Smart Electrical Screening Methodology for Channel Hole Defects of 3D Vertical NAND (VNAND) Flash Memory
Abstract
:1. Introduction
2. Background
2.1. Basics of NAND Flash Memory
- NAND Flash Organization
- NAND Flash Operation
- Multi-level Cell Flash Memory
2.2. Organizational Basics of 3D Vertical Nand Flash Memory
2.3. Three-Dimensional NAND Manufacturing Process
3. Types of Channel Hole Defect
3.1. Channel Hole Not-Open
3.2. Channel Hole Bowing
3.3. Channel Hole Bending
4. Defect-Centric Screen Methodology
4.1. Pattern-Based Screen Methodology
- Channel Hole Not-Open
- Channel Hole Bowing
- Channel Hole Bending
4.2. Stress-Based Screen Methodology
5. Experimental Results
5.1. Experimental Settings
5.2. Detection Accuracy Analysis
- Channel Hole Not-Open
- Channel Hole Bowing
- Channel Hole Bending
5.3. Side Effects Analysis
5.4. Time Overhead Analysis and Optimization
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seagate 60TB SSD Named Best of Show at Flash Memory Summit. Available online: https://blog.seagate.com/tag/60tb-ssd/ (accessed on 3 February 2024).
- Samsung Flash eMMC. Available online: https://www.samsung.com/semiconductor/estorage/emmc/ (accessed on 3 February 2024).
- Tanaka, H.; Kido, M.; Yahashi, K.; Oomura, M.; Katsumata, R.; Kito, M.; Fukuzumi, Y.; Sato, M.; Nagata, Y.; Matsuoka, Y.; et al. Bit cost scalable technology with punch and plug process for ultra high density flash memory. In Proceedings of the IEEE Symposium on VLSI Technology (VLSI), Kyoto, Japan, 12–14 June 2007. [Google Scholar]
- Ishiduki, M.; Fukuzumi, Y.; Katsumata, R.; Kito, M.; Kido, M.; Tanaka, H.; Komori, Y.; Nagata, Y.; Fujiwara, T.; Maeda, T.; et al. Optimal device structure for pipe-shaped BiCS flash memory for ultra high density storage device with excellent performance and reliability. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 7–9 December 2009. [Google Scholar]
- Jang, J.; Kim, H.; Cho, W.; Cho, H.A.; Kim, J.; Shim, S.; Jang, Y.; Jeong, J.; Son, B.; Kim, D.; et al. Vertical cell array using TCAT (Terabit Cell Array Transistor) technology for ultra high density NAND flash memory. In Proceedings of the IEEE Symposium on VLSI Technology (VLSI), Kyoto, Japan, 16–18 June 2009. [Google Scholar]
- Park, Y.; Lee, J.; Cho, S.; Jin, G.; Jung, E. Scaling and reliability of NAND flash devices. In Proceedings of the IEEE Symposium on Reliability Physics (IRPS), Waikoloa, HI, USA, 1–5 June 2014. [Google Scholar]
- Kim, H.; Ahn, S.; Shin, Y.; Lee, K.; Jung, E. Evolution of NAND flash memory: From 2D to 3D as a storage market leader. In Proceedings of the IEEE International Memory Workshop (IMW), Monterey, CA, USA, 14–17 May 2017. [Google Scholar]
- 3D NAND’s Vertical Scaling Race. Available online: https://semiengineering.com/3d-nands-vertical-scaling-race (accessed on 3 February 2024).
- Kim, C.; Kim, D.; Jeong, W.; Kim, H.; Park, I.; Park, H.; Lee, J.; Park, J.; Ahn, Y.; Lee, J.; et al. A 512Gb 3b/cell 64-stacked WL 3D-NAND flash memory. IEEE J. Solid-State Circuits 2018, 52, 124–133. [Google Scholar] [CrossRef]
- Shim, Y.; Kim, M.; Chun, M.; Park, J.; Kim, Y.; Kim, J. Exploiting process similarity of 3D flash memory for high performance SSDs. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Columbus, OH, USA, 12–16 October 2019. [Google Scholar]
- Yi, W.; Lisha, D.; Rui, M. P-Alloc: Process-variation tolerant reliability management for 3D charge-trapping flash memory. ACM Trans. Embed. Comput. Syst. (TECS) 2017, 16, 1–19. [Google Scholar]
- Hong, D.; Kim, M.; Cho, G.; Lee, D.; Kim, J. GuardedErase: Extending SSD Lifetimes by Protecting Weak Wordlines. In Proceedings of the 20th USENIX Conference on File and Storage Technologies (FAST), Santa Clara, CA, USA, 22–24 February 2022. [Google Scholar]
- Lee, J.; Seo, J.; Nam, J.; Kim, Y.; Song, K.; Song, J.; Choi, W. Electric Field Impact on Lateral Charge Diffusivity in Charge Trapping 3D NAND Flash Memory. In Proceedings of the IEEE International Reliability Physics Symposium (IRPS), Dallas, TX, USA, 27–31 March 2022. [Google Scholar]
- Kim, S.; Yong, S.; Kim, H.; Kang, S.; Park, H.; Yoon, K.; Sheen, D.; Lee, S.; Hwang, C. Review of Semiconductor Flash Memory Devices for Material and Process Issues. Adv. Mater. 2022, 16, 220659. [Google Scholar]
- Kim, W.; Byeon, D.; Joe, S.; Lee, J.; Song, J. ReveNAND: A fast-drift-aware resilient 3D NAND flash design. In Proceedings of the International Conference on Electronics, Information, and Communication (ICEIC), Xian, China, 25–27 November 2022. [Google Scholar]
- Shihab, M.; Zhang, J.; Jung, M.; Kandemir, M. Cell Operation Technologies to Overcome Scale-down Issues in 3D NAND Flash Memory. ACM Trans. Archit. Code Optim. (TACO) 2018, 15, 1–26. [Google Scholar] [CrossRef]
- Luo, Y.; Ghose, S.; Cai, Y.; Haratsch, E.; Mutlu, O. Improving 3D NAND flash memory lifetime by tolerating early retention loss and process variation. Acm Meas. Anal. Comput. Syst. 2018, 2, 1–48. [Google Scholar]
- Choi, B.; Jang, S.; Yoon, J.; Lee, J.; Jeon, M.; Lee, Y.; Han, J.; Lee, J.; Kim, D.; Kim, D.; et al. Comprehensive evaluation of early retention (fast charge loss within a few seconds) characteristics in tube-type 3-D NAND flash memory. In Proceedings of the IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 18–22 June 2018. [Google Scholar]
- Liu, Y.; Yang, Y.; Cai, Y.; Tseng, C.; Lin, W.; Liu, A.; Hsu, Y. Triple-Level-Cell/Single-Level-Cell Mix-Mode Operation Induced Data Retention Degradation in 3-D NAND Flash Memories. IEEE Electron Device Lett. 2021, 42, 1762–1765. [Google Scholar] [CrossRef]
- Kang, D.; Jeong, W.; Kim, C.; Kim, D.; Cho, Y.; Kang, K.; Ryu, J.; Kang, K.; Lee, S.; Kim, W.; et al. 256Gb 3b/Cell V-NAND Flash Memory with 48 Stacked WL Layers. In Proceedings of the International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 31 January–4 February 2016. [Google Scholar]
- Katsumata, R.; Kito, M.; Fukuzumi, Y.; Kido, M.; Tanaka, H.; Komori, Y.; Ishiduki, M.; Matsunami, J.; Fujiwara, T.; Nagata, Y.; et al. Pipe-shaped BiCS flash memory with 16 stacked layers and multi-level-cell operation for ultra high density storage devices. In Proceedings of the IEEE Symposium on VLSI Technology (VLSI), Kyoto, Japan, 16–18 June 2009. [Google Scholar]
- Choi, E.; Park, S. Device considerations for high density and highly reliable 3D NAND flash cell in near future. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 10–13 December 2012. [Google Scholar]
- Park, S.; Lee, J.; Jang, J.; Lim, J.; Kim, H.; Shim, J.; Yu, M.; Kang, J.; Ahn, S.; Song, J. Highly-reliable cell characteristics with 128-layer single-stack 3D-NAND flash memory. In Proceedings of the Symposium on VLSI Technology, Virtual, 13–19 June 2021. [Google Scholar]
- Maserjian, J.; Zamani, N. Behavior of the Si/SiO2 interface observed by Fowler-Nordheim tunneling. J. Appl. Phys. 1928, 53, 559–567. [Google Scholar] [CrossRef]
- Jung, S.; Jang, J.; Cho, W.; Cho, H.; Jeong, J.; Chang, Y.; Kim, J.; Rah, Y.; Son, Y.; Park, J.; et al. Three dimensionally stacked NAND flash memory technology using stacking single crystal Si layers on ILD and TANOS structure for beyond 30nm node. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 11–13 December 2006. [Google Scholar]
- Micron’s 232 Layer NAND Now Shipping: 1Tbit, 6-Plane Dies With 50% More I/O Bandwidth. Available online: https://www.anandtech.com/show/17509 (accessed on 3 February 2024).
- Endurance and Data Retention Characterization of Infineon Flash Memory. Available online: https://www.infineon.com/dgdl/Infineon-AN217979-ApplicationNotes (accessed on 3 February 2024).
- Selection of Burn-In/Life Test Conditions and Critical Parameters for QML Microcircuits (JEP163A). Available online: https://www.jedec.org/standards-documents/docs/jep163 (accessed on 3 February 2024).
- Shchurov, A. Industrial Computing Systems: A Case Study of Fault Tolerance Analysis. Int. J. Comput. Trends Technol. 2015, 21, 50–55. [Google Scholar] [CrossRef]
- Open NAND Flash Interface Specification 5.1. Available online: https://www.onfi.org/specifications (accessed on 3 February 2024).
- Arrhenius, S. Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte. Zeitschrift für Physikalische Chemie 1889, 4, 96–116. [Google Scholar] [CrossRef]
- Electrically Erasable Programmable ROM (EEPROM) Program/Erase Endurance and Data Retention Stress Test (JEDEC22-A117). Available online: https://www.jedec.org/standards-documents/docs/jesd22-a117c (accessed on 3 February 2024).
- Stress-Test-Driven Qualification of Integrated Circuits (JEDEC JESD47). Available online: https://www.jedec.org/standards-documents/docs/jesd-47g (accessed on 3 February 2024).
- Jeong, M.; Joe, S.; Seo, C.; Han, K.; Choi, E.; Park, S.; Lee, J. Analysis of random telegraph noise and low frequency noise properties in 3-D stacked NAND Flash memory with tube-type poly-Si channel structure. In Proceedings of the Symposium on VLSI Technology (VLSIT), Honolulu, HI, USA, 12–14 June 2012. [Google Scholar]
- Cho, J.; Kang, D.; Park, J.; Nam, S.; Song, J.; Jung, B.; Lyu, J.; Lee, H.; Kim, W.; Jeon, H.; et al. 30.3 A 512Gb 3b/Cell 7 th-Generation 3D-NAND Flash Memory with 184MB/s Write Throughput and 2.0 Gb/s Interface. In Proceedings of the 2021 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 13–22 February 2021. [Google Scholar]
Test Procedure | Function Check Time | Stress Time (200 Erase Cycles and 30 P/E Cycles) | Total Test Time per Block |
---|---|---|---|
Proposed | 2498.2 ms | 7717 ms | 10,215.2 ms |
Optimized-1 | 1249.1 ms | 7717 ms | 8966.1 ms |
Optimized-2 | 314.54 ms | 2533 ms | 2847.54 ms |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.; Seo, G.; Kim, M. Smart Electrical Screening Methodology for Channel Hole Defects of 3D Vertical NAND (VNAND) Flash Memory. Eng 2024, 5, 495-512. https://doi.org/10.3390/eng5010027
Kim B, Seo G, Kim M. Smart Electrical Screening Methodology for Channel Hole Defects of 3D Vertical NAND (VNAND) Flash Memory. Eng. 2024; 5(1):495-512. https://doi.org/10.3390/eng5010027
Chicago/Turabian StyleKim, Beomjun, Gyeongseob Seo, and Myungsuk Kim. 2024. "Smart Electrical Screening Methodology for Channel Hole Defects of 3D Vertical NAND (VNAND) Flash Memory" Eng 5, no. 1: 495-512. https://doi.org/10.3390/eng5010027
APA StyleKim, B., Seo, G., & Kim, M. (2024). Smart Electrical Screening Methodology for Channel Hole Defects of 3D Vertical NAND (VNAND) Flash Memory. Eng, 5(1), 495-512. https://doi.org/10.3390/eng5010027