Numerical Analysis of Textile Reinforced Concrete Shells: Force Interaction and Failure Types
Abstract
:1. Introduction
2. Numerical Analysis of TRC Structures
2.1. FEM Model Formulation
2.2. Material Models
2.3. Orientation of Internal Forces
2.4. m-n Diagram for TRC Structures
2.5. Failure Types and Assessment of the Utilization Ratio
2.6. Extreme Values of the Internal Forces Field
3. Trial Models
4. Results of the FEM Calculations
4.1. Geometry Type G1.0
4.2. Geometry Types G1.1 to G2.2
4.3. Midspan Deflection Results
4.4. Stress Concentrations in the Trial-Based Calculations
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Main Website of Collaborative Research Centre/Transregio 280, (CRC/TRR 280). Available online: https://www.sfbtrr280.de/en/ (accessed on 12 September 2023).
- Beckmann, B.; Bielak, J.; Bosbach, S.; Scheerer, S.; Schmidt, C.; Hegger, J.; Curbach, M. Collaborative Research on Carbon Reinforced Concrete Structures in the CRC/TRR 280 Project. Civ. Eng. Des. 2021, 3, 99–109. [Google Scholar] [CrossRef]
- Valeri, P.; Guaita, P.; Baur, R.; Fernández Ruiz, M.; Fernández-Ordóñez Hernández, D.; Muttoni, A. Textile Reinforced Concrete for Sustainable Structures: Futures Perspectives and Application to a Prototype Pavilion. Struct. Concr. 2020, 21, 2251–2267. [Google Scholar] [CrossRef]
- Scholzen, A.; Chudoba, R.; Hegger, J. Thin-Walled Shell Structures Made of Textile-Reinforced Concrete Part I: Structural Design and Construction. Struct. Concr. 2014, 16, 106–114. [Google Scholar] [CrossRef]
- Hawkins, W.; Shepherd, P.; Ibell, T. Design, Construction and Testing of a Low Carbon Thin-Shell Concrete Flooring System. Structures 2019, 18, 60–71. [Google Scholar] [CrossRef]
- Jayasinghe, A.; Orr, J.; Hawkins, W.; Ibell, T.; Boshoff, W.P. Comparing Different Strategies of Minimising Embodied Carbon in Concrete Floors. J. Clean. Prod. 2022, 345, 131177. [Google Scholar] [CrossRef]
- De Coster, A.; Hennemann, M.; De Laet, L.; Tysmans, T. Design Method for Modular Shells in TRC: A Combined Geometrical—Structural Study. In Proceedings of the IASS Annual Symposia, IASS 2020/21 Surrey Symposium: Optimisation Methods for Analysis and Design of Roof Structure, Beijing, China, 23–27 August 2021; Xue, S.-D., Wu, J.-Z., Sun, G.-J., Eds.; International Association for Shell and Spatial Structures (IASS): Beijing, China, 2022; pp. 3377–3387. [Google Scholar]
- Beton- und Stahlbetonbau 2023, 118, S2—CUBE Das Carbonbetongebäude. Available online: https://onlinelibrary.wiley.com/doi/10.1002/best.202390001 (accessed on 10 September 2023).
- Vakaliuk, I.; Frenzel, M.; Curbach, M. C3 Technology Demonstration House—CUBE—“From Digital Model to Realization”. In Inspiring the Next Generation—Proceedings of the IASS Annual Symposium 2020/21 and the 7th International Conference on Spatial Structures, Guildford, UK, 23–27 August 2022; Behnejad, S.A., Parke, G.A.R., Samavati, O.A., Eds.; Spatial Structures Research Centre of the University of Surrey: Guildford, UK, 2021; pp. 1827–1837. [Google Scholar]
- Robert McNeel & Associates, Grasshopper 3D, Version 7.0. Available online: https://www.grasshopper3d.com/ (accessed on 12 September 2023).
- McNeel Europe SL, Rhinoceros 3D, Version 7.0. Available online: https://www.rhino3d.com/ (accessed on 12 September 2023).
- Dlubal Software GmbH, RFEM, Version 5.19. Available online: www.dlubal.com (accessed on 12 September 2023).
- RF-COM/RS-COM Add-on Module for RFEM/RSTAB. Available online: https://www.dlubal.com/en/products/rfem-and-rstab-add-on-modules/others/rf-com (accessed on 12 September 2023).
- Chudoba, R.; Sharei, E.; Senckpiel-Peters, T.; Schladitz, F. Numerical Modelling of Non-Uniformly Reinforced Carbon Concrete Lightweight Ceiling Elements. Appl. Sci. 2019, 9, 2348. [Google Scholar] [CrossRef]
- Triantafillou, T. (Ed.) Textile Fibre Composites in Civil Engineering; Woodhead Publ.: Duxford, UK, 2016; ISBN 978-1-78242-469-7. [Google Scholar] [CrossRef]
- Peled, A.; Bentur, A.; Mobasher, B. Textile Reinforced Concrete; CRC Press: London, UK, 2017; ISBN 978-1-315-11915-1. [Google Scholar] [CrossRef]
- Jesse, F. Tragverhalten von Filamentgarnen in Zementgebundener Matrix. Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 2005. Available online: https://nbn-resolving.org/urn:nbn:de:swb:14-1122970324369-39398 (accessed on 8 March 2024).
- Nathan, G.K.; Paramasivam, P.; Lee, S.L. Tensile Behaviour of Fiber Reinforced Cement Paste. J. Ferrocem. 1977, 7, 59–79. [Google Scholar]
- Technical Data Sheet Solidian GRID Q85-CCE-21-E5 2023. 2023. Available online: https://solidian.com/downloads/ (accessed on 6 December 2022).
- Vakaliuk, I.; Scheerer, S.; Curbach, M. Vacuum-Assisted Die Casting Method for the Production of Filigree Textile-Reinforced Concrete Structures. Buildings 2023, 13, 2641. [Google Scholar] [CrossRef]
- ISO 10406-1:2015-01; Fibre-Reinforced Polymer (FRP) Reinforcement of Concrete—Test Methods—Part 1: FRP Bars and Grids. ISO: Geneva, Switzerland, 2015.
- Bochmann, J. Carbonbeton Unter Einaxialer Druckbeanspruchung. Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 2019. Available online: https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-350755 (accessed on 8 March 2024).
- Betz, P.F. Carbonbeton unter Druck: Einfluss von Querdruck und Querzug. In Proceedings of the Beiträge zum 61. Forschungskolloquium mit 9. Jahrestagung des DAfStb, Dresden, Germany, 26–27 September 2022; Curbach, M., Marx, S., Mechtcherine, V., Eds.; Technische Universität Dresden: Dresden, Germany, 2022; pp. 169–174. [Google Scholar] [CrossRef]
- Sharei, E.; Chudoba, R.; Scholzen, A. Cross-Sectional Failure Criterion Combined with Strain-Hardening Damage Model for Simulation of Thin-Walled Textile-Reinforced Concrete Shells. In Proceedings of the VII European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2016), Crete Island, Greece, 5–10 June 2016; Papadrakakis, M., Papadopoulos, V., Stefanou, G., Plevris, V., Eds.; Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University Athens: Crete Island, Greece, 2016; pp. 6823–6831. [Google Scholar]
- Jesse, D. Tragverhalten von Textilbewehrtem Beton unter Zweiaxialer Zugbeanspruchung. Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 2011. Available online: https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-69387 (accessed on 8 March 2024).
- Jesse, D.; Jesse, F. Tragverhalten von Textilbeton unter zweiaxialer Zugbeanspruchung. In Textilbeton—Theorie und Praxis, Proceedings of the 4. Kolloquium zu Textilbewehrten Tragwerken (CTRS4) und zur 1 Anwendertagung, Dresden, Germany, 3–5 June 2009; Curbach, M., Jesse, F., Eds.; Dresden University of Technology: Dresden, Germany, 2009; pp. 129–144. Available online: https://nbn-resolving.org/urn:nbn:de:bsz:14-ds-1244044565376-12043 (accessed on 8 March 2024).
- Hegger, J.; Voss, S. Textile Reinforced Concrete under Biaxial Loading. In Proceedings of the 6th International RILEM Symposium on Fibre Reinforced Concretes (BEFIB), Varenna, Italy, 20–22 September 2004; di Prisco, M., Felicetti, R., Plizzari, G.A., Eds.; RILEM Publications SARL: Paris, France, 2004; pp. 1463–1472. [Google Scholar]
- Scholzen, A.; Chudoba, R.; Hegger, J. Thin-Walled Shell Structures Made of Textile-Reinforced Concrete. Struct. Concr. 2015, 16, 115–124. [Google Scholar] [CrossRef]
- Hawkins, W.; Orr, J.; Ibell, T.; Shepherd, P. An Analytical Failure Envelope for the Design of Textile Reinforced Concrete Shells. Structures 2018, 15, 56–65. [Google Scholar] [CrossRef]
- Zilch, K.; Zehetmaier, G. Bemessung im Konstruktiven Betonbau: Nach DIN 1045-1 und EN 1992-1-1, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-540-70637-3. [Google Scholar]
- EN 1992-1-1; Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings. European Union: Belgium, Brussels, 2004. Available online: https://www.phd.eng.br/wp-content/uploads/2015/12/en.1992.1.1.2004.pdf (accessed on 8 March 2024).
- Giese, J.; Spartali, H.; Beckmann, B.; Schladitz, F.; Chudoba, R. Experimental Investigation on the Buckling Behavior of Slender TRC Structures. In Building for the Future: Durable, Sustainable, Resilient, Proceedings of the Fib Symposium 2023, Istanbul, Turkey, 5–7 June 2023; Lecture Notes in Civil Engineering 350; Ilki, A., Çavunt, D., Çavunt, Y.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2023; pp. 398–1407. [Google Scholar]
- Schmidt, A. Formoptimierung von Druckgliedern aus Beton und Stahlbeton. Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 2022. Available online: https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-821861 (accessed on 8 March 2024).
- Sadeghian, P.; Fam, A. Strengthening Slender Reinforced Concrete Columns Using High-Modulus Bonded Longitudinal Reinforcement for Buckling Control. J. Struct. Eng. 2015, 141, 04014127. [Google Scholar] [CrossRef]
- Marcillo Delgado, E. Influence of the Permanent Formwork Elements on the Structural Performance of the Cellular TRC Structures. Master’s Thesis, Technische Universität Dresden, Dresden, Germany, 2023. [Google Scholar]
- Mainka, J. Non-Waste-Wachsschalungen. Ph.D. Thesis, Technische Universität Braunschweig, Braunschweig, Germany, 2019. Available online: https://nbn-resolving.org/urn:nbn:de:gbv:084-2019061111598 (accessed on 8 March 2024).
- Mainka, J.; Wirth, F.; Kloft, H. Industrializing the Non-Waste-Wax-Formwork Technology. In Proceedings of the 1st International Conference on Concrete and Digital Fabrication—Digital Concrete (ICCDF), Zürich, Switzerland, 10–12 September 2018; Wangler, T., Flatt, R.J., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 153–154. [Google Scholar]
- Hawkins, W.; Orr, J.; Ibell, T.; Shepherd, P. A Design Methodology to Reduce the Embodied Carbon of Concrete Buildings Using Thin-Shell Floors. Eng. Struct. 2020, 207, 110–195. [Google Scholar] [CrossRef]
- Gauch, H.L.; Hawkins, W.; Ibell, T.; Allwood, J.M.; Dunant, C.F. Carbon vs. Cost Option Mapping: A Tool for Improving Early-Stage Design Decisions. Autom. Constr. 2022, 136, 104–178. [Google Scholar] [CrossRef]
- Brown, N.C.; Mueller, C.T. Design for Structural and Energy Performance of Long Span Buildings Using Geometric Multi-Objective Optimization. Energy Build. 2016, 127, 748–761. [Google Scholar] [CrossRef]
Property | Longitudinal | Transversal | |
---|---|---|---|
Fiber cross-sectional area—fiber strand in (mm²) | 1.81 | 1.81 | |
Fiber cross-sectional area—mat in (mm²/m) | 85.4 | 84.6 | |
Roving axis distance (grid with) in (mm) | 21 | 21 | |
Mean tensile strength (a), (b) in (MPa) | ≥3950 | ≥4250 | |
Characteristic tensile strength (a), (b) in (MPa) | ≥3050 | ≥3250 | |
Average Young’s modulus (b) in (MPa) | ≥251,500 | ≥254,000 |
Properties | |
---|---|
Mean density in (kg/m³) | 2350 |
Mean short-time compressive strength in (MPa) | 121.1 |
Mean elastic modulus in (MPa) | 42,100 |
Name | Direction of Span | Span (m) | Height (m) | Boundary Conditions | Number of Textile Layers |
---|---|---|---|---|---|
G1.0 | Single | 1.8 | 0.2 | S1 and S2 | 1 |
G1.1 | Single | 4.0 | 0.2 | S1 and S2 | 1 |
G1.2 | Single | 6.0 | 0.2 | S1 and S2 | 1 |
G2.1 | Double | 1.8 | 0.2 | S1 and S2 | 1 |
G2.2 | Double | 1.8 | 0.2 | S1 and S2 and S3 | 1 |
Name | Total Weight Gtotal (kN) | Maximum Total Load Qlim (kN) | Span (m) | Structural Efficiency Estr (–) |
---|---|---|---|---|
G1.0 | 2.07 | 172.8 | 1.8 | 83.4 |
G1.1 | 4.61 | 78.0 | 4.0 | 16.9 |
G1.2 | 6.91 | 49.5 | 6.0 | 7.2 |
G2.1 | 4.15 | 172.8 | 1.8 | 41.6 |
G2.2 | 4.15 | 324.0 | 1.8 | 78.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vakaliuk, I.; Scheerer, S.; Curbach, M. Numerical Analysis of Textile Reinforced Concrete Shells: Force Interaction and Failure Types. CivilEng 2024, 5, 224-246. https://doi.org/10.3390/civileng5010012
Vakaliuk I, Scheerer S, Curbach M. Numerical Analysis of Textile Reinforced Concrete Shells: Force Interaction and Failure Types. CivilEng. 2024; 5(1):224-246. https://doi.org/10.3390/civileng5010012
Chicago/Turabian StyleVakaliuk, Iurii, Silke Scheerer, and Manfred Curbach. 2024. "Numerical Analysis of Textile Reinforced Concrete Shells: Force Interaction and Failure Types" CivilEng 5, no. 1: 224-246. https://doi.org/10.3390/civileng5010012
APA StyleVakaliuk, I., Scheerer, S., & Curbach, M. (2024). Numerical Analysis of Textile Reinforced Concrete Shells: Force Interaction and Failure Types. CivilEng, 5(1), 224-246. https://doi.org/10.3390/civileng5010012