Assessment of Leaf Area and Biomass through AI-Enabled Deployment
Abstract
:1. Introduction
2. Related Work
2.1. Deployments
2.2. Leaves Modelling
3. Methodology
- To deploy and tune set of sensors and digital cameras. The sensors and cameras are installed in the industrial greenhouse and collect the data describing the plant growth dynamics (images) and environmental parameters.
- To set up one month experiment on cucumbers growth and collect relevant data from sensors and cameras as well as carry out the biomass measurements.
- To create semantic segmentation mask with the group of annotators to create fine-grained labels for further training of FCNN.
- To train and evaluate FCNN for performing the segmentation tasks and leaf area calculation. Calculation of per-plant leaf area using sequences of the obtained images. For our study we have chosen UNet as a semantic segmentation model. This is the architecture of our choice for the following reasons: it has high performance in highly imbalanced datasets [33], it is lightweight in comparison to the most recent multiclass architectures and it is easy to deploy on low-power embedded system, used in this research.
- To derive correspondence between the leaf area and biomass.
- To estimate the parameters of leaf area growth model and perform predictions.
- To reconstruct and predict the biomass based on the assessed and predicted values of leaf area.
4. Deployment
4.1. Plants
4.2. Hardware
4.3. Software and Data Storage
4.4. Image Data Collection and Annotation
4.5. Inference on a Low-Power Embedded System with the AI Capabilities
5. Data Analysis
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruan, J.; Jiang, H.; Zhu, C.; Hu, X.; Shi, Y.; Liu, T.; Rao, W.; Chan, F.T.S. Agriculture IoT: Emerging Trends, Cooperation Networks, and Outlook. IEEE Wirel. Commun. 2019, 26, 56–63. [Google Scholar] [CrossRef]
- Miorandi, D.; Sicari, S.; De Pellegrini, F.; Chlamtac, I. Internet of things: Vision, applications and research challenges. Hoc. Networks 2012, 10, 1497–1516. [Google Scholar] [CrossRef] [Green Version]
- Pahuja, R.; Verma, H.; Uddin, M. A wireless sensor network for greenhouse climate control. IEEE Pervasive Comput. 2013, 12, 49–58. [Google Scholar] [CrossRef]
- Somov, A.; Shadrin, D.; Fastovets, I.; Nikitin, A.; Matveev, S.; Seledets, I.; Hrinchuk, O. Pervasive Agriculture: IoT-Enabled Greenhouse for Plant Growth Control. IEEE Pervasive Comput. 2018, 17, 65–75. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Lane, N.D. Sparsification and separation of deep learning layers for constrained resource inference on wearables. In Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM, Stanford, CA, USA, 14–16 November 2016; pp. 176–189. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Lane, N.D.; Bhattacharya, S.; Mathur, A.; Georgiev, P.; Forlivesi, C.; Kawsar, F. Squeezing deep learning into mobile and embedded devices. IEEE Pervasive Comput. 2017, 16, 82–88. [Google Scholar] [CrossRef]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Werner-Allen, G.; Lorincz, K.; Ruiz, M.; Marcillo, O.; Johnson, J.; Lees, J.; Welsh, M. Deploying a wireless sensor network on an active volcano. IEEE Internet Comput. 2006, 10, 18–25. [Google Scholar] [CrossRef]
- Zhang, P.; Sadler, C.M.; Lyon, S.A.; Martonosi, M. Hardware Design Experiences in ZebraNet. In Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, New York, NY, USA, 3–5 November 2004. [Google Scholar]
- Ceriotti, M.; Mottola, L.; Picco, G.P.; Murphy, A.L.; Guna, S.; Corra, M.; Pozzi, M.; Zonta, D.; Zanon, P. Monitoring heritage buildings with wireless sensor networks: The Torre Aquila deployment. In Proceedings of the 2009 International Conference on Information Processing in Sensor Networks, San Francisco, CA, USA, 13–16 April 2009; pp. 277–288. [Google Scholar]
- Doolin, D.M.; Sitar, N. Wireless sensors for wildfire monitoring. In Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA, 6–10 March 2005. [Google Scholar]
- Angmo, P.; Phuntsog, N.; Namgail, D.; Chaurasia, O.; Stobdan, T. Effect of shading and high temperature amplitude in greenhouse on growth, photosynthesis, yield and phenolic contents of tomato (Lycopersicum esculentum Mill.). Physiol. Mol. Biol. Plants 2021, 27, 1539–1546. [Google Scholar] [CrossRef]
- De Pascale, S.; Arena, C.; Aronne, G.; De Micco, V.; Pannico, A.; Paradiso, R.; Rouphael, Y. Biology and crop production in Space environments: Challenges and opportunities. Life Sci. Space Res. 2021, 29, 30–37. [Google Scholar] [CrossRef]
- Nesteruk, S.; Shadrin, D.; Pukalchik, M.; Somov, A.; Zeidler, C.; Zabel, P.; Schubert, D. Image Compression and Plants Classification Using Machine Learning in Controlled-Environment Agriculture: Antarctic Station Use Case. IEEE Sens. J. 2021, 21, 17564–17572. [Google Scholar] [CrossRef]
- Devices, A. Internet of Tomatoes Project. Available online: https://www.analog.com/en/landing-pages/001/iot-internet-of-tomatoes.html# (accessed on 28 August 2021).
- Angelopoulos, C.M.; Filios, G.; Nikoletseas, S.; Raptis, T.P. Keeping data at the edge of smart irrigation networks: A case study in strawberry greenhouses. Comput. Networks 2020, 167, 107039. [Google Scholar] [CrossRef]
- Roopaei, M.; Rad, P.; Choo, K.R. Cloud of Things in Smart Agriculture: Intelligent Irrigation Monitoring by Thermal Imaging. IEEE Cloud Comput. 2017, 4, 10–15. [Google Scholar] [CrossRef]
- Shadrin, D.; Menshchikov, A.; Ermilov, D.; Somov, A. Designing Future Precision Agriculture: Detection of Seeds Germination Using Artificial Intelligence on a Low-Power Embedded System. IEEE Sens. J. 2019, 19, 11573–11582. [Google Scholar] [CrossRef]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Green, S. Modeling managed grassland biomass estimation by using multitemporal remote sensing data—A machine learning approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 3254–3264. [Google Scholar] [CrossRef]
- Rajendran, K.; Tester, M.; Roy, S.J. Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ. 2009, 32, 237–249. [Google Scholar] [CrossRef]
- Yang, X.; Strahler, A.H.; Schaaf, C.B.; Jupp, D.L.; Yao, T.; Zhao, F.; Wang, Z.; Culvenor, D.S.; Newnham, G.J.; Lovell, J.L.; et al. Three-dimensional forest reconstruction and structural parameter retrievals using a terrestrial full-waveform lidar instrument (Echidna®). Remote Sens. Environ. 2013, 135, 36–51. [Google Scholar] [CrossRef]
- Paulus, S.; Behmann, J.; Mahlein, A.K.; Plümer, L.; Kuhlmann, H. Low-cost 3D systems: Suitable tools for plant phenotyping. Sensors 2014, 14, 3001–3018. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, C.V.; Fripp, J.; Lovell, D.R.; Furbank, R.; Kuffner, P.; Daily, H.; Sirault, X. 3D scanning system for automatic high-resolution plant phenotyping. In Proceedings of the 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Gold Coast, Australia, 30 November–3 December 2016; pp. 1–8. [Google Scholar]
- Chaudhury, A.; Ward, C.; Talasaz, A.; Ivanov, A.G.; Huner, N.P.; Grodzinski, B.; Patel, R.V.; Barron, J.L. Computer vision based autonomous robotic system for 3D plant growth measurement. In Proceedings of the 2015 12th Conference on Computer and Robot Vision, Washington, DC, USA, 3–5 June 2015; pp. 290–296. [Google Scholar]
- Quan, L.; Tan, P.; Zeng, G.; Yuan, L.; Wang, J.; Kang, S.B. Image-based plant modeling. In Proceedings of the ACM SIGGRAPH 2006 Papers, Boston, MA, USA, 30 July–3 August 2006; pp. 599–604. [Google Scholar]
- Paulus, S.; Dupuis, J.; Mahlein, A.K.; Kuhlmann, H. Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping. BMC Bioinform. 2013, 14, 238. [Google Scholar] [CrossRef] [Green Version]
- Uchiyama, H.; Sakurai, S.; Mishima, M.; Arita, D.; Okayasu, T.; Shimada, A.; Taniguchi, R.I. An easy-to-setup 3D phenotyping platform for KOMATSUNA dataset. In Proceedings of the Computer Vision Workshop (ICCVW), 2017 IEEE International Conference IEEE, Venice, Italy, 22–29 October 2017; pp. 2038–2045. [Google Scholar]
- Gibbs, J.A.; Pound, M.; French, A.P.; Wells, D.M.; Murchie, E.; Pridmore, T. Approaches to three-dimensional reconstruction of plant shoot topology and geometry. Funct. Plant Biol. 2017, 44, 62–75. [Google Scholar] [CrossRef]
- Pound, M.P.; French, A.P.; Murchie, E.H.; Pridmore, T.P. Automated recovery of 3D models of plant shoots from multiple colour images. Plant Physiol. 2014, 114. [Google Scholar]
- Huang, W.; Ratkowsky, D.A.; Hui, C.; Wang, P.; Su, J.; Shi, P. Leaf fresh weight versus dry weight: Which is better for describing the scaling relationship between leaf biomass and leaf area for broad-leaved plants? Forests 2019, 10, 256. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Li, Z.; Feng, H.; Ren, Z.; Li, S. Deep neural network algorithm for estimating maize biomass based on simulated Sentinel 2A vegetation indices and leaf area index. Crop. J. 2020, 8, 87–97. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Cherie, E. The Complete Guide to Growing Tomatoes: A Complete Step-by-Step Guide Including Heirloom Tomatoes (Back-to-Basics Gardening); Atlantic Publishin G Group Inc.: Ocala, FL, USA, 2010. [Google Scholar]
- Shamshiri, R.R.; Jones, J.W.; Thorp, K.R.; Ahmad, D.; Che Man, H.; Taheri, S. Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: A review. Int. Agrophysics 2018, 32, 287–302. [Google Scholar] [CrossRef]
- De Gelder, A.; Dieleman, J.; Bot, G.; Marcelis, L. An overview of climate and crop yield in closed greenhouses. J. Hortic. Sci. Biotechnol. 2012, 87, 193–202. [Google Scholar] [CrossRef]
- Rezvani, S.M.E.; Abyaneh, H.Z.; Shamshiri, R.R.; Balasundram, S.K.; Dworak, V.; Goodarzi, M.; Sultan, M.; Mahns, B. IoT-Based Sensor Data Fusion for Determining Optimality Degrees of Microclimate Parameters in Commercial Greenhouse Production of Tomato. Sensors 2020, 20, 6474. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Tai, L.; Ye, H.; Ye, Q.; Liu, M. PCA-aided fully convolutional networks for semantic segmentation of multi-channel fMRI. In Proceedings of the 2017 18th International Conference on Advanced Robotics (ICAR), Hong Kong, China, 10–12 July 2017; pp. 124–130. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef] [Green Version]
- Frighetto, D.F.; Souza, G.M.; Molter, A. Spatio-temporal population control applied to management of aquatic plants. Ecol. Model. 2019, 398, 77–84. [Google Scholar] [CrossRef]
- Costa, R.; Zanotelli, C.; Hoffmann, D.; Belli Filho, P.; Perdomo, C.; Rafikov, M. Optimization of the treatment of piggery wastes in water hyacinth ponds. Water Sci. Technol. 2003, 48, 283–289. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, K.; Zhang, K.; Jiang, L.; Xu, Y. Simulation of nitrogen fate for greenhouse cucumber grown under different water and fertilizer management using the EU-Rotate_N model. Agric. Water Manag. 2012, 112, 21–32. [Google Scholar] [CrossRef]
- Ramírez-Pérez, L.J.; Morales-Díaz, A.B.; Benavides-Mendoza, A.; De-Alba-Romenus, K.; González-Morales, S.; Juarez-Maldonado, A. Dynamic modeling of cucumber crop growth and uptake of N, P and K under greenhouse conditions. Sci. Hortic. 2018, 234, 250–260. [Google Scholar] [CrossRef]
mmol/L | 1.25 | 6.75 | 4.5 | 3.0 | 16.75 | 1.25 | |
B | |||||||
mmol/L | 20.0 | 10.0 | 5.0 | 30.0 | 0.75 | 0.5 | 2.5 |
Date | 1 | 2 | 3 | 4 | 5 | 6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
EC, | pH | EC, | pH | EC, | pH | EC, | pH | EC, | pH | EC, | pH | |
18.05 | 1.62 | 8.12 | 1.59 | 8.03 | 1.50 | 7.97 | 1.58 | 8.11 | 1.55 | 8.0 | 1.53 | 7.89 |
19.05 | 1.75 | 8.13 | 1.70 | 8.15 | 1.69 | 8.12 | 1.69 | 8.20 | 1.66 | 8.20 | 1.68 | 8.04 |
21.05 | 1.78 | 6.64 | 1.74 | 6.58 | 1.72 | 6.83 | 1.69 | 6.75 | 1.70 | 6.83 | 1.62 | 6.68 |
22.05 | 1.82 | 7.76 | 1.81 | 7.68 | 1.72 | 7.54 | 1.68 | 7.65 | 1.74 | 7.75 | 1.66 | 7.73 |
25.05 | 1.86 | 7.11 | 1.82 | 6.98 | 1.79 | 6.97 | 1.80 | 7.02 | 1.82 | 7.06 | 1.82 | 7.01 |
26.05 | 2.01 | 7.55 | 1.90 | 7.88 | 1.92 | 7.76 | 2.02 | 7.60 | 1.97 | 7.81 | 1.83 | 7.71 |
28.05 | 2.24 | 8.08 | 2.00 | 8.07 | 2.02 | 7.61 | 2.17 | 7.52 | 2.24 | 7.82 | 2.01 | 7.79 |
30.05 | 2.25 | 8.02 | 2.13 | 8.09 | 2.05 | 7.82 | 2.20 | 8.01 | 2.18 | 7.95 | 2.12 | 7.87 |
1.06 | 2.43 | 7.77 | 2.08 | 7.62 | 2.08 | 5.56 | 2.12 | 7.28 | 2.00 | 7.41 | 1.85 | 7.40 |
3.06 | 2.74 | 8.17 | 2.36 | 8.15 | 1.96 | 8.43 | - | - | - | |||
4.06 | 3.18 | 7.73 | 2.32 | 8.17 | 2.13 | 8.26 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shadrin, D.; Menshchikov, A.; Nikitin, A.; Ovchinnikov, G.; Volohina, V.; Nesteruk, S.; Pukalchik, M.; Fedorov, M.; Somov, A. Assessment of Leaf Area and Biomass through AI-Enabled Deployment. Eng 2023, 4, 2055-2074. https://doi.org/10.3390/eng4030116
Shadrin D, Menshchikov A, Nikitin A, Ovchinnikov G, Volohina V, Nesteruk S, Pukalchik M, Fedorov M, Somov A. Assessment of Leaf Area and Biomass through AI-Enabled Deployment. Eng. 2023; 4(3):2055-2074. https://doi.org/10.3390/eng4030116
Chicago/Turabian StyleShadrin, Dmitrii, Alexander Menshchikov, Artem Nikitin, George Ovchinnikov, Vera Volohina, Sergey Nesteruk, Mariia Pukalchik, Maxim Fedorov, and Andrey Somov. 2023. "Assessment of Leaf Area and Biomass through AI-Enabled Deployment" Eng 4, no. 3: 2055-2074. https://doi.org/10.3390/eng4030116
APA StyleShadrin, D., Menshchikov, A., Nikitin, A., Ovchinnikov, G., Volohina, V., Nesteruk, S., Pukalchik, M., Fedorov, M., & Somov, A. (2023). Assessment of Leaf Area and Biomass through AI-Enabled Deployment. Eng, 4(3), 2055-2074. https://doi.org/10.3390/eng4030116