Response Surface Methodology-Aided Optimization of Bioactive Compound Extraction from Apple Peels Through Pulsed Electric Field Pretreatment and Ultrasonication
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instrumentation
2.3. Sample and Extract Preparation
2.4. Plant Extraction Procedure
2.5. Experiment Design and Optimization Using Response Surface Methodology (RSM)
2.6. Bioactive Compounds Quantification
2.6.1. Determination of Total Polyphenol Content (TPC)
2.6.2. Chromatographic Polyphenol Quantification
2.6.3. Determination of Ascorbic Acid Content (AAC)
2.7. Antioxidant Assays
2.7.1. Ferric-Reducing Antioxidant Power (FRAP) Assay
2.7.2. DPPH• Antiradical Activity Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Extraction Parameters Optimization
3.2. Impact of Extraction Parameters to Assays Through Pareto Plot Analysis
3.3. Optimized Extraction Conditions
3.4. Correlation Analyses
3.5. Partial Least Squares (PLS) Analysis
3.6. Analysis of the Optimal Extract
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vasile, M.; Bunea, A.; Ioan, C.R.; Ioan, B.C.; Socaci, S.; Viorel, M. Phytochemical Content and Antioxidant Activity of Malus Domestica Borkh Peel Extracts. Molecules 2021, 26, 7636. [Google Scholar] [CrossRef] [PubMed]
- Patocka, J.; Bhardwaj, K.; Klimova, B.; Nepovimova, E.; Wu, Q.; Landi, M.; Kuca, K.; Valis, M.; Wu, W. Malus Domestica: A Review on Nutritional Features, Chemical Composition, Traditional and Medicinal Value. Plants 2020, 9, 1408. [Google Scholar] [CrossRef]
- Davies, T.; Watts, S.; McClure, K.; Migicovsky, Z.; Myles, S. Phenotypic Divergence between the Cultivated Apple (Malus Domestica) and Its Primary Wild Progenitor (Malus Sieversii). PLoS ONE 2022, 17, e0250751. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Association of the United States. Available online: http://www.fao.org/faostat/en/ (accessed on 27 March 2024).
- Fernandes, P.A.R.; Wessel, D.F.; Coimbra, M.A.; Cardoso, S.M. Apple (Malus Domestica) By-Products: Chemistry, Functionality and Industrial Applications. In Mediterranean Fruits Bio-Wastes: Chemistry, Functionality and Technological Applications; Ramadan, M.F., Farag, M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 349–373. ISBN 978-3-030-84436-3. [Google Scholar]
- Shehzadi, K.; Rubab, Q.; Asad, L.; Ishfaq, M.; Shafique, B.; Ali, M.M.; Ranjha, N.; Mahmood, S.; Mueen-Ud-Din, G.; Javaid, T.; et al. A Critical Review on Presence of Polyphenols in Commercial Varieties of Apple Peel, Their Extraction and Health Benefits. Open Access J. Biol. Sci. Res. 2020, 6, 18. [Google Scholar] [CrossRef]
- Acquavia, M.A.; Pascale, R.; Foti, L.; Carlucci, G.; Scrano, L.; Martelli, G.; Brienza, M.; Coviello, D.; Bianco, G.; Lelario, F. Analytical Methods for Extraction and Identification of Primary and Secondary Metabolites of Apple (Malus Domestica) Fruits: A Review. Separations 2021, 8, 91. [Google Scholar] [CrossRef]
- Shafi, A.; Ahmad, F.; Mohammad, Z.H. Effect of the Addition of Banana Peel Flour on the Shelf Life and Antioxidant Properties of Cookies. ACS Food Sci. Technol. 2022, 2, 1355–1363. [Google Scholar] [CrossRef]
- Gupta, N.; Singh, S.; Chauhan, D.; Srivastava, R.; Singh, V.K. Exploring the Anticancer Potentials of Polyphenols: A Comprehensive Review of Patents in the Last Five Years. Recent Pat. Anti-Cancer Drug Discov. 2023, 18, 3–10. [Google Scholar] [CrossRef]
- Bashmil, Y.M.; Ali, A.; Bk, A.; Dunshea, F.R.; Suleria, H.A.R. Screening and Characterization of Phenolic Compounds from Australian Grown Bananas and Their Antioxidant Capacity. Antioxidants 2021, 10, 1521. [Google Scholar] [CrossRef] [PubMed]
- Tzima, K.; Brunton, N.P.; Lyng, J.G.; Frontuto, D.; Rai, D.K. The Effect of Pulsed Electric Field as a Pre-Treatment Step in Ultrasound Assisted Extraction of Phenolic Compounds from Fresh Rosemary and Thyme by-Products. Innov. Food Sci. Emerg. Technol. 2021, 69, 102644. [Google Scholar] [CrossRef]
- Chatzimitakos, T.; Athanasiadis, V.; Kalompatsios, D.; Mantiniotou, M.; Bozinou, E.; Lalas, S.I. Pulsed Electric Field Applications for the Extraction of Bioactive Compounds from Food Waste and By-Products: A Critical Review. Biomass 2023, 3, 367–401. [Google Scholar] [CrossRef]
- Arshad, R.N.; Abdul-Malek, Z.; Roobab, U.; Qureshi, M.I.; Khan, N.; Ahmad, M.H.; Liu, Z.-W.; Aadil, R.M. Effective Valorization of Food Wastes and By-Products through Pulsed Electric Field: A Systematic Review. J. Food Process Eng. 2021, 44, e13629. [Google Scholar] [CrossRef]
- González-Centeno, M.R.; Comas-Serra, F.; Femenia, A.; Rosselló, C.; Simal, S. Effect of Power Ultrasound Application on Aqueous Extraction of Phenolic Compounds and Antioxidant Capacity from Grape Pomace (Vitis vinifera L.): Experimental Kinetics and Modeling. Ultrason. Sonochemistry 2015, 22, 506–514. [Google Scholar] [CrossRef]
- Tian, J.; Wu, X.; Zhang, M.; Zhou, Z.; Liu, Y. Comparative Study on the Effects of Apple Peel Polyphenols and Apple Flesh Polyphenols on Cardiovascular Risk Factors in Mice. Clin. Exp. Hypertens. 2018, 40, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Joshi, A.; Arora, B.; Bhowmik, A.; Sharma, R.R.; Kumar, P. Significance of FRAP, DPPH, and CUPRAC Assays for Antioxidant Activity Determination in Apple Fruit Extracts. Eur. Food Res. Technol. 2020, 246, 591–598. [Google Scholar] [CrossRef]
- Fotirić Akšić, M.; Nešović, M.; Ćirić, I.; Tešić, Ž.; Pezo, L.; Tosti, T.; Gašić, U.; Dojčinović, B.; Lončar, B.; Meland, M. Polyphenolics and Chemical Profiles of Domestic Norwegian Apple (Malus × Domestica Borkh.) Cultivars. Front. Nutr. 2022, 9, 941487. [Google Scholar] [CrossRef] [PubMed]
- Carpentieri, S.; Soltanipour, F.; Ferrari, G.; Pataro, G.; Donsì, F. Emerging Green Techniques for the Extraction of Antioxidants from Agri-Food By-Products as Promising Ingredients for the Food Industry. Antioxidants 2021, 10, 1417. [Google Scholar] [CrossRef]
- Kalompatsios, D.; Ionescu, A.-I.; Athanasiadis, V.; Chatzimitakos, T.; Mantiniotou, M.; Kotsou, K.; Bozinou, E.; Lalas, S.I. Maximizing Bioactive Compound Extraction from Mandarin (Citrus Reticulata) Peels through Green Pretreatment Techniques. Oxygen 2024, 4, 307–324. [Google Scholar] [CrossRef]
- Wang, L.; Boussetta, N.; Lebovka, N.; Vorobiev, E. Cell Disintegration of Apple Peels Induced by Pulsed Electric Field and Efficiency of Bio-Compound Extraction. Food Bioprod. Process. 2020, 122, 13–21. [Google Scholar] [CrossRef]
- Wang, L.; Boussetta, N.; Lebovka, N.; Vorobiev, E. Selectivity of Ultrasound-Assisted Aqueous Extraction of Valuable Compounds from Flesh and Peel of Apple Tissues. LWT 2018, 93, 511–516. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Mantiniotou, M.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. Investigation of the Polyphenol Recovery of Overripe Banana Peel Extract Utilizing Cloud Point Extraction. Eng 2023, 4, 3026–3038. [Google Scholar] [CrossRef]
- Chatzimitakos, T.; Athanasiadis, V.; Makrygiannis, I.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. An Investigation into Crithmum Maritimum L. Leaves as a Source of Antioxidant Polyphenols. Compounds 2023, 3, 532–551. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Mantiniotou, M.; Bozinou, E.; Lalas, S.I. Exploring the Antioxidant Properties of Citrus Limon (Lemon) Peel Ultrasound Extract after the Cloud Point Extraction Method. Biomass 2024, 4, 202–216. [Google Scholar] [CrossRef]
- Shehata, E.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. Extraction Optimisation Using Water/Glycerol for the Efficient Recovery of Polyphenolic Antioxidants from Two Artemisia Species. Sep. Purif. Technol. 2015, 149, 462–469. [Google Scholar] [CrossRef]
- Asma, U.; Morozova, K.; Ferrentino, G.; Scampicchio, M. Apples and Apple By-Products: Antioxidant Properties and Food Applications. Antioxidants 2023, 12, 1456. [Google Scholar] [CrossRef] [PubMed]
- Gormez, E.; Golge, O.; González-Curbelo, M.Á.; Kabak, B. Pesticide Residues in Mandarins: Three-Year Monitoring Results. Molecules 2023, 28, 5611. [Google Scholar] [CrossRef]
- Jintawiwat, R.; Punamorntarakul, N.; Hirunyasiri, R.; Jarupoom, P.; Pankasemsuk, T.; Supasin, S.; Kawee-ai, A. Testing the Efficacy of a Prototype That Combines Ultrasound and Pulsed Electric Field for Extracting Valuable Compounds from Mitragyna Speciosa Leaves. AgriEngineering 2023, 5, 1879–1892. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Review of Green Food Processing Techniques. Preservation, Transformation, and Extraction. Innov. Food Sci. Emerg. Technol. 2017, 41, 357–377. [Google Scholar] [CrossRef]
- Antony, A.; Farid, M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Ali Redha, A.; Salauddin, M.; Harahap, I.A.; Rupasinghe, H.P.V. Factors Affecting the Extraction of (Poly)Phenols from Natural Resources Using Deep Eutectic Solvents Combined with Ultrasound-Assisted Extraction. Crit. Rev. Anal. Chem. 2023, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Osorio-Tobón, J.F. Recent Advances and Comparisons of Conventional and Alternative Extraction Techniques of Phenolic Compounds. J. Food Sci. Technol. 2020, 57, 4299–4315. [Google Scholar] [CrossRef]
- Chatzimitakos, T.; Athanasiadis, V.; Kotsou, K.; Mantiniotou, M.; Kalompatsios, D.; Makrygiannis, I.; Bozinou, E.; Lalas, S.I. Optimization of Pressurized Liquid Extraction (PLE) Parameters for Extraction of Bioactive Compounds from Moringa Oleifera Leaves and Bioactivity Assessment. Int. J. Mol. Sci. 2024, 25, 4628. [Google Scholar] [CrossRef] [PubMed]
- Chatzimitakos, T.; Athanasiadis, V.; Kalompatsios, D.; Kotsou, K.; Mantiniotou, M.; Bozinou, E.; Lalas, S.I. Sustainable Valorization of Sour Cherry (Prunus Cerasus) By-Products: Extraction of Antioxidant Compounds. Sustainability 2024, 16, 32. [Google Scholar] [CrossRef]
- Thoo, Y.; Ng, S.Y.; Khoo, M.; Mustapha, W.; Ho, C. A Binary Solvent Extraction System for Phenolic Antioxidants and Its Application to the Estimation of Antioxidant Capacity in Andrographis Paniculata Extracts. Int. Food Res. J. 2013, 20, 1103–1111. [Google Scholar]
- Awad, A.M.; Kumar, P.; Ismail-Fitry, M.R.; Jusoh, S.; Ab Aziz, M.F.; Sazili, A.Q. Green Extraction of Bioactive Compounds from Plant Biomass and Their Application in Meat as Natural Antioxidant. Antioxidants 2021, 10, 1465. [Google Scholar] [CrossRef] [PubMed]
- Dirar, A.I.; Alsaadi, D.H.M.; Wada, M.; Mohamed, M.A.; Watanabe, T.; Devkota, H.P. Effects of Extraction Solvents on Total Phenolic and Flavonoid Contents and Biological Activities of Extracts from Sudanese Medicinal Plants. S. Afr. J. Bot. 2019, 120, 261–267. [Google Scholar] [CrossRef]
- Šeruga, M.; Novak, I.; Jakobek, L. Determination of Polyphenols Content and Antioxidant Activity of Some Red Wines by Differential Pulse Voltammetry, HPLC and Spectrophotometric Methods. Food Chem. 2011, 124, 1208–1216. [Google Scholar] [CrossRef]
- Alessandri, S.; Ieri, F.; Romani, A. Minor Polar Compounds in Extra Virgin Olive Oil: Correlation between HPLC-DAD-MS and the Folin-Ciocalteu Spectrophotometric Method. J. Agric. Food Chem. 2014, 62, 826–835. [Google Scholar] [CrossRef]
- Villamil-Galindo, E.; Piagentini, A. Green Solvents for the Recovery of Phenolic Compounds from Strawberry (Fragaria x Ananassa Duch) and Apple (Malus Domestica) Agro-Industrial Bio-Wastes. Rev. Fac. Cienc. Agrar. UNCuyo 2024, 56, 1. [Google Scholar] [CrossRef]
- Plaskova, A.; Mlcek, J. New Insights of the Application of Water or Ethanol-Water Plant Extract Rich in Active Compounds in Food. Front. Nutr. 2023, 10, 1118761. [Google Scholar] [CrossRef] [PubMed]
- Geow, C.H.; Tan, M.C.; Yeap, S.P.; Chin, N.L. A Review on Extraction Techniques and Its Future Applications in Industry. Eur. J. Lipid Sci. Technol. 2021, 123, 2000302. [Google Scholar] [CrossRef]
- Gil-Martín, E.; Forbes-Hernández, T.; Romero, A.; Cianciosi, D.; Giampieri, F.; Battino, M. Influence of the Extraction Method on the Recovery of Bioactive Phenolic Compounds from Food Industry By-Products. Food Chem. 2022, 378, 131918. [Google Scholar] [CrossRef] [PubMed]
- Kunradi Vieira, F.G.; da Silva Campelo Borges, G.; Copetti, C.; Valdemiro Gonzaga, L.; da Costa Nunes, E.; Fett, R. Activity and Contents of Polyphenolic Antioxidants in the Whole Fruit, Flesh and Peel of Three Apple Cultivars. Arch. Latinoam. De Nutr. 2009, 59, 101–106. [Google Scholar]
- Liu, H.; Liu, Z.; Wu, Y.; Zheng, L.; Zhang, G. Regulatory Mechanisms of Anthocyanin Biosynthesis in Apple and Pear. Int. J. Mol. Sci. 2021, 22, 8441. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, J.; Xu, Z.; Sun, X.; Zhu, J.; Zhang, Y. Analysis of Antioxidant Activity and Flavonoids Metabolites in Peel and Flesh of Red-Fleshed Apple Varieties. Molecules 2020, 25, 1968. [Google Scholar] [CrossRef] [PubMed]
- Kondo, S.; Tsuda, K.; Muto, N.; Ueda, J. Antioxidative Activity of Apple Skin or Flesh Extracts Associated with Fruit Development on Selected Apple Cultivars. Sci. Hortic. 2002, 96, 177–185. [Google Scholar] [CrossRef]
- Karaman, Ş.; Tütem, E.; Başkan, K.S.; Apak, R. Comparison of Antioxidant Capacity and Phenolic Composition of Peel and Flesh of Some Apple Varieties. J. Sci. Food Agric. 2013, 93, 867–875. [Google Scholar] [CrossRef]
Independent Variables | Code Units | Coded Variable Level | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
Technique | X1 | ST | PEF + ST | US + ST | PEF + US + ST | – |
C (%, v/v) | X2 | 0 | 25 | 50 | 75 | 100 |
t (min) | X3 | 30 | 60 | 90 | 120 | 150 |
T (°C) | X4 | 20 | 35 | 50 | 65 | 80 |
Design Point | Independent Variables | Responses | ||||||
---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | TPC 1 | FRAP 2 | DPPH 3 | AAC 4 | |
1 | 3 | 1 | 3 | 4 | 3.04 ± 0.17 j | 16.98 ± 0.51 j | 27.63 ± 1.66 k,l | 0.56 ± 0.04 n |
2 | 3 | 2 | 1 | 3 | 10.42 ± 0.58 e,f | 76.39 ± 4.66 f,g | 59.71 ± 3.58 e,f,g | 2.77 ± 0.06 c,d,e,f |
3 | 2 | 3 | 4 | 3 | 11.17 ± 0.78 d,e | 101.98 ± 2.45 c,d | 67.89 ± 3.06 c,d,e | 2.13 ± 0.04 i,j,k |
4 | 2 | 4 | 5 | 4 | 10.78 ± 0.57 d,e,f | 102.24 ± 3.78 c,d | 73.29 ± 4.10 c,d | 2.45 ± 0.18 f,g,h,i |
5 | 3 | 5 | 4 | 2 | 6.53 ± 0.23 i | 55.76 ± 2.23 i | 38.38 ± 1.65 i,j | 2.53 ± 0.16 e,f,g,h |
6 | 4 | 1 | 4 | 5 | 3.99 ± 0.12 j | 28.42 ± 1.02 j | 22.95 ± 0.80 l,m | 1.49 ± 0.06 l,m |
7 | 4 | 2 | 3 | 1 | 10.36 ± 0.71 e,f | 71.18 ± 1.85 f,g,h | 51.63 ± 1.14 g,h | 2.36 ± 0.13 g,h,i,j |
8 | 1 | 3 | 3 | 2 | 14.40 ± 0.71 b | 128.06 ± 4.74 a | 105.66 ± 2.54 a | 2.50 ± 0.11 e,f,g,h |
9 | 1 | 4 | 4 | 1 | 13.96 ± 0.82 b | 127.88 ± 6.52 a | 90.74 ± 2.63 b | 2.85 ± 0.08 c,d,e |
10 | 1 | 5 | 1 | 4 | 8.89 ± 0.30 g,h | 82.22 ± 5.51 e,f | 64.57 ± 1.68 d,e,f | 2.18 ± 0.14 h,i,j |
11 | 1 | 1 | 2 | 3 | 2.70 ± 0.18 j,k | 19.17 ± 0.40 j | 32.07 ± 2.34 j,k | 1.14 ± 0.09 m |
12 | 1 | 2 | 5 | 5 | 13.65 ± 0.30 b | 126.73 ± 9.25 a,b | 97.62 ± 5.37 a,b | 2.96 ± 0.12 c,d |
13 | 4 | 3 | 2 | 4 | 15.93 ± 0.56 a | 114.91 ± 4.14 a,b,c | 71.30 ± 4.06 c,d | 2.94 ± 0.09 c,d |
14 | 3 | 4 | 2 | 5 | 13.37 ± 0.27 b | 113.82 ± 3.41 b,c | 73.18 ± 5.34 c,d | 3.53 ± 0.23 b |
15 | 2 | 5 | 3 | 5 | 7.48 ± 0.18 h,i | 68.24 ± 2.80 g,h,i | 42.96 ± 2.23 h,i | 2.01 ± 0.10 j,k |
16 | 2 | 1 | 1 | 1 | 1.57 ± 0.06 k | 21.43 ± 0.96 j | 16.71 ± 1.17 m | 0.62 ± 0.04 n |
17 | 2 | 2 | 2 | 2 | 9.41 ± 0.37 f,g | 79.61 ± 4.06 f,g | 57.17 ± 3.49 f,g | 1.80 ± 0.12 k,l |
18 | 3 | 3 | 5 | 1 | 11.86 ± 0.34 c,d | 94.23 ± 2.17 d,e | 73.87 ± 1.63 c | 3.05 ± 0.09 c |
19 | 4 | 4 | 1 | 2 | 13.15 ± 0.55 b,c | 105.28 ± 3.26 c,d | 58.90 ± 2.47 e,f,g | 2.68 ± 0.10 d,e,f,g |
20 | 4 | 5 | 5 | 3 | 9.49 ± 0.21 f,g | 57.57 ± 2.88 h,i | 29.71 ± 1.57 j,k,l | 4.16 ± 0.11 a |
Responses | Second-Order Polynomial Equations (Models) | R2 Predicted | R2 Adjusted | p-Value | Equation |
---|---|---|---|---|---|
TPC | Y = −4.03 − 5.13X1 + 15.79X2 − 2.39X3 + 0.14X4 + 1.05X12 − 2.39X22 − 0.003X32 + 0.47X42 − 0.0004X1X2 + 0.18X1X3 − 0.27X1X4 + 0.48X2X3 − 0.47X2X4 − 0.04X3X4 | 0.9779 | 0.9159 | 0.0033 | (6) |
FRAP | Y = −24.83 − 33.24X1 + 140.01X2 − 18.61X3 − 16.43X4 + 4.79X12 − 19.82X22 + 0.14X32 + 4.68X42 + 0.04X1X2 + 1.06X1X3 − 0.61X1X4 + 1.6X2X3 − 3.84X2X4 + 1.99X3X4 | 0.9896 | 0.9606 | 0.0005 | (7) |
DPPH | Y = −25.99 − 22.48X1 + 97.17X2 − 13.59X3 + 4.52X4 + 3.5X12 − 13.76X22 − 0.14X32 + 3.16X42 − 1.14X1X2 + 1.82X1X3 − 2.55X1X4 + 2.33X2X3 − 4.24X2X4 − 0.15X3X4 | 0.9662 | 0.8716 | 0.0090 | (8) |
AAC | Y = 1.17 − 1.5X1 + 3.96X2 − 2.62X3 + 0.21X4 + 0.2X12 − 0.6X22 + 0.03X32 + 0.33X42 + 0.06X1X2 + 0.38X1X3 − 0.26X1X4 + 0.39X2X3 − 0.37X2X4 − 0.006X3X4 | 0.9766 | 0.9109 | 0.0038 | (9) |
Responses | Optimal Conditions | ||||
---|---|---|---|---|---|
Maximum Predicted Response | Technique (X1) | C (%, v/v) (X2) | t (min) (X3) | T (°C) (X4) | |
TPC (mg GAE/g dw) | 15.45 ± 2.33 | PEF + US + ST (4) | 50 (3) | 60 (2) | 65 (4) |
FRAP (μmol AAE/g dw) | 127.68 ± 17.57 | ST (1) | 75 (4) | 120 (4) | 20 (1) |
DPPH (μmol AAE/g dw) | 103.06 ± 18.63 | ST (1) | 50 (3) | 120 (4) | 65 (4) |
AAC (mg/g dw) | 3.92 ± 0.63 | PEF + US + ST (4) | 100 (5) | 150 (5) | 50 (3) |
Responses | TPC | FRAP | DPPH | AAC |
---|---|---|---|---|
TPC | – | 0.9616 | 0.8757 | 0.7759 |
FRAP | – | 0.9474 | 0.6755 | |
DPPH | – | 0.5269 | ||
AAC | – |
Variables | PLS Model Values | Experimental Values |
---|---|---|
TPC (mg GAE/g dw) | 19.84 | 17.23 ± 0.65 |
FRAP (μmol AAE/g dw) | 152.79 | 130.87 ± 6.15 |
DPPH (μmol AAE/g dw) | 86.79 | 95.38 ± 3.05 |
AAC (mg/g dw) | 4.44 | 3.99 ± 0.13 |
Polyphenolic Compound | Optimal Extract (mg/g dw) |
---|---|
Pelargonin chloride | 2.56 ± 0.19 |
Catechin | 1.58 ± 0.03 |
Chlorogenic acid | 0.61 ± 0.04 |
Homovanillic acid | 0.01 ± 0 |
Epicatechin | 0.11 ± 0 |
Quercetin 3-D-galactoside | 0.60 ± 0.02 |
Hesperidin | 0.59 ± 0.04 |
Total identified | 6.06 ± 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantiniotou, M.; Bujor, B.-C.; Athanasiadis, V.; Chatzimitakos, T.; Kalompatsios, D.; Kotsou, K.; Bozinou, E.; Lalas, S.I. Response Surface Methodology-Aided Optimization of Bioactive Compound Extraction from Apple Peels Through Pulsed Electric Field Pretreatment and Ultrasonication. Eng 2024, 5, 2886-2901. https://doi.org/10.3390/eng5040150
Mantiniotou M, Bujor B-C, Athanasiadis V, Chatzimitakos T, Kalompatsios D, Kotsou K, Bozinou E, Lalas SI. Response Surface Methodology-Aided Optimization of Bioactive Compound Extraction from Apple Peels Through Pulsed Electric Field Pretreatment and Ultrasonication. Eng. 2024; 5(4):2886-2901. https://doi.org/10.3390/eng5040150
Chicago/Turabian StyleMantiniotou, Martha, Bogdan-Cristian Bujor, Vassilis Athanasiadis, Theodoros Chatzimitakos, Dimitrios Kalompatsios, Konstantina Kotsou, Eleni Bozinou, and Stavros I. Lalas. 2024. "Response Surface Methodology-Aided Optimization of Bioactive Compound Extraction from Apple Peels Through Pulsed Electric Field Pretreatment and Ultrasonication" Eng 5, no. 4: 2886-2901. https://doi.org/10.3390/eng5040150
APA StyleMantiniotou, M., Bujor, B. -C., Athanasiadis, V., Chatzimitakos, T., Kalompatsios, D., Kotsou, K., Bozinou, E., & Lalas, S. I. (2024). Response Surface Methodology-Aided Optimization of Bioactive Compound Extraction from Apple Peels Through Pulsed Electric Field Pretreatment and Ultrasonication. Eng, 5(4), 2886-2901. https://doi.org/10.3390/eng5040150