CrossRef]
- Shoeib, A.E.-K.; Arafa, A.N.; Sedawy, A.E.-S.; EL-Hashmy, A.M. The shear strength of concrete beams hybrid-reinforced with GFRP bars and steel bars in main reinforcement without shear reinforcement. Curved Layer. Struct. 2022, 9, 146–162. [Google Scholar] [CrossRef]
- Zhao, J.; Pan, H.; Wang, Z.; Li, G. Experimental and Theoretical Study on Flexural Behavior of GFRP- and CFRP-Reinforced Concrete Beams after High-Temperature Exposure. Polymers 2022, 14, 4002. [Google Scholar] [CrossRef]
- ISO-834-1; Fire-Resistance Tests—Elements of Building Construction—Part 1: General Requirements. International Organization for Standardization: Geneve, Switzerland, 1999.
- Karbhari, V.M.; Chin, J.W.; Hunston, D.; Benmokrane, B.; Juska, T.; Morgan, R.; Lesko, J.J.; Sorathia, U.; Reynaud, D. Durability Gap Analysis for Fiber-Reinforced Polymer Composites in Civil Infrastructure. J. Compos. Constr. 2003, 7, 238–247. [Google Scholar] [CrossRef]
- Dodds, N.; Gibson, A.G.; Dewhurst, D.; Davies, J.M. Fire behaviour of composite laminates. Compos. Part A Appl. Sci. Manuf. 2000, 31, 689–702. [Google Scholar] [CrossRef]
- Mouritz, A.P.; Mathys, Z.; Gibson, A.G. Heat release of polymer composites in fire. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1040–1054. [Google Scholar] [CrossRef]
- Williams, B.; Bisby, L.; Kodur, V.; Green, M.; Chowdhury, E. Fire insulation schemes for FRP-strengthened concrete slabs. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1151–1160. [Google Scholar] [CrossRef]
- Firmo, J.P.; Arruda, M.R.T.; Correia, J.R.; Tiago, C. Flexural behaviour of partially bonded carbon fibre reinforced polymers strengthened concrete beams: Application to fire protection systems design. Mater. Des. 2015, 65, 1064–1074. [Google Scholar] [CrossRef]
- Webber, A. Fire-resistance tests on composites rebars. In Proceedings of the Fourth International Conference on FRP Composites in Civil Engineering (CICE2008), Zurich, Switzerland, 22–24 July 2008. [Google Scholar]
- Nigro, E.; Cefarelli, G.; Bilotta, A.; Manfredi, G.; Cosenza, E. Fire resistance of concrete slabs reinforced with FRP bars. Part I: Experimental investigations on the mechanical behavior. Compos. Part B Eng. 2011, 42, 1739–1750. [Google Scholar] [CrossRef]
- Marques, A.M.; Correia, J.R.; de Brito, J. Post-fire residual mechanical properties of concrete made with recycled rubber aggregate. Fire Saf. J. 2013, 58, 49–57. [Google Scholar] [CrossRef]
- Santos, J.; Brito, J.; Branco, F.A. Assessment of Concrete Structures Subjected to Fire—The FBTest. Mag. Concr. Res. 2002, 54, 203–208. [Google Scholar] [CrossRef]
- Arruda, M.R.T.; Firmo, J.P.; Correia, J.R.; Tiago, C. Numerical modelling of the bond between concrete and CFRP laminates at elevated temperatures. Eng. Struct. 2016, 110, 233–243. [Google Scholar] [CrossRef]
- Firmo, J.P.; Pitta, D.; Correia, J.R.; Tiago, C.; Arruda, M.R.T. Experimental characterization of the bond between externally bonded reinforcement (EBR) CFRP strips and concrete at elevated temperatures. Cem. Concr. Compos. 2014, 60, 44–54. [Google Scholar] [CrossRef]
- Correia, J.R.; Gomes, M.M.; Pires, J.M.; Branco, F.A. Mechanical behaviour of pultruded glass fibre reinforced polymer composites at elevated temperature: Experiments and model assessment. Compos. Struct. 2013, 98, 303–313. [Google Scholar] [CrossRef]
- Rosa, I.C.; Firmo, J.P.; Correia, J.R.; Barros, J.A.O. Bond behaviour of sand coated GFRP bars to concrete at elevated temperature—Definition of bond vs. slip relations. Compos. Part B Eng. 2019, 160, 329–340. [Google Scholar] [CrossRef]
- Aydın, F.; Sarıbıyık, M. Investigation of flexural behaviors of hybrid beams formed with GFRP box section and concrete. Constr. Build. Mater. 2013, 41, 563–569. [Google Scholar] [CrossRef]
- Aydın, F.; Sarıbıyık, M. Compressive and Flexural Behavior of Hybrid Use of GFRP Profile with Concrete; Sakarya University: Sakarya, Turkey, 2016. [Google Scholar]
- Correia, J.R.; Branco, F.A.; Ferreira, J.G. Flexural behaviour of multi-span GFRP-concrete hybrid beams. Eng. Struct. 2009, 31, 1369–1381. [Google Scholar] [CrossRef]
- Gonilha, J.A.; Correia, J.R.; Branco, F.A. Dynamic response under pedestrian load of a GFRP–SFRSCC hybrid footbridge prototype: Experimental tests and numerical simulation. Compos. Struct. 2013, 95, 453–463. [Google Scholar] [CrossRef]
- Ribeiro, M.C.S.; Tavares, C.M.L.; Ferreira, A.J.M.; Marques, A.T. Static Flexural Performance of GFRP-Polymer Concrete Hybrid Beams. Key Eng. Mater. 2002, 230–232, 148–151. [Google Scholar] [CrossRef]
- Zou, X.; Feng, P.; Wang, J. Perforated FRP ribs for shear connecting of FRP-concrete hybrid beams/decks. Compos. Struct. 2016, 152, 267–276. [Google Scholar] [CrossRef]
- EC2-1-2; Eurocode 2 Design of concrete structures—Part 1-2: General rules—Structural fire design. Part 1-2, EN1992-1-22010. European Union: Brussels, Belgium, 2004.
- EC1-1-2; Eurocode 1: Actions on Structures—Part 1-2: General actions—Actions of structures exposed to fire. Part 1-2, EN1991-1-2-2:19952002. European Union: Brussels, Belgium, 2002.
- Elango, K.S.; Sanfeer, J.; Gopi, R.; Shalini, A.; Saravanakumar, R.; Prabhu, L. Properties of light weight concrete—A state of the art review. Mater. Today Proc. 2021, 46, 4059–4062. [Google Scholar] [CrossRef]
- Martínez-Martínez, J.E.; Álvarez Rabanal, F.P.; Lázaro, M.; Alonso-Martínez, M.; Alvear, D.; del Coz-Díaz, J.J. Assessment of Lightweight Concrete Thermal Properties at Elevated Temperatures. Appl. Sci. 2021, 11, 10023. [Google Scholar] [CrossRef]
- Morgado, T. Thermal and Structural Response of Pultruded GFRP Profiles under Fire Exposure. Ph.D. Thesis, Instituto Superior Técnico da Universidade de Lisboa, Lisbon, Portugal, 2018. [Google Scholar]
- Thomas, H.R.; Zhou, Z. Minimum time-step size for diffusion problem in FEM analysis. Int. J. Numer. Methods Eng. 1997, 40, 3865–3880. [Google Scholar] [CrossRef]
- Duarte, A.P.C.; Rosa, I.C.; Arruda, M.R.T.; Firmo, J.P.; Correia, J.R. Fire Behaviour of GFRP-Reinforced Concrete Slab Strips: Fire Resistance Tests and Numerical Simulation; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar]
Material | Conductivity | Specific Heat | Density |
---|---|---|---|
NC | |||
LC | |||
GFRP |
Temperature | Tensile Strength | Compressive Strength | Shear Strength | Longitudinal Tensile Modulus | Shear Modulus |
---|---|---|---|---|---|
200 °C | <60% | <8% | <10% | <95% | - |
300 °C | - | - | - | <80% | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arruda, M.R.T.; Cantor, P.; Bicelli, R. Thermal Insulation of Hybrid GFRP-Lightweight Concrete Structures. CivilEng 2023, 4, 584-595. https://doi.org/10.3390/civileng4020034
Arruda MRT, Cantor P, Bicelli R. Thermal Insulation of Hybrid GFRP-Lightweight Concrete Structures. CivilEng. 2023; 4(2):584-595. https://doi.org/10.3390/civileng4020034
Chicago/Turabian StyleArruda, Mário R. T., Pedro Cantor, and Renato Bicelli. 2023. "Thermal Insulation of Hybrid GFRP-Lightweight Concrete Structures" CivilEng 4, no. 2: 584-595. https://doi.org/10.3390/civileng4020034
APA StyleArruda, M. R. T., Cantor, P., & Bicelli, R. (2023). Thermal Insulation of Hybrid GFRP-Lightweight Concrete Structures. CivilEng, 4(2), 584-595. https://doi.org/10.3390/civileng4020034