A Probabilistic Study of CO2 Plume Geothermal and Hydrothermal Systems: A Sensitivity Study of Different Reservoir Conditions in Williston Basin, North Dakota
Abstract
:1. Introduction
1.1. Climate Change and Geothermal Energy
1.2. Geothermal Energy Exploration in North Dakota
1.3. Geothermal Energy Systems (CO2 Plume and Hydrothermal Systems)
1.4. Probabilistic Assessment for Geothermal Studies
2. Methodology
2.1. Comparison of Reservoir Conditions for Energy Recovery
2.2. Probabilistic Approach for Geothermal Studies
3. Results and Analysis
3.1. Thermal Heat Flux Results (Red River Formation)
3.2. Probabilistic Expectation Curve for Geothermal Resource
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Osezua, M.; Bade, S.O.; Gyimah, E.; Tomomewo, O.S. Tomomewo Impact of Climate Change on the Water Resources, Lake Powell, United States. Am. J. Water Resour. 2013, 11, 103–111. [Google Scholar] [CrossRef]
- Metz, B.; Intergovernmental Panel on Climate Change (Eds.) IPCC Special Report on Carbon Dioxide Capture and Storage, 1st ed.; Cambridge Univ. Press: Cambridge, UK, 2005. [Google Scholar]
- IEA. Fuel Share of CO2 Emissions from Fuel Combustion, 2019—Charts—Data & Statistics; IEA: Paris, France, 2019; Available online: https://www.iea.org/data-and-statistics/charts/fuel-share-of-co2-emissions-from-fuel-combustion-2019 (accessed on 1 June 2024).
- Azar, C.; Lindgren, K.; Larson, E.; Möllersten, K. Carbon Capture and Storage From Fossil Fuels and Biomass—Costs and Potential Role in Stabilizing the Atmosphere. Clim. Chang. 2006, 74, 47–79. [Google Scholar] [CrossRef]
- Adams, B.M.; Kuehn, T.H.; Bielicki, J.M.; Randolph, J.B.; Saar, M.O. On the importance of the thermosiphon effect in CPG (CO2 plume geothermal) power systems. Energy 2014, 69, 409–418. [Google Scholar] [CrossRef]
- Adams, B.M.; Kuehn, T.H.; Bielicki, J.M.; Randolph, J.B.; Saar, M.O. A comparison of electric power output of CO2 Plume Geothermal (CPG) and brine geothermal systems for varying reservoir conditions. Appl. Energy 2015, 140, 365–377. [Google Scholar] [CrossRef]
- Fleming, M.R.; Adams, B.M.; Kuehn, T.H.; Bielicki, J.M.; Saar, M.O. Increased Power Generation due to Exothermic Water Exsolution in CO2 Plume Geothermal (CPG) Power Plants. Geothermics 2020, 88, 101865. [Google Scholar] [CrossRef]
- Garapati, N.; Randolph, J.B.; Saar, M.O. Brine displacement by CO2, energy extraction rates, and lifespan of a CO2-limited CO2-Plume Geothermal (CPG) system with a horizontal production well. Geothermics 2015, 55, 182–194. [Google Scholar] [CrossRef]
- Crowell, A.; Gosnold, W. Integrating Geophysical Data in GIS for Geothermal Power Prospecting. Geosphere 2015, 11, 1651–1679. [Google Scholar] [CrossRef]
- Gyimah, E.; Tomomewo, O.; Vashaghian, S.; Uzuegbu, E.J.; Meenakshisundaram, A.; Ouadi, H.; Laalam, A.; Bakelli, O. Heat Flow Study and Reservoir Characterization Approach of the Red River Formation to Quantify Geothermal Potential. GRC Trans. 2023, 47, 3044–3057. [Google Scholar]
- Vashaghian, S.; Gyimah, E.; Tomomewo, O.; Saberi, F. Petro-physical Characterization of Lodgepole Formation as a Geothermal Reservoir. GRC Trans. 2023, 47, 3138–3152. [Google Scholar]
- Koray, A.M.; Gyimah, E.; Rahnema, H.; Tomemewo, O. An Assessment of the Red River Formation as A Geothermal Hotspot in North Dakota: A Machine Learning Approach. GRC Trans. 2013, 47, 1–4. [Google Scholar]
- Ouadi, H.; Laalam, A.; Tomomewo, O.; Alamooti, M.; Dehdouh, A.; Kareb, A.; Gyimah, E. Numerical Investigation of Fishbone Well Design Impact on Geothermal System Enhancement in North Dakota. GRC Trans. 2023, 47, 394–415. [Google Scholar]
- Porlles, J.W.; Tomomewo, O.S.; Afari, S.A.; Gyimah, E.; Laalam, A.; Bakelli, O. An Experimental Study of the Effect of Long-Term Time-Dependent Proppant Behavior Under HP-HT Reservoir Conditions. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 18 October 2023. [Google Scholar] [CrossRef]
- Gosnold, W.; Crowell, A.; Nordeng, S.; Mann, M. Co-Produced and Low-Temperature Geothermal Resources in the Williston Basin. GRC Trans. 2015, 39, 653–660. [Google Scholar]
- Gosnold, W.D.; Barse, K.; Bubach, B.; Crowell, A.; Crowell, J.; Jabbari, H.; Sarnoski, A.; Wang, D. Co-Produced Geothermal Resources and EGS in the Williston Basin. GRC Trans. 2013, 37, GRC1030649. [Google Scholar]
- Porro, C.; Esposito, A.; Augustine, C.; Roberts, B. An Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States. Geotherm. Resour. Counc. Trans. 2012, 36, 1359–1369. [Google Scholar]
- Anderson, T.C. Geothermal Potential of Deep Sedimentary Basins in the United States; Society of Exploration Geophysicists: Tulsa, OK, USA, 2013; Volume 37. [Google Scholar]
- Ferguson, G.; Grasby, S.E. The geothermal potential of the basal clastics of Saskatchewan, Canada. Hydrogeol. J. 2014, 22, 143–150. [Google Scholar] [CrossRef]
- Ufondu, L. Assessment of the Potential Heat Stored in the Deep Aquifers of the Williston Basin for Geothermal Energy Production. 29 August 2017. Available online: https://www.semanticscholar.org/paper/ASSESSMENT-OF-THE-POTENTIAL-HEAT-STORED-IN-THE-DEEP-Ufondu/a0e8aea9a1e3176f73d7360b957485c22d06592c (accessed on 1 June 2024).
- Hartig, C.M. Porous media of the Red River Formation, Williston Basin, North Dakota: A possible Sedimentary Enhanced Geothermal System. Int. J. Earth Sci. 2018, 107, 103–112. [Google Scholar] [CrossRef]
- Sippel, M.A.; Luff, K.D.; Hendricks, M.L.; Eby, D.E. Reservoir Characterization of the Ordovician Red River Formation in Southwest Williston Basin Bowman County, ND and Harding County, SD (No. DOE/BC/14984-14); Luff Exploration Co.: Denver, CO, USA, 1998. [Google Scholar]
- Gyimah, E.; Tomomewo, O.; Gosnold, W.; Fadairo, A.; Kporxah, C.; Porlles, J.; Dehdouh, A. Probabilistic Assessment and Uncertainty Quantification of a Geothermal Resource, Red River Formation, North Dakota. In Proceedings of the 49th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 12–14 February 2024. [Google Scholar]
- Murphy, E.C.; Nordeng, S.H.; Juenker, B.J.; Hoganson, J.W. North Dakota Stratigraphic Column NDGS. 2009. Available online: https://www.dmr.nd.gov/ndgs/documents/Publication_List/pdf/Strat-column-NDGS-(2009).pdf (accessed on 1 June 2024).
- North Dakota Industrial Commission (Oil and Gas Division). Available online: https://www.dmr.nd.gov/oilgas/ (accessed on 1 June 2024).
- Brown, D.W. A Hot Dry Rock Geothermal Energy Concept Utilizing Supercritical CO2 Instead of Water. In Proceedings of the Twenty-Fifth Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 24–26 January 2000. [Google Scholar]
- Atrens, A.D.; Gurgenci, H.; Rudolph, V. CO2 Thermosiphon for Competitive Geothermal Power Generation. Energy Fuels 2009, 23, 553–557. [Google Scholar] [CrossRef]
- Atrens, A.D.; Gurgenci, H.; Rudolph, V. Electricity generation using a carbon-dioxide thermosiphon. Geothermics 2010, 39, 161–169. [Google Scholar] [CrossRef]
- Randolph, J.; Adams, B.; Kuehn, T.; Saar, M. Wellbore heat transfer in CO2-based geothermal systems. Trans.—Geotherm. Resour. Counc. 2012, 36, 549–554. [Google Scholar]
- Pruess, K. Enhanced geothermal systems (EGS) using CO2 as working fluid—A novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 2006, 35, 351–367. [Google Scholar] [CrossRef]
- Pruess, K. Enhanced Geothermal Systems (EGS): Comparing Water and CO2 as Heat Transmission Fluids; Lawrence Berkeley National Lab. (LBNL): Berkeley, CA, USA, 2007.
- Randolph, J.B.; Saar, M.O. Combining geothermal energy capture with geologic carbon dioxide sequestration: Geothermal Energy with CO2 Sequestration. Geophys. Res. Lett. 2011, 38, L10401. [Google Scholar] [CrossRef]
- Randolph, J.B.; Saar, M.O. Coupling carbon dioxide sequestration with geothermal energy capture in naturally permeable, porous geologic formations: Implications for CO2 sequestration. Energy Procedia 2011, 4, 2206–2213. [Google Scholar] [CrossRef]
- Bielicki, J.M.; Peters, C.A.; Fitts, J.P.; Wilson, E.J. An examination of geologic carbon sequestration policies in the context of leakage potential. Int. J. Greenh. Gas Control 2015, 37, 61–75. [Google Scholar] [CrossRef]
- Bielicki, J.M.; Pollak, M.F.; Deng, H.; Wilson, E.J.; Fitts, J.P.; Peters, C.A. The Leakage Risk Monetization Model for Geologic CO2 Storage. Environ. Sci. Technol. 2016, 50, 4923–4931. [Google Scholar] [CrossRef] [PubMed]
- Bielicki, J.M.; Pollak, M.F.; Fitts, J.P.; Peters, C.A.; Wilson, E.J. Causes and financial consequences of geologic CO2 storage reservoir leakage and interference with other subsurface resources. Int. J. Greenh. Gas Control 2014, 20, 272–284. [Google Scholar] [CrossRef]
- Gibbins, J.; Chalmers, H. Carbon capture and storage. Energy Policy 2008, 36, 4317–4322. [Google Scholar] [CrossRef]
- Coleman, J.L.; Cahan, S.M. Preliminary Catalog of the Sedimentary Basins of the United States; Open-File Report; US Geological Survey: Reston, VA, USA, 2012.
- Runkel, A.C.; Miller, J.F.; McKay, R.M.; Palmer, A.R.; Taylor, J.F. High-resolution sequence stratigraphy of lower Paleozoic sheet sandstones in central North America: The role of special conditions of cratonic interiors in development of stratal architecture. Geol. Soc. Am. Bull. 2007, 119, 860–881. [Google Scholar] [CrossRef]
- Eccles, J.K.; Pratson, L. A “carbonshed” assessment of small- vs. Large-scale CCS deployment in the continental US. Appl. Energy 2014, 113, 352–361. [Google Scholar] [CrossRef]
- Procesi, M.; Cantucci, B.; Buttinelli, M.; Armezzani, G.; Quattrocchi, F.; Boschi, E. Strategic use of the underground in an energy mix plan: Synergies among CO2, CH4 geological storage and geothermal energy. Latium Region case study (Central Italy). Appl. Energy 2013, 110, 104–131. [Google Scholar] [CrossRef]
- Fleming, M.R.; Adams, B.M.; Ogland-Hand, J.D.; Bielicki, J.M.; Kuehn, T.H.; Saar, M.O. Flexible CO2-plume geothermal (CPG-F): Using geologically stored CO2 to provide dispatchable power and energy storage. Energy Convers. Manag. 2022, 253, 115082. [Google Scholar] [CrossRef]
- Ogland-Hand, J.D.; Bielicki, J.M.; Wang, Y.; Adams, B.M.; Buscheck, T.A.; Saar, M.O. The value of bulk energy storage for reducing CO2 emissions and water requirements from regional electricity systems. Energy Convers. Manag. 2019, 181, 674–685. [Google Scholar] [CrossRef]
- Ciriaco, A.E.; Zarrouk, S.J.; Zakeri, G. Geothermal resource and reserve assessment methodology: Overview, analysis and future directions. Renew. Sustain. Energy Rev. 2020, 119, 109515. [Google Scholar] [CrossRef]
- Ciriaco, A.E.; Zarrouk, S.J.; Zakeri, G.; Mannington, W.I. Refined experimental design and response surface methodology workflow using proxy numerical models for probabilistic geothermal resource assessment. Geothermics 2020, 88, 101911. [Google Scholar] [CrossRef]
- Driesner, T. Numerical Simulation of Multiphase Fluid Flow in Hydrothermal Systems. Rev. Mineral. Geochem. 2007, 65, 187–212. [Google Scholar] [CrossRef]
- Guodong, C.; Shaoran, R.; Zhenhua, R.; Justin, E.; Liang, Z.; Hongsheng, W. The influence of complicated fluid-rock interactions on the geothermal exploitation in the CO2 plume geothermal system. Appl. Energ. 2018, 227, 49–63. [Google Scholar] [CrossRef]
- Wang, M.; Yang, F.; Zhang, Y.; Zhang, D.; Feng, J.; Luo, J.; Zeng, Y. Probabilistic geothermal resource assessment in Maichen Sag, south China. Front. Earth Sci. 2022, 10, 972125. [Google Scholar] [CrossRef]
- Turan, A.; Artun, E.; Saner, S. Probabilistic assessment of geothermal resources and their development in Dikili-İzmir region. SN Appl. Sci. 2021, 3, 634. [Google Scholar] [CrossRef]
- Data Source. Available online: https://webbook.nist.gov/chemistry/fluid/ (accessed on 1 June 2024).
Pressure (psi) | Temperature | Density (kg/m3) | Specific Heat Capacity (J/gK) | Viscosity (cp) |
---|---|---|---|---|
4000 | 138 | 941.87 | 4.2061 | 0.2066 |
3500 | 136 | 941.85 | 4.211 | 0.20892 |
3000 | 134 | 941.81 | 4.216 | 0.21133 |
2500 | 132 | 941.76 | 4.221 | 0.21384 |
2000 | 130 | 941.71 | 4.2261 | 0.21644 |
Pressure (psi) | Temperature | Density (kg/m3) | Specific Heat Capacity (J/gK) | Viscosity (cp) |
---|---|---|---|---|
4000 | 138 | 489.89 | 1.863 | 0.039187 |
3500 | 136 | 437.26 | 1.8645 | 0.035302 |
3000 | 134 | 375.77 | 1.8182 | 0.031426 |
2500 | 132 | 307.16 | 1.7049 | 0.027855 |
2000 | 130 | 235.9 | 1.5343 | 0.024895 |
Pressure (psi) | Temperature | Density (kg/m3) | Specific Heat Capacity (J/gK) | Viscosity (cp) |
---|---|---|---|---|
2000 | 138 | 934.97 | 4.2407 | 0.20315 |
2265 | 137 | 936.76 | 4.2341 | 0.20518 |
2500 | 136 | 938.42 | 4.2281 | 0.20719 |
3000 | 134 | 941.81 | 4.216 | 0.21133 |
3500 | 132 | 945.14 | 4.2044 | 0.21558 |
3690 | 130 | 947.39 | 4.1982 | 0.21939 |
4000 | 130 | 948.41 | 4.1933 | 0.21993 |
Pressure (psi) | Temperature | Density (kg/m3) | Specific Heat Capacity (J/gK) | Viscosity (cp) |
---|---|---|---|---|
2000 | 138 | 225.33 | 1.4743 | 0.024906 |
2265 | 137 | 263.78 | 1.5744 | 0.02626 |
2500 | 136 | 299.26 | 1.6624 | 0.027689 |
3000 | 134 | 375.77 | 1.8182 | 0.031426 |
3500 | 132 | 449.12 | 1.9052 | 0.035927 |
3690 | 130 | 479.1 | 1.931 | 0.037999 |
4000 | 130 | 514.89 | 1.9248 | 0.040817 |
Pressure (psi) | Temperature | Density (kg/m3) | Specific Heat Capacity (J/gK) | Viscosity (cp) |
---|---|---|---|---|
4000 | 140 | 940.2 | 4.2095 | 0.20351 |
4250 | 145 | 936.83 | 4.2142 | 0.1966 |
4500 | 150 | 933.39 | 4.2193 | 0.19019 |
4750 | 155 | 929.88 | 4.2247 | 0.18424 |
5000 | 160 | 926.32 | 4.2305 | 0.17871 |
Pressure (psi) | Temperature | Density (kg/m3) | Specific Heat Capacity (J/gK) | Viscosity (cp) |
---|---|---|---|---|
4000 | 140 | 484 | 1.8477 | 0.038827 |
4250 | 145 | 495.7 | 1.812 | 0.039957 |
4500 | 150 | 506.02 | 1.7792 | 0.041004 |
4750 | 155 | 515.19 | 1.7491 | 0.041978 |
5000 | 160 | 523.4 | 1.7216 | 0.042888 |
Pressure (psi) | Temperature | Density (kg/m3) | Specific Heat Capacity (J/gK) | Viscosity (cp) |
---|---|---|---|---|
4000 | 160 | 922.68 | 4.2495 | 0.17707 |
4250 | 155 | 928.1 | 4.2338 | 0.18342 |
4500 | 150 | 933.39 | 4.2193 | 0.19019 |
4750 | 145 | 938.54 | 4.2058 | 0.19744 |
5000 | 140 | 943.56 | 4.1932 | 0.2052 |
Pressure (psi) | Temperature | Density (kg/m3) | Specific Heat Capacity (J/gK) | Viscosity (cp) |
---|---|---|---|---|
4000 | 160 | 432.45 | 1.7043 | 0.036069 |
4250 | 155 | 469.33 | 1.747 | 0.038411 |
4500 | 150 | 506.02 | 1.7792 | 0.041004 |
4750 | 145 | 542.08 | 1.8005 | 0.043822 |
5000 | 140 | 577.15 | 1.8124 | 0.046836 |
Reservoir Variable | Mean | Standard Deviation |
---|---|---|
Area () | 52,609,133 | 0 |
Gross thickness (m) | 205.435 | 28.65 |
Density (kg/) | 2600 | 100 |
Temperature (°C) | 130 | 10 |
Heat capacity (J/kg/K) | 950 | 30 |
Water saturation (stb/rb) | 0.73 | 0.05 |
Porosity (frac.) | 0.084 | 0.0086 |
Flow rate () | 0.223 | 0.068 |
Pressure (psi) | Temperature | Thermal Heat Flux ) |
---|---|---|
4000 | 138 | 1.214588519 |
3500 | 136 | 1.216510498 |
3000 | 134 | 1.157102696 |
2500 | 132 | 1.011332025 |
2000 | 130 | 0.79069077 |
Pressure (psi) | Temperature | Thermal Heat Flux ) |
---|---|---|
2000 | 138 | 0.68341184 |
2265 | 137 | 0.818102651 |
2500 | 136 | 0.938216822 |
3000 | 134 | 1.157102696 |
3500 | 132 | 1.292082697 |
3690 | 130 | 1.342954147 |
4000 | 130 | 1.342738376 |
Pressure (psi) | Temperature | Thermal Heat Flux ) |
---|---|---|
4000 | 140 | 1.184344311 |
4250 | 145 | 1.119416798 |
4500 | 150 | 1.060352724 |
4750 | 155 | 1.006749597 |
5000 | 160 | 0.95813409 |
Pressure (psi) | Temperature | Thermal Heat Flux ) |
---|---|---|
4000 | 160 | 0.922792148 |
4250 | 155 | 0.996407951 |
4500 | 150 | 1.060352724 |
4750 | 145 | 1.114032997 |
5000 | 140 | 1.158311088 |
Statistical Measure | Reserves | Parametric |
---|---|---|
best case (MMJ) | 3.74 × 1010 | |
P90 | Hydrothermal system (MMJ) | 2.70 × 1010 |
worst case (MMJ) | 1.91 × 1010 | |
best case (MMJ) | 5.96 × 1010 | |
P50 | Hydrothermal system (MMJ) | 4.44 × 1010 |
worst case (MMJ) | 3.03 × 1010 | |
best case (MMJ) | 9.48 × 1010 | |
P10 | Hydrothermal system (MMJ) | 7.07 × 1010 |
worst case (MMJ) | 4.81 × 1010 | |
best case (J^2) | 5.68 × 1032 | |
Variance | Hydrothermal system (J^2) | 3.17 × 1032 |
worst case (J^2) | 1.46 × 1032 | |
best case (J^2) | 2.53 × 1010 | |
Standard deviation | Hydrothermal system (J^2) | 1.78 × 1010 |
worst case (J^2) | 1.21 × 1010 | |
CO2 best case (MMJ) | 6.36 × 1010 | |
Mean | Hydrothermal system (MMJ) | 4.75 × 1010 |
CO2 worst case (MMJ) | 3.24 × 1010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gyimah, E.; Tomomewo, O.; Nkok, L.Y.; Bade, S.O.; Ofosu, E.A.; Bawuah, M.C. A Probabilistic Study of CO2 Plume Geothermal and Hydrothermal Systems: A Sensitivity Study of Different Reservoir Conditions in Williston Basin, North Dakota. Eng 2024, 5, 1407-1421. https://doi.org/10.3390/eng5030074
Gyimah E, Tomomewo O, Nkok LY, Bade SO, Ofosu EA, Bawuah MC. A Probabilistic Study of CO2 Plume Geothermal and Hydrothermal Systems: A Sensitivity Study of Different Reservoir Conditions in Williston Basin, North Dakota. Eng. 2024; 5(3):1407-1421. https://doi.org/10.3390/eng5030074
Chicago/Turabian StyleGyimah, Emmanuel, Olusegun Tomomewo, Luc Yvan Nkok, Shree Om Bade, Ebenezer Asare Ofosu, and Maxwell Collins Bawuah. 2024. "A Probabilistic Study of CO2 Plume Geothermal and Hydrothermal Systems: A Sensitivity Study of Different Reservoir Conditions in Williston Basin, North Dakota" Eng 5, no. 3: 1407-1421. https://doi.org/10.3390/eng5030074
APA StyleGyimah, E., Tomomewo, O., Nkok, L. Y., Bade, S. O., Ofosu, E. A., & Bawuah, M. C. (2024). A Probabilistic Study of CO2 Plume Geothermal and Hydrothermal Systems: A Sensitivity Study of Different Reservoir Conditions in Williston Basin, North Dakota. Eng, 5(3), 1407-1421. https://doi.org/10.3390/eng5030074