Application of Long-Period Fiber Grating Sensors in Structural Health Monitoring: A Review
Abstract
:1. Introduction
2. Long-Period Fiber Grating Sensors
2.1. Sensing Principle
2.2. Fabrication
3. Applications
3.1. Strain and Temperature
3.2. Relative Humidity
3.3. pH
3.4. Chloride
3.5. Corrosion
4. Existing Challenges and Future Perspectives
- LPFG sensors are fragile under tension, bending, or impact, which is a general issue for all optical fiber sensors. To use LPFG sensors in practical engineering applications, robust packaging techniques are required to prevent breakage during the process of sensor installation and usage. However, the introduction of packaging may weaken the advantage of optical fiber sensors in terms of small size.
- Compared to other optical fiber sensors, LPFG sensors can measure more parameters due to their unique ability to measure the RI of the surrounding medium, but this brings to more cross-sensitivity issues. For example, temperature variations can introduce interference to the measurement of other parameters, which is typically non-negligible. Although simultaneous measurement can solve this problem for strain measurement, for other parameters like pH and chloride ion concentration, more work is needed for temperature compensation.
- LPFG corrosion sensors can only be used for the early-stage corrosion monitoring and lack of reliable system methods to evaluate the corrosion degree of the structure. The service life of the LPFG corrosion sensors is only a few days, making them currently unsuitable for long-term corrosion monitoring lasting several years. Extending the service life usually decreases the sensitivity of the sensors, and this will induce the trade-off problem between sensitivity and service life. Some measures had been proposed to extend the service life of the LPFG corrosion sensors, like encapsulating the sensors by small steel tubes [86,87], but more research is needed. In addition, LPFG corrosion sensors are focused on measurement of the mass loss of the steel elements, but the strength loss due to corrosion remains unknown due to the unevenness and randomness of corrosion. To solve this issue, other parameters like strain/stress state of the rebars need to be considered. Therefore, reliable system methods are urgent to be developed for the comprehensive corrosion evaluation of the structure.
- An efficient sensing network of LPFG sensors is necessary for large-scale structures such as bridges. To monitor the performance of the large-scale structures, many key locations need to be installed with multiple sensors and these locations are far apart. Therefore, it is important and challenging to develop a reasonable plan to address the installation of sensors and data collection.
5. Conclusions
- For strain and temperature measurements, the LPFG sensors measure the two parameters simultaneously and can decouple the data since the LPFG sensors have different sensitivities for strain and temperature. The common ranges for strain and temperature measurement are 0~1200 με and 30~90 °C, respectively and the corresponding sensitivities are 1.4~8.2 pm/με and 18~129 pm/°C, respectively. For an ultra-high strain range of 1000~6000 με, the strain sensitivity is only approximately 0.6 pm/με.
- For RH measurement, the LPFG sensors are coated with a layer of humidity-sensitive materials such as PVA, PAH/PAA, hydrogel, gelatin, and polyimide. The common RH measurement range is 35~90% and the sensitivity is 0.1~5.71 nm/1%. Some LPFG sensors have short response time as short as 30 s for RH changes. However, many articles have not studied response time, and more relevant work is needed in the future.
- For pH measurement, the LPFG sensors are coated with a layer of pH-sensitive materials such as PAH/PAA, hydrogel, PEI/PAA, and PANI. When pH ranges from 4~7, the sensitivity is 6~28 nm/pH. When pH ranges from 2~12, the sensitivity is 0.15~0.66 nm/pH. The pH sensitivity of LPFG sensors across a wider pH range is less than 10% of the sensitivity within a smaller pH range.
- For chloride ion concentration measurement, the LPFG sensers use different coatings such as hydrogel and gold nanoparticles to enhance the sensitivity. The LPFG chloride sensors are mainly tested in NaCl solutions with different concentrations. However, it is difficult to compare their sensitivities since researchers used different concentrations units.
- For corrosion monitoring, the LPFG sensors are coated with nano iron/silica particles or Fe-C coatings since these coatings have similar chemical composition with steel bars. The service life and the sensitivity of the LPFG corrosion sensors are dependent on the thickness of the coating, so the trade-off between them needs to be considered. The service life of the LPFG corrosion sensors is only a few days, which means the LPFG corrosion sensors are suitable for early-stage corrosion monitoring.
Author Contributions
Funding
Conflicts of Interest
References
- Roy, S.K.; Poh, K.B.; Northwood, D.o. Durability of concrete—Accelerated carbonation and weathering studies. Build. Environ. 1999, 34, 597–606. [Google Scholar] [CrossRef]
- Ma, P.; Liao, W.; Zhuo, Y.; Ma, H.; Zhu, Y.; Chen, G. Characterization of alkali-silica reaction (ASR) products and C-S-H using SWIR spectroscopy for nondestructive detection of ASR. Constr. Build. Mater. 2024, 416, 135207. [Google Scholar] [CrossRef]
- Ma, P.; Li, J.; Bai, J.; Zhuo, Y.; Chi, L.; Zhu, Y.; Shi, Z.; Ma, H.; Chen, G. Effect of type and quantity of inherent alkali cations on alkali-silica reaction. Cem. Concr. Res. 2023, 173, 107293. [Google Scholar] [CrossRef]
- Angst, U.M. Challenges and opportunities in corrosion of steel in concrete. Mater. Struct. 2018, 51, 4. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Y.; Ma, P.; He, S.; Shao, X. Effect of ages and season temperatures on bi-surface shear behavior of HESUHPC-NSC composite. Adv. Concr. Constr. 2023, 15, 359–376. [Google Scholar]
- Farrar, C.R.; Worden, K. An introduction to structural health monitoring. Phil. Trans. R. Soc. A 2007, 365, 303–315. [Google Scholar] [CrossRef]
- Wu, T.; Liu, G.; Fu, S.; Xing, F. Recent Progress of Fiber-Optic Sensors for the Structural Health Monitoring of Civil Infrastructure. Sensors 2020, 20, 4517. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, P.M.; Machado, M.A.; Carvalho, M.S.; Vidal, C. Embedded Sensors for Structural Health Monitoring: Methodologies and Applications Review. Sensors 2022, 22, 8320. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Chen, L. Recent Progress in Distributed Fiber Optic Sensors. Sensors 2012, 12, 8601–8639. [Google Scholar] [CrossRef]
- Li, H.-N.; Li, D.-S.; Song, G.-B. Recent applications of fiber optic sensors to health monitoring in civil engineering. Eng. Struct. 2004, 26, 1647–1657. [Google Scholar] [CrossRef]
- Zheng, Z.; Lei, Y.; Sun, X. Measuring Corrosion of Steel in Concrete via Fiber Bragg Grating Sensors—Lab Experimental Test and In-Field Application. In Earth and Space 2010; American Society of Civil Engineers: Honolulu, HI, USA, 2010; pp. 2422–2430. [Google Scholar] [CrossRef]
- Bhatia, V.; Vengsarkar, A.M. Optical fiber long-period grating sensors. Opt. Lett. 1996, 21, 692–694. [Google Scholar] [CrossRef] [PubMed]
- Vengsarkar, A.M.; Lemaire, P.J.; Judkins, J.B.; Bhatia, V.; Erdogan, T.; Sipe, J.E. Long-period fiber gratings as band-rejection filters. J. Light. Technol. 1996, 14, 58–65. [Google Scholar] [CrossRef]
- Taheri, S. A review on five key sensors for monitoring of concrete structures. Constr. Build. Mater. 2019, 204, 492–509. [Google Scholar] [CrossRef]
- Behnood, A.; Van Tittelboom, K.; De Belie, N. Methods for measuring pH in concrete: A review. Constr. Build. Mater. 2016, 105, 176–188. [Google Scholar] [CrossRef]
- Lam, C.C.C.; Mandamparambil, R.; Sun, T.; Grattan, K.T.V.; Nanukuttan, S.V.; Taylor, S.E.; Basheer, P.A.M. Optical Fiber Refractive Index Sensor for Chloride Ion Monitoring. IEEE Sens. J. 2009, 9, 525–532. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, M.; Gao, W.; Guo, C.; Kong, Q. A novel method for steel bar all-stage pitting corrosion monitoring using the feature-level fusion of ultrasonic direct waves and coda waves. Struct. Health Monit. 2023, 22, 714–729. [Google Scholar] [CrossRef]
- Wang, Y.-P.; Wang, D.N.; Jin, W.; Rao, Y.-J.; Peng, G.-D. Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber. Appl. Phys. Lett. 2006, 89, 151105. [Google Scholar] [CrossRef]
- Wang, Y.-P.; Xiao, L.; Wang, D.N.; Jin, W. Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity. Opt. Lett. 2006, 31, 3414. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. Review of long period fiber gratings written by CO2 laser. J. Appl. Phys. 2010, 108, 081101. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Chen, L.; Yan, T. Temperature-Independent Force Sensor Based on PSLPFG Induced by Electric-Arc Discharge. IEEE Photon. Technol. Lett. 2015, 27, 1946–1948. [Google Scholar] [CrossRef]
- Du, C.; Wang, Q.; Zhao, Y. Long-period fiber grating sensor induced by electric-arc discharge for dual-parameter measurement. Instrum. Sci. Technol. 2018, 46, 1–11. [Google Scholar] [CrossRef]
- Guo, C.; Fan, L.; Wu, C.; Chen, G.; Li, W. Ultrasensitive LPFG corrosion sensor with Fe-C coating electroplated on a Gr/AgNW film. Sens. Actuators B Chem. 2019, 283, 334–342. [Google Scholar] [CrossRef]
- Tang, F.; Chen, Y.; Li, Z.; Tang, Y.; Chen, G. Application of Fe-C coated LPFG sensor for early stage corrosion monitoring of steel bar in RC structures. Constr. Build. Mater. 2018, 175, 14–25. [Google Scholar] [CrossRef]
- Li, H.-N.; Li, D.-S.; Ren, L.; Yi, T.-H.; Jia, Z.-G.; Li, K.-P. Structural health monitoring of innovative civil engineering structures in Mainland China. Struct. Monit. Maint. 2016, 3, 1–32. [Google Scholar] [CrossRef]
- Han, K.J.; Lee, Y.W.; Kwon, J.; Roh, S.; Jung, J.; Lee, B. Simultaneous Measurement of Strain and Temperature Incorporating a Long-Period Fiber Grating Inscribed on a Polarization-Maintaining Fiber. IEEE Photon. Technol. Lett. 2004, 16, 2114–2116. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, W.; Wang, B.; Chen, L.; Bai, Z.; Gao, S.; Li, J.; Liu, Y.; Zhang, L.; Zhou, Q.; et al. Simultaneous strain and temperature measurement by cascading few-mode fiber and single-mode fiber long-period fiber gratings. Appl. Opt. 2014, 53, 7045. [Google Scholar] [CrossRef]
- Zeng, H.; Geng, T.; Yang, W.; An, M.; Li, J.; Yang, F.; Yuan, L. Combining Two Types of Gratings for Simultaneous Strain and Temperature Measurement. IEEE Photon. Technol. Lett. 2016, 28, 477–480. [Google Scholar] [CrossRef]
- Yan, Q.; Liu, W.; Duan, S.; Sun, C.; Zhang, S.; Han, Z.; Jin, X.; Zhao, L.; Geng, T.; Sun, W.; et al. A cascade structure made by two types of gratings for simultaneous measurement of temperature and strain. Opt. Fiber Technol. 2018, 42, 105–108. [Google Scholar] [CrossRef]
- Jin, X.; Yang, X.; Geng, T.; Sun, W.; Yuan, L.; Sun, C.; Duan, S.; Liu, W.; Li, G.; Zhang, S.; et al. High Strain Sensitivity Temperature Sensor Based on a Secondary Modulated Tapered Long Period Fiber Grating. IEEE Photonics J. 2019, 11, 1–8. [Google Scholar] [CrossRef]
- Yeo, T.L.; Sun, T.; Grattan, K.T.V. Fibre-optic sensor technologies for humidity and moisture measurement. Sens. Actuators A Phys. 2008, 144, 280–295. [Google Scholar] [CrossRef]
- Tan, K.M.; Tay, C.M.; Tjin, S.C.; Chan, C.C.; Rahardjo, H. High relative humidity measurements using gelatin coated long-period grating sensors. Sens. Actuators B Chem. 2005, 110, 335–341. [Google Scholar] [CrossRef]
- Yeo, T.L.; Sun, T.; Grattan, K.T.V.; Parry, D.; Lade, R.; Powell, B.D. Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing. Sens. Actuators B Chem. 2005, 110, 148–156. [Google Scholar] [CrossRef]
- Konstantaki, M.; Pissadakis, S.; Pispas, S.; Madamopoulos, N.; Vainos, N.A. Optical fiber long-period grating humidity sensor with poly(ethylene oxide)/cobalt chloride coating. Appl. Opt. 2006, 45, 4567. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, L.; Zhang, M.; Tu, D.; Mao, X.; Liao, Y. Long-Period Grating Relative Humidity Sensor with Hydrogel Coating. IEEE Photon. Technol. Lett. 2007, 19, 880–882. [Google Scholar] [CrossRef]
- Yu, X.; Childs, P.; Zhang, M.; Liao, Y.; Ju, J.; Jin, W. Relative Humidity Sensor Based on Cascaded Long-Period Gratings with Hydrogel Coatings and Fourier Demodulation. IEEE Photon. Technol. Lett. 2009, 21, 1828–1830. [Google Scholar] [CrossRef]
- Venugopalan, T.; Sun, T.; Grattan, K.T.V. Long period grating-based humidity sensor for potential structural health monitoring. Sens. Actuators A Phys. 2008, 148, 57–62. [Google Scholar] [CrossRef]
- Corres, J.M.; Del Villar, I.; Matias, I.R.; Arregui, F.J. Two-Layer Nanocoatings in Long-Period Fiber Gratings for Improved Sensitivity of Humidity Sensors. IEEE Trans. Nanotechnol. 2008, 7, 394–400. [Google Scholar] [CrossRef]
- Zheng, S. Long-period fiber grating moisture sensor with nano-structured coatings for structural health monitoring. Struct. Health Monit. 2015, 14, 148–157. [Google Scholar] [CrossRef]
- Viegas, D.; Goicoechea, J.; Corres, J.M.; Santos, J.L.; Ferreira, L.A.; Araújo, F.M.; Matias, I.R. A fibre optic humidity sensor based on a long-period fibre grating coated with a thin film of SiO2 nanospheres. Meas. Sci. Technol. 2009, 20, 034002. [Google Scholar] [CrossRef]
- Hromadka, J.; Mohd Hazlan, N.N.; Hernandez, F.U.; Correia, R.; Norris, A.; Morgan, S.P.; Korposh, S. Simultaneous in situ temperature and relative humidity monitoring in mechanical ventilators using an array of functionalised optical fibre long period grating sensors. Sens. Actuators B Chem. 2019, 286, 306–314. [Google Scholar] [CrossRef]
- Alwis, L.; Sun, T.; Grattan, K.V. Analysis of Polyimide-Coated Optical Fiber Long-Period Grating-Based Relative Humidity Sensor. IEEE Sens. J. 2013, 13, 767–771. [Google Scholar] [CrossRef]
- Nidhi; Tiwari, U.; Panwar, N.; Kaler, R.S.; Bhatnagar, R.; Kapur, P. Long Period Fiber Grating Humidity Sensor with Gelatin/Cobalt Chloride Coating. IEEE Sens. J. 2013, 13, 4139–4140. [Google Scholar] [CrossRef]
- Qiao, H.; Lin, Z.; Sun, X.; Li, W.; Zhao, Y.; Guo, C. Fiber Optic-Based Durability Monitoring in Smart Concrete: A State-of-Art Review. Sensors 2023, 23, 7810. [Google Scholar] [CrossRef] [PubMed]
- Corres, J.M.; Del Villar, I.; Matias, I.R.; Arregui, F.J. Fiber-optic pH-sensors in long-period fiber gratings using electrostatic self-assembly. Opt. Lett. 2007, 32, 29. [Google Scholar] [CrossRef] [PubMed]
- Corres, J.M.; Matias, I.R.; Del Villar, I.; Arregui, F.J. Design of pH Sensors in Long-Period Fiber Gratings Using Polymeric Nanocoatings. IEEE Sens. J. 2007, 7, 455–463. [Google Scholar] [CrossRef]
- Mishra, S.K.; Zou, B.; Chiang, K.S. Wide-Range pH Sensor Based on a Smart- Hydrogel-Coated Long-Period Fiber Grating. IEEE J. Select. Top. Quantum Electron. 2017, 23, 284–288. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Q.; Tang, Y.; Tang, Y.; Wan, L.; Dong, X.; Chan, C.C. Long-Period Fiber Grating Wide-Range pH Sensor Based on Polyvinyl Alcohol/Polyacrylic Acid Hydrogel Coating. In Proceedings of the 2020 IEEE 5th Optoelectronics Global Conference (OGC), Shenzhen, China, 7–11 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 140–142. [Google Scholar] [CrossRef]
- Wang, X.; Guo, X.; Ge, M.; Li, Z.; Zhao, Y.; Shen, J.; Li, C. Fast and convenient PH detection methods with long period fiber probe of polyaniline coating. In Proceedings of the Global Intelligent Industry Conference 2020, Guangzhou, China, 16–18 November 2020; Wang, L., Ed.; SPIE: Bellingham, WA, USA, 2021; p. 107. [Google Scholar] [CrossRef]
- Pereira, J.M.; Mendes, J.P.; Dias, B.; Almeida, J.M.M.M.D.; Coelho, L.C.C. Optical pH Sensor Based on a Long-Period Fiber Grating Coated with a Polymeric Layer-by-Layer Electrostatic Self-Assembled Nanofilm. Sensors 2024, 24, 1662. [Google Scholar] [CrossRef] [PubMed]
- Anemogiannis, E.; Glytsis, E.N.; Gaylord, T.K. Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variations. J. Light. Technol. 2003, 21, 218–227. [Google Scholar] [CrossRef]
- Fuhr, P.L. Embedded fiber optic sensors for bridge deck chloride penetration measurement. Opt. Eng. 1998, 37, 1221. [Google Scholar] [CrossRef]
- Montemor, M.F.; Alves, J.H.; Simões, A.M.; Fernandes, J.C.S.; Lourenço, Z.; Costa, A.J.S.; Appleton, A.J.; Ferreira, M.G.S. Multiprobe chloride sensor for in situ monitoring of reinforced concrete structures. Cem. Concr. Compos. 2006, 28, 233–236. [Google Scholar] [CrossRef]
- Elsener, B.; Zimmermann, L.; Böhni, H. Non destructive determination of the free chloride content in cement based materials. Mater. Corros. 2003, 54, 440–446. [Google Scholar] [CrossRef]
- Tang, J.-L.; Wang, J.-N. Measurement of chloride-ion concentration with long-period grating technology. Smart Mater. Struct. 2007, 16, 665–672. [Google Scholar] [CrossRef]
- Abi Kaed Bey, S.K.; Chun Lam, C.C.; Sun, T.; Grattan, K.T.V. Chloride ion optical sensing using a long period grating pair. Sens. Actuators A Phys. 2008, 141, 390–395. [Google Scholar] [CrossRef]
- Possetti, G.R.C.; Kamikawachi, R.C.; Prevedello, C.L.; Muller, M.; Fabris, J.L. Salinity measurement in water environment with a long period grating based interferometer. Meas. Sci. Technol. 2009, 20, 034003. [Google Scholar] [CrossRef]
- Laxmeshwar, L.S.; Jadhav, M.S.; Akki, J.F.; Raikar, P.; Kumar, J.; Prakash, O.; Mahakud, R.; Raikar, U.S. Quantification of chloride and iron in sugar factory effluent using long period fiber grating chemical sensor. Sens. Actuators B Chem. 2018, 258, 850–856. [Google Scholar] [CrossRef]
- Yang, F.; Sukhishvili, S.; Du, H.; Tian, F. Marine salinity sensing using long-period fiber gratings enabled by stimuli-responsive polyelectrolyte multilayers. Sens. Actuators B Chem. 2017, 253, 745–751. [Google Scholar] [CrossRef]
- Yang, F.; Hlushko, R.; Wu, D.; Sukhishvili, S.A.; Du, H.; Tian, F. Ocean Salinity Sensing Using Long-Period Fiber Gratings Functionalized with Layer-by-Layer Hydrogels. ACS Omega 2019, 4, 2134–2141. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.-S.; Yang, Y.; Du, Y.-D.; Cai, L.; Ma, Y.-H.; Yang, J.-H.; Li, M.; Meng, Q.-J.; Liu, Q.-A.; Dong, W.-F. Highly sensitive detection of low-concentration sodium chloride solutions based on polymeric nanofilms coated long period fiber grating. Talanta 2023, 254, 124126. [Google Scholar] [CrossRef]
- Parthiban, T.; Ravi, R.; Parthiban, G.T. Potential monitoring system for corrosion of steel in concrete. Adv. Eng. Softw. 2006, 37, 375–381. [Google Scholar] [CrossRef]
- Stern, M.; Geary, A.L. Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves. J. Electrochem. Soc. 1957, 104, 56. [Google Scholar] [CrossRef]
- Ma, P.; Li, J.; Zhuo, Y.; Jiao, P.; Chen, G. Coating Condition Detection and Assessment on the Steel Girder of a Bridge through Hyperspectral Imaging. Coatings 2023, 13, 1008. [Google Scholar] [CrossRef]
- Ma, P.; Fan, L.; Chen, G. Hyperspectral reflectance for determination of steel rebar corrosion and Cl−concentration. Constr. Build. Mater. 2023, 368, 130506. [Google Scholar] [CrossRef]
- Ma, P.; Mondal, T.G.; Shi, Z.; Afsharmovahed, M.H.; Romans, K.; Li, L.; Zhuo, Y.; Chen, G. Early Detection of Pipeline Natural Gas Leakage from Hyperspectral Imaging by Vegetation Indicators and Deep Neural Networks. Environ. Sci. Technol. 2024, 58, 27. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Shi, X. Techniques of corrosion monitoring of steel rebar in reinforced concrete structures: A review. Struct. Health Monit. 2022, 21, 1879–1905. [Google Scholar] [CrossRef]
- Tang, F.; Zhou, G.; Li, H.-N.; Verstrynge, E. A review on fiber optic sensors for rebar corrosion monitoring in RC structures. Constr. Build. Mater. 2021, 313, 125578. [Google Scholar] [CrossRef]
- Elsener, B.; Andrade, C.; Gulikers, J.; Polder, R.; Raupach, M. Half-cell potential measurements—Potential mapping on reinforced concrete structures. Mat. Struct. 2003, 36, 461–471. [Google Scholar] [CrossRef]
- Angst, U.; Büchler, M. On the applicability of the Stern–Geary relationship to determine instantaneous corrosion rates in macro-cell corrosion. Mater. Corros. 2015, 66, 1017–1028. [Google Scholar] [CrossRef]
- Mansfeld, F. The effect of uncompensated IR-drop on polarization resistance measurements. Corrosion 1976, 32, 143–146. [Google Scholar] [CrossRef]
- Ma, P.; Mondal, T.G.; Zhuo, Y.; Shi, Z.; Shang, B.; Li, L.; Chen, G. CAAP Final Report; The National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 2022; p. 01883998. Available online: https://trid.trb.org/View/2186657 (accessed on 20 September 2022).
- Ma, P.; Zhuo, Y.; Chen, G.; Burken, J.G. Natural Gas Induced Vegetation Stress Identification and Discrimination from Hyperspectral Imaging for Pipeline Leakage Detection. Remote Sens. 2024, 16, 1029. [Google Scholar] [CrossRef]
- Ma, P. Gas Leakage Detection with Hyperspectral Imagery-Based Vegetation Stress Indices. In Proceedings of the INSPIRE-UTC 2021 Annual Meeting, Virtual, 10 August 2021; Available online: https://scholarsmine.mst.edu/inspire-meetings/2021_meeting/poster-session/7/ (accessed on 10 August 2021).
- Liu, H.; Liang, D.; Zeng, J.; Jin, J.; Wu, J.; Geng, J. Design of a long-period fiber grating sensor for reinforcing bar corrosion in concrete. J. Intell. Mater. Syst. Struct. 2012, 23, 45–51. [Google Scholar] [CrossRef]
- Huang, Y.; Gao, Z.; Chen, G.; Xiao, H. Long period fiber grating sensors coated with nano iron/silica particles for corrosion monitoring. Smart Mater. Struct. 2013, 22, 075018. [Google Scholar] [CrossRef]
- Huang, Y.; Tang, F.; Liang, X.; Chen, G.; Xiao, H.; Azarmi, F. Steel bar corrosion monitoring with long-period fiber grating sensors coated with nano iron/silica particles and polyurethane. Struct. Health Monit. 2015, 14, 178–189. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, F.; Bao, Y.; Tang, Y.; Chen, G. A Fe-C coated long-period fiber grating sensor for corrosion-induced mass loss measurement. Opt. Lett. 2016, 41, 2306. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Huang, Y. A Hybrid Instrumented/Computational Modelling Framework with Lab-on-sensor Design and Calibration for Structural Behaviour Monitoring. Int. J. Sustain. Mater. Struct. Syst. 2017, 3. [Google Scholar] [CrossRef]
- Zhuo, Y.; Chen, G. Recent development of Fe-C coated long-period fiber gratings, corrosion sensors. In Optical Waveguide and Laser Sensors II; Lieberman, R.A., Sanders, G.A., Scheel, I.U., Eds.; SPIE: Bellingham, WA, USA, 2023; p. 1253202. [Google Scholar]
- Chen, Y.; Tang, F.; Tang, Y.; O’Keefe, M.J.; Chen, G. Mechanism and sensitivity of Fe-C coated long period fiber grating sensors for steel corrosion monitoring of RC structures. Corros. Sci. 2017, 127, 70–81. [Google Scholar] [CrossRef]
- Tang, F.; Li, Z.; Chen, Y.; Li, H.-N.; Huang, J.; O’Keefe, M.J. Monitoring Passive Film Growth on Steel Using Fe-C Coated Long Period Grating Fiber Sensor. IEEE Sens. J. 2019, 19, 6748–6755. [Google Scholar] [CrossRef]
- Guo, C.; Fan, L.; Chen, G. Corrosion-Induced Mass Loss Measurement under Strain Conditions through Gr/AgNW-Based, Fe-C Coated LPFG Sensors. Sensors 2020, 20, 1598. [Google Scholar] [CrossRef]
- Zhuo, Y. Probability of Detection in Corrosion Monitoring with Fe-C Coated LPFG Sensors. In Proceedings of the INSPIRE-UTC 2021 Annual Meeting, Virtual, 10 August 2021. [Google Scholar]
- Zhuo, Y.; Ma, P.; Guo, C.; Chen, G. Probability of detection for corrosion-induced steel mass loss using Fe–C coated LPFG sensors. Struct. Health Monit. 2024, 14759217241227229. [Google Scholar] [CrossRef]
- Guo, C.; Chen, G. A corrosion threshold-controllable sensing system of Fe-C coated long period fiber gratings for life-cycle mass loss measurement of steel bars with strain and temperature compensation. Smart Struct. Syst. 2021, 28, 443–453. [Google Scholar] [CrossRef]
- Zhuo, Y.; Guo, C.; Fan, L.; Chen, G. Magnet-Assisted Fiber Optic Sensing for Internal and External Corrosion-Induced Mass Losses of Metal Pipelines under Operation Conditions. July 2022. Available online: https://trid.trb.org/View/2144111 (accessed on 7 July 2022).
Ref. | Year | Sensor Design/ Fabrication | Fiber Type | Grating Period (μm) | Resonant Wavelength (nm) | Strain Range (με) | Strain Sensitivity (pm/με) | Temperature Range (°C) | Temperature Sensitivity (pm/°C) |
---|---|---|---|---|---|---|---|---|---|
[26] | 2004 | KrF Laser | PMF | 480 | 1565.93 | 0~1200 | 1.36 | 35~90 | −36.6 |
1602.05 | −1.37 | 129.12 | |||||||
[27] | 2014 | CO2 Laser | FMF | 480 | 1338.44 | 0~800 | −2.9 | 30~90 | −17.6 |
SMF | 580 | 1522.47 | −1.47 | 46.4 | |||||
[28] | 2016 | Tapered | SMF | 3998.5 | 1412 | 0~2392 | −1.5 | 20~225 | 67 |
LPFG | 462.3 | 1280 | 0 | 80 | |||||
[22] | 2018 | EAD | SMF | 500 | 1425 | 1000~6000 | −0.6 | 45~75 | 30.9 |
1470 | −0.52 | 68.1 | |||||||
[29] | 2018 | Modular | SMF+NCF | 400 (SMF) 200 (NCF) | 1258 | 0~1200 | −1.2 | 30~170 | −15.4 |
CO2 Laser | SMF | 500 | 1356 | −0.5 | 58.3 | ||||
[30] | 2019 | Tapered | SMF | 4800 | 1540.2 | 0~900 | 1.82 | 30~90 | 47.9 |
CO2 Laser | 500 | 1572.2 | 8.17 | 65 |
Ref. | Year | Coating | Coating Thickness (μm) | RH Range (%) | RH Sensitivity (nm/1%) |
---|---|---|---|---|---|
[34] | 2006 | PEO/CoCl2 | 10 | 50~77 | 0.19 |
77~95 | 0.33 | ||||
[35] | 2007 | Hydrogel | 38.9~100 | 0.2 | |
[36] | 2009 | Hydrogel | 0.75 | 35~50 | 0.42 |
50~100 | 0.47 | ||||
[37] | 2008 | PVA | 1.5 | 53~75 | 0.09 |
75~97 | 0.68 | ||||
0.8 | 53~75 | 0.81 | |||
75~97 | 5.71 | ||||
[38] | 2008 | PAH/PAA and Al2O3/PSS | 50~75 | 0.44 | |
[39] | 2015 | PAH/PAA− and Al2O3+/PSS− | 0.17 | 19~25 | 0.15 |
73~90 | 0.15 | ||||
[40] | 2009 | PAH/PSS− and PAH/SiO2-NPs | 20~80 | 0.2 | |
[41] | 2019 | PAH/SiO2-NPs | 35~98 | 0.53 | |
[42] | 2012 | Polyimide | 20~80 | 0.1 | |
[43] | 2013 | Gelatin/CoCl2 | 1.5 | 35~90 | 0.18 |
Ref. | Year | Coating | Coating Thickness (μm) | pH Range | pH Sensitivity (nm/pH) | Response Time (s) |
---|---|---|---|---|---|---|
[45] | 2006 | PAH/PAA | 4~7 | 28.3 | 120 | |
[46] | 2007 | PAH/PAA | 0.4 | 4~7 | 28.3 | 120 |
7~8 | 21 | |||||
PB in the PAH/PAA | 0.4 | 4~7 | 8 | 60 | ||
7~8 | 10 | |||||
[47] | 2016 | Hydrogel | 0.53 | 2~12 | 0.66 | <2 |
[48] | 2020 | PVA/PAA hydrogel | 2~7 | 0.44 | ||
[49] | 2021 | PANI film | 2~12 | 0.152 | 11~19 | |
[50] | 2024 | PEI/PAA | 5.92~9.23 | 5.6~6.3 | 480 |
Ref. | Year | Coating | Concentration Range | Sensitivity |
---|---|---|---|---|
[55] | 2007 | Colloidal gold | 0~25 wt.% | 0.071 nm/1% |
[56] | 2007 | 0~0.232 g/mL | 0.001 nm/(g mL−1) | |
[57] | 2009 | 0~150 g/L | 0.00661 nm/(g L−1) | |
[16] | 2009 | Gold NPs | 0~1.0 M | 1.47 nm/M |
[58] | 2017 | 50~300 ppm | 0.02848 nm/ppm | |
[59] | 2017 | CHI/PAA | 0.5~0.8 M | 36 nm/M |
[60] | 2019 | qP4VP/PAA Hydrogel | 0.4~0.8 M | 7 nm/M (125.5 pm/‰) |
[61] | 2022 | PDDA/PSS | 0~3% | 52.2 nm/1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuo, Y.; Ma, P.; Jiao, P.; Yuan, X. Application of Long-Period Fiber Grating Sensors in Structural Health Monitoring: A Review. CivilEng 2024, 5, 559-575. https://doi.org/10.3390/civileng5030030
Zhuo Y, Ma P, Jiao P, Yuan X. Application of Long-Period Fiber Grating Sensors in Structural Health Monitoring: A Review. CivilEng. 2024; 5(3):559-575. https://doi.org/10.3390/civileng5030030
Chicago/Turabian StyleZhuo, Ying, Pengfei Ma, Pu Jiao, and Xinzhe Yuan. 2024. "Application of Long-Period Fiber Grating Sensors in Structural Health Monitoring: A Review" CivilEng 5, no. 3: 559-575. https://doi.org/10.3390/civileng5030030
APA StyleZhuo, Y., Ma, P., Jiao, P., & Yuan, X. (2024). Application of Long-Period Fiber Grating Sensors in Structural Health Monitoring: A Review. CivilEng, 5(3), 559-575. https://doi.org/10.3390/civileng5030030