Study of Dynamic Modulus of Asphalt Mix after Reinforcement of Sandstone
Abstract
:1. Introduction
2. Material Technical Index
2.1. Reinforcement Materials
2.2. Comparison of Strengthening Results
2.3. Asphalt
2.4. Other Materials
3. Design of Mix Ratio
3.1. Grading Design
3.2. Optimum Asphalt Content
4. Dynamic Modulus
5. Results and Discussions
5.1. Dynamic Modulus Test Results and Analysis
5.2. Master Curve Analysis
5.2.1. Dynamic Modulus Master Curve
5.2.2. Phase Angle Master Curve
5.2.3. Storage Module Master Curve and Loss Module Master Curve
5.2.4. Other Theoretical Measures of Linear Elasticity
5.2.5. Rutting Factor, Fatigue Factor, DSRFN Parameter
6. Conclusions
- Treating sandstone aggregates with sodium silicate can effectively improve the water absorption and mechanical properties of sandstone.
- Treatment of sandstone aggregates with sodium silicate solution increases the dynamic modulus of asphalt mixtures by about 45%, reducing the phase angle and allowing the mix to exhibit greater elastic behavior, increasing the rutting factor, and significantly improving the high temperature stability of the mix.
- The aforementioned sigmoidal function combined with the Kramers–Kronig relationship can be used to predict values of dynamic modulus, phase angle, storage modulus, and loss modulus over a wide frequency range, and the master curve can be used to investigate the linear viscoelastic behavior of the mix.
- At high temperatures, the phase angle complicates the viscoelastic behavior, and the value of the phase angle does not vary with the smoothed master curve.
- The dynamic modulus increases, the permanent deformation decreases, but the cracking resistance will be reduced. for high modulus, it is necessary to consider its toughening treatment.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fan, J.; Xu, G.; Zhu, Y.; Cai, Z. Feasibility of Siliceous Sandstone Utilization in Porous Asphalt Mixture. J. Transp. Eng. Part B Pavements 2023, 149, 04022069. [Google Scholar] [CrossRef]
- Li, H.; Guo, X.; Xin, J.; Li, Y.; Zhang, F.; Zhao, G.; Guo, P.; Sheng, Y. Study on the Characteristics of Sandstone and Feasibility to Replace Limestone in Cement Stabilized Macadam Base. Int. J. Pavement Res. Technol. 2023, 16, 1419–1438. [Google Scholar] [CrossRef]
- Bao, X.; Yao, L. Study on road performance of sandstone for asphalt concrete surface. Highway 2014, 59, 243–246. [Google Scholar]
- Ma, X. Application of sandstone SMA-13 mixture in asphalt surface layer. Highw. Transp. Sci. Technol. 2016, 12, 47–48. [Google Scholar]
- Li, B.; Liu, J.; Bian, K.; Ai, F.; Hu, X.; Chen, M.; Liu, Z. Experimental study on the mechanical properties weakening mechanism of siltstone with different water content. Arab. J. Geosci. 2019, 12, 656. [Google Scholar] [CrossRef]
- Chen, W.; Dai, P.; Yuan, P.; Zhang, J. Effect of inorganic silicate consolidation on the mechanical and durability performance of sandstone used in historical sites. Constr. Build. Mater. 2016, 121, 445–452. [Google Scholar] [CrossRef]
- Yu, M.; Fang, J.; Zhao, L.; Song, K. Experimental study on unconfined compressive strength of water glass modified recycled aggregate. Soil. Eng. Found. 2023, 37, 315–317+334. [Google Scholar]
- Tang, S.; Jiang, Z. Experimental study on impregnation effect of water glass on sandstone. Chongqing Archit. 2013, 12, 55–56. [Google Scholar]
- JTG E42-2005; Test Methods of Aggregate for Highway Engineering. People’s Transportation Press: Beijing, China, 2005. (In Chinese)
- Jin, D.; Mohammadi, S.; Xin, K.; Yin, L.; You, Z. Laboratory performance and field demonstration of asphalt overlay with recycled rubber and tire fabric fiber. Constr. Build. Mater. 2024, 438, 136941. [Google Scholar] [CrossRef]
- Jin, D.; Yin, L.; Nedrich, S.; Boateng, K.A.; You, Z. Resurface of rubber modified asphalt mixture with stress absorbing membrane interlayer: From laboratory to field application. Constr. Build. Mater. 2024, 441, 137452. [Google Scholar] [CrossRef]
- Bonaquist, R.F. Ruggedness Testing of the Dynamic Modulus and Flow Number Tests with the Simple Performance Tester; The National Academies Press: Washington, DC, USA, 2008. [Google Scholar]
- Nivedya, M.; Murru, P.T.; Veeraragavan, A.; Krishnan, J.M. Estimation of dynamic modulus of Bitumen Stabilized Mixes. Constr. Build. Mater. 2017, 136, 202–216. [Google Scholar] [CrossRef]
- Li, H. Viscoelastic Mechanical Response Analysis of Asphalt Mixture and Asphalt Pavement under Dynamic and Static Loads. Ph.D. Thesis, Jilin University, Changchun, China, 2022. [Google Scholar]
- Li, P.; Rao, W.; Feng, Z.; Li, J. Influence of test conditions and main curve of dynamic response of asphalt mixture. J. Zhengzhou Univ. (Eng. Sci.) 2016, 37, 1–5+11. [Google Scholar]
- Luo, R.; Liu, H. Improving the Accuracy of Dynamic Modulus Master Curves of Asphalt Mixtures Constructed Using Uniaxial Compressive Creep Tests. J. Mater. Civ. Eng. 2017, 29, 04017032. [Google Scholar] [CrossRef]
- Liu, H.; Luo, R. Development of master curve models complying with linear viscoelastic theory for complex moduli of asphalt mixtures with improved accuracy. Constr. Build. Mater. 2017, 152, 259–268. [Google Scholar] [CrossRef]
- Ma, L.; Wang, H.; Ma, Y. Viscoelasticity of Asphalt Mixture Based on the Dynamic Modulus Test. J. Mater. Civ. Eng. 2024, 36, 3. [Google Scholar] [CrossRef]
- Tschoegl, N.W. The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Booij, H.C.; Thoone, G.P.J.M. Generalization of Kramers-Kronig transforms and some approximations of relations between viscoelastic quantities. Rheol. Acta 1982, 21, 15–24. [Google Scholar] [CrossRef]
- Yang, X.; You, Z. New Predictive Equations for Dynamic Modulus and Phase Angle Using a Nonlinear Least-Squares Regression Model. J. Mater. Civ. Eng. 2015, 27, 3. [Google Scholar] [CrossRef]
- Zaoutsos, S.; Papanicolaou, G.; Cardon, A. On the non-linear viscoelastic behaviour of polymer-matrix composites. Compos. Sci. Technol. 1998, 58, 883–889. [Google Scholar] [CrossRef]
- Olard, F.; Di Benedetto, H. General “2S2P1D” model and relation between the linear viscoelastic behaviours of bituminous binders and mixes. Road Mater. Pavement Des. 2003, 4, 185–224. [Google Scholar]
- Wu, W.; Jiang, W.; Xiao, J.; Yuan, D.; Wang, T.; Xing, C. Analysis of thermal susceptibility and rheological properties of asphalt binder modified with microwave activated crumb rubber. J. Clean. Prod. 2022, 377, 134488. [Google Scholar] [CrossRef]
- Zhu, J.; Ahmed, A.; Said, S.; Dinegdae, Y.; Lu, X. Experimental analysis and predictive modelling of linear viscoelastic response of asphalt mixture under dy-namic shear loading. Constr. Build. Mater. 2022, 328, 127095. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, J.; Li, J.; Xiao, F. Dynamic characteristics and damage evolution behaviour of highly viscous and highly elastic asphalt concrete under freeze-thaw cycle. China Highw. J. 2023, 36, 64–76. [Google Scholar]
- Ma, F.; An, Q.; Fu, Z.; Wen, Y.; Hou, Y.; Tang, Y. Effect of nano ZnO/TiO2 on the performance of basalt fibre modified asphalt. Funct. Mater. 2023, 54, 8192–8198. [Google Scholar]
- Chen, Z.; Zhang, H.; Duan, H. Investigation of ultraviolet radiation aging gradient in asphalt binder. Constr. Build. Mater. 2020, 246, 118501. [Google Scholar] [CrossRef]
Technical Indicators | Results |
---|---|
Densities (20 °C)/g/mL | 1.385 |
Silicon dioxide mass fraction/% | 26.98 |
Mass fraction of oxidized Na/% | 8.53 |
Baume degrees (20 °C)/°Bé | 38.5 |
Modulus/(M) | 3.30 |
Technical Indicator | Unprocessed Aggregates | Reinforced Aggregates | Standardized Requirements | |
---|---|---|---|---|
Apparent relative density/(g/cm3) | 15–20 mm | 2.628 | 2.543 | ≥2.5 |
10–15 mm | 2.610 | 2.586 | ≥2.5 | |
5–10 mm | 2.609 | 2.609 | ≥2.5 | |
Water absorption/% | 15–20 mm | 2.663 | 2.475 | ≤3.0 |
10–15 mm | 3.031 | 2.740 | ≤3.0 | |
5–10 mm | 3.811 | 3.722 | ≤3.0 | |
Crushing value/% | 28.9 | 19.8 | ≤28 | |
wear value/% | 33.8 | 26.4 | ≤30 | |
ruggedness/% | 19.1 | 8.2 | ≤12 |
Technical Indicator | Result | Standardized Requirements | |
---|---|---|---|
Penetration of a needle/(25 °C, 100 g, 5 s)/0.1 mm | 55 | ≥50 | |
Softening point/°C | 80 | ≥75 | |
Ductility/(5 °C, 5 cm/min)/cm | 32 | ≥20 | |
Flash point/°C | 260 | ≥230 | |
Solubility/% | 99.6 | ≥99 | |
Solubility/% | 99.6 | ≥99 | |
Kinematic viscosity 135 °C/Pa·s | 2.42 | ≤3 | |
Elastic recovery 25 °C/% | 96 | ≥90 | |
Dynamic shear DSR76 °C (G* 1/sinδ@10 rad/s)/KPa | 1.84 | ≥1.0 | |
Residues after RTFOT | Mass change/% | −0.03 | ≤±1.0 |
Needle penetration ratio (25 °C)/% | 72 | ≥65 | |
Elongation (5 °C, 5 cm/min)/cm | 17 | ≥15 | |
Dynamic shear DSR76 °C (G*/sinδ@10 rad/s)/KPa | 2.56 | ≥2.2 |
Types | Loading Frequency (Hz) | Dynamic Modulus (MPa) | Phase Angle (°) | ||||
---|---|---|---|---|---|---|---|
−10° | 20° | 50° | −10° | 20° | 50° | ||
Reinforced sandstone | 0.1 | 3567 | 1731 | 478 | 26.45 | 26.02 | 23.6 |
0.5 | 5712 | 2823 | 607 | 21.42 | 24.98 | 26.24 | |
1 | 6983 | 3374 | 667 | 18.64 | 24.34 | 27.03 | |
5 | 9572 | 5021 | 1043 | 13.6 | 21.22 | 26.7 | |
10 | 10,912 | 5806 | 1199 | 11.83 | 19.83 | 27.04 | |
25 | 12,508 | 6821 | 1486 | 10.33 | 18.2 | 28.53 | |
Untreated sandstone | 0.1 | 2899 | 883.5 | 168 | 20.77 | 29.56 | 35.87 |
0.5 | 4661 | 1603 | 254 | 18.68 | 28.46 | 39.84 | |
1 | 5756 | 1979 | 328 | 15.83 | 28.18 | 38.81 | |
5 | 7813 | 3241 | 725 | 11.56 | 25.52 | 32.97 | |
10 | 8920 | 3883 | 897 | 9.7 | 24.16 | 33.73 | |
25 | 9949 | 4674 | 1102 | 8.48 | 22.55 | 34.55 |
Parameter | Reinforced Sandstone | Untreated Sandstone |
---|---|---|
δ | 2.061 | 1.931 |
α | 2.809 | 2.82 |
β | −0.575 | −0.413 |
γ | −0.451 | −0.496 |
R2 | 0.999 | 0.999 |
Style | 15°, 0.005 rad/s | DSRFn Parameters | |
---|---|---|---|
Dynamic Modulus/MPa | Phase Angle/° | ||
Reinforced sandstone | 5623.41 | 19.95 | 11.58 |
Untreated sandstone | 5248.07 | 25.12 | 8.065 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Jiang, S.; Zheng, N.; Liu, J.; Wang, Y. Study of Dynamic Modulus of Asphalt Mix after Reinforcement of Sandstone. CivilEng 2024, 5, 852-865. https://doi.org/10.3390/civileng5040044
Zhang B, Jiang S, Zheng N, Liu J, Wang Y. Study of Dynamic Modulus of Asphalt Mix after Reinforcement of Sandstone. CivilEng. 2024; 5(4):852-865. https://doi.org/10.3390/civileng5040044
Chicago/Turabian StyleZhang, Bowen, Shuangquan Jiang, Nanxiang Zheng, Jinduo Liu, and Yuxing Wang. 2024. "Study of Dynamic Modulus of Asphalt Mix after Reinforcement of Sandstone" CivilEng 5, no. 4: 852-865. https://doi.org/10.3390/civileng5040044
APA StyleZhang, B., Jiang, S., Zheng, N., Liu, J., & Wang, Y. (2024). Study of Dynamic Modulus of Asphalt Mix after Reinforcement of Sandstone. CivilEng, 5(4), 852-865. https://doi.org/10.3390/civileng5040044